
The	Virtual	Block	Interface:	A	Flexible	Alternative
to	the	Conventional	Virtual	Memory	Framework
Nastaran Hajinazar ,	Pratyush Patel	,	Minesh Patel		,	Konstantinos	Kanellopoulos ,	Saugata Ghose	,	
Rachata Ausavarungnirun ,	Geraldo	F.	Oliveira		,	Jonathan	Appavoo ,	Vivek	Seshadri		,	Onur Mutlu

7: Example Use Case: Address Translation

5: VBI Design Overview

2: Example Challenges of the Conventional Virtual Memory Framework

3: Our Goal

1

1: Motivation

8: Conclusion

Design	an	alternative	virtual	memory	framework that
• Efficiently and	flexibly supports	increasingly	diverse	system	

configurations
• Provides the	key	features	of	conventional	virtual	memory	

framework	while	eliminating its	key	inefficiencies

• Modern	computing	systems	continue	to	diversifywith	respect	
to	system	architecture,	memory	technologies,	and	applications’	
memory	needs

• Continually	adapting	the	conventional	virtual	memory
framework	to	each	possible	system	configuration	is	challenging

VBI	is	a	promising	new	virtual	memory	framework

• Can	enable	several	important	optimizations
• Increases	design	flexibility	for	virtual	memory
• A	new	direction	for	future	work	in	novel	virtual	

memory	frameworks

1. Page	tables	need	to	be	shared	
between,	and	understood	by	
both	the	hardware	and	the	OS,	
resulting	in	rigid	page	table	
structures

- Challenging	to	implement	the	
page	table	flexibility	that	
applications	can	benefit	from

Key	Takeaways
1.	VBI-full improves	the	performance,	by	2.4X	on	
average	compared	to	Native

2. VBI-full enables	significant	performance	
improvement in	virtualized	environments	(4.3X	on	
average	compared	to	Virtual)

3.	VBI-full outperforms	Perfect	TLB (by	49%	on	
average)	as	the	optimizations	that	VBI	enables	are	
not	limited	to	only	reducing	the	address	
translation	overhead

https://www.youtube.com/watch?v
=7c6LgVrCwPo

https://people.inf.ethz.ch/omutlu/pub
/VBI-virtual-block-interface_isca20.pdf

Full Paper Full Talk Video2 3 4 5 6 7

1,2 3 1 1 4

5 1 6 7 1,4

Applications

Virtual	Memory
managed	by	the	operating	system

Hardware

Cannot	adapt
efficiently

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables
managed by the OS

Physical Memory

VAS 2 VAS n

. . .
Processes Guest OS

Host Virtual Address Space

Host OS

Host Page Tables

Physical Memory

---- virtualization layer ----

Guest Virtual Address Space
g VAS

Guest Page Tables

VAS 1 VAS 2

guest	virtual
– to	–

host	virtual	

host	virtual
– to	–

host	physical	

P2

P1

2. In	virtual	machines,	both	the	
guest	and	host	OS	perform	
address	translation,	resulting	in	
an	extra	level	of	indirection

- Challenging	to	perform	computation	
in	virtualized	environments,	
efficiently

Virtual Address Space (VAS)
VAS 1

Page Tables
managed by the OS

Slow Mem.Fast Mem.

P1

3. OS	that	defines	and	manages	the	
address	mapping,	has	low	visibility	
into	fine-grained	runtime	memory	
behavior	information

- Challenging	in heterogenous	memories
to	make	timely	migration	decisions	
based	on	quickly	changing	memory	
access	patterns	or	other	dynamic	
behavior

• Globally-visible	VBI	address	space
- Consists	of	a	set	of	virtual	blocks	(VBs)	of	different	sizes
- Provides	system-wide unique	VBI	addresses
- VBI	addresses	are directly	used	to	access	on-chip	

caches
- Pros:	Enables	inherently	virtual	caches

• All	VBs	are	visible	to	all	processes
- OS controls	which	processes	access	which	VBs
- Each	process	has	its	own	permissions

(read/write/execute)	when	attaching to	a	VB
- OS	maintains	a	list	of	VBs	attached	to	each	process	

used	to	perform	permission	checks

• Processes	map	each	semantically	meaningful	unit	of	
information to	a	separate	VB
- e.g.,	a	data	structure,	a	shared	library

• Memory	management	is	delegated to	the	Memory	
Translation	Layer	(MTL) in	the	memory	controller

- Address	translation	and	Physical	memory	allocation
- Translation	structures	are	not	shared	with	the	OS
- Per-VB	translation	structure tuned	to	the	VB’s	

characteristics
- Pros:	many benefits,	including

- Address	translation	overhead for	the	
processes	running	inside	a	virtual	machine,	
is	no	different	than	the	processes	running	
natively	on	system

- Enabling	flexible	translation	structures

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables

managed by the OS

Physical Memory

VAS 2 VAS n

. . .
Processes

VBIConventional Virtual Memory

one-to-one
mapping (OS)

fixed-size (256 TB)
VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

many-to-many
mapping (OS)

variable-size (4 KB – 128 TB)

VBI-to-physical translationvirtual-to-physical translation

Key	idea:
Delegate physical	memory	management	to	dedicated	hardware	
in	the	memory	controller

Guiding	Principles:
1. Size	virtual	address	spaces	appropriately	for	processes
- Mitigates translation	overheads of	unnecessarily	large	address	
spaces
2. Decouple	address	translation	from	access	protection
- Defers address	translation	until	necessary	to	access	memory
- Enables	the	flexibility of	managing	translation	and	protection	

using	separate	structures
3. Communicate	data	semantics	to	the	hardware
- Enables	intelligent resource	management

4: Virtual Block Interface (VBI)

Achieving	the	guiding	principles:
1. A	process’	VBs	define	its	address	space,	i.e.,	

determined	by	the	actual	needs	of	the	process
2. Address	mapping is	dedicated	to	the	MTL,	while	OS

retains	full	control	over	managing	the	access	
permissions

3. Each	VB	is	associated	with	a	set	of	information:
⁃ A	System-wide	unique	ID
⁃ Size	of	the	VB
⁃ Enable	bit
⁃ Reference	counter: number	of	processes	attached	

to	the	VB
⁃ Properties	bit	vector:	semantic	information	about	

VB	contents,	such	as	access	pattern,	latency	
sensitive	vs.	bandwidth	sensitive

6: Optimizations Enabled by VBI

0.0

0.5

1.0

1.5

2.0

2.5

ast
ar

bz
ip2

Ge
ms
FD
TD mc

f
mi
lc

na
md sje

ng

bw
av
es
-17

de
ep
sje
ng
-17

lbm
-17

om
ne
tp
p-1
7

im
g-d
nn

mo
se
s

Gr
ap
h5
00 AV

G

Virtual Perfect TLB VBI-Full

Sp
ee

du
p

13
.3

8.
9

• Native:	applications	run	natively	on	an	x86-64	system
• Virtual: applications	run	inside	a	virtual	machine	(accelerated	using	2D	page	walk	cache	[Bhargava+,	ASPLOS’08])
• Perfect	TLB:	an	unrealistic	version	of	Native	with	no	translation	overhead
• VBI-Full:	VBI	with	all	the	optimizations	that	it	enables

Naturally	enabled	by	VBI	and	not	easily	attainable	before:
• Appropriately	sized	process	address	space
• Flexible	address	translation	structures
• Communicating	data	semantics	to	the	hardware
• Inherently	virtual	caches
• Eliminating	2D	page	walks	in	virtual	machines
• Delayed	physical	memory	allocation
• Early	memory	reservation	mechanism

VB

Enable

Reference
Counter

Properties

Size

X

Inherent to
VBI design

Covered in
the paper

https://www.youtube.com/watch?v=7c6LgVrCwPo
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20.pdf

