
The Demikernel Datapath OS Architecture for
Microsecond-scale Datacenter Systems

Irene Zhangr, Amanda Raybuck♣, Pratyush Patel∗, Kirk Olynykr, Jacob Nelsonr,
Omar S. Navarro Leija★, Ashlie Martinez∗, Jing Liu♠, Anna Kornfeld Simpson∗, Sujay Jayakar∞,

Pedro Henrique Pennar, Max Demoulin★, Piali Choudhuryr, Anirudh Badamr
rMicrosoft Research, ♣University of Texas at Austin, ∗University of Washington,
♠University of Wisconsin Madison, ★University of Pennsylvania, ∞Zerowatt, Inc.

Abstract
Datacenter systems and I/O devices now run at single-digit
microsecond latencies, requiring ns-scale operating systems.
Traditional kernel-based operating systems impose an unaf-
fordable overhead, so recent kernel-bypass OSes [73] and
libraries [23] eliminate the OS kernel from the I/O datapath.
However, none of these systems offer a general-purpose data-
path OS replacement that meet the needs of µs-scale systems.

This paper proposes Demikernel, a flexible datapath OS
and architecture designed for heterogenous kernel-bypass de-
vices and µs-scale datacenter systems. We build two prototype
Demikernel OSes and show that minimal effort is needed to
port existing µs-scale systems. Once ported, Demikernel lets
applications run across heterogenous kernel-bypass devices
with ns-scale overheads and no code changes.

CCS Concepts • Software and its engineering → Operat-
ing systems.

Keywords operating system, kernel bypass, datacenters

ACM Reference Format:
Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk Olynyk, Ja-
cob Nelson, Omar S. Navarro Leija, Ashlie Martinez, Jing Liu,
Anna Kornfeld Simpson, Sujay Jayakar, Pedro Henrique Penna, Max
Demoulin, Piali Choudhury, Anirudh Badam. 2021. The Demiker-
nel Datapath OS Architecture for Microsecond-scale Datacenter
Systems. In ACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP ’21), October 26–29, 2021, Virtual Event, Ger-
many. ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/
3477132.3483569

1 Overview
Datacenter I/O devices and systems are increasingly µs-scale:
network round-trips, disk accesses and in-memory systems,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
SOSP ’21, October 26–29, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8709-5/21/10.
https://doi.org/10.1145/3477132.3483569

like Redis [80], can achieve single-digit microsecond laten-
cies. To avoid becoming a bottleneck, datapath systems soft-
ware must operate at sub-microsecond – or nanosecond – la-
tencies. To minimize latency, widely deployed kernel-bypass
devices [78, 16] move legacy OS kernels to the control path
and let µs-scale applications directly perform datapath I/O.

Kernel-bypass devices fundamentally change the tradi-
tional OS architecture: they eliminate the OS kernel from
the I/O datapath without a clear replacement. Kernel-bypass
devices offload OS protection (e.g., isolation, address transla-
tion) to safely offer user-level I/O and more capable devices
implement some OS management (e.g., networking) to fur-
ther reduce CPU usage. Existing kernel-bypass libraries [57,
23, 44] supply some missing OS components; however, none
are a general-purpose, portable datapath OS.

Without a standard datapath architecture and general-purpose
datapath OS, kernel-bypass is difficult for µs-scale applica-
tions to leverage. Programmers do not want to re-architect
applications for different devices because they may not know
in advance what will be available. New device features seem-
ingly develop every year, and programmers cannot contin-
uously re-design their applications to keep pace with these
changes. Further, since datacenter servers are constantly up-
graded, cloud providers (e.g., Microsoft Azure) deploy many
generations of hardware concurrently.

Thus, µs-scale applications require a datapath architecture
with a portable OS that implements common OS manage-
ment: storage and networking stacks, memory management
and CPU scheduling. Beyond supporting heterogenous de-
vices with ns-scale latencies, a datapath OS must meet new
needs of µs-scale applications. For example, zero-copy I/O is
important for reducing latency, so µs-scale systems require
an API with clear zero-copy I/O semantics and memory man-
agement that coordinates shared memory access between the
application and OS. Likewise, µs-scale applications perform
I/O every few microseconds, so fine-grained CPU multiplex-
ing between application work and OS tasks is also critical.

This paper presents Demikernel, a flexible datapath OS and
architecture designed for heterogenous kernel-bypass devices
and µs-scale kernel-bypass datacenter systems. Demikernel
defines: (1) new datapath OS management features for µs
applications, (2) a new portable datapath API (PDPIX) and (3)
a flexible datapath architecture for minimizing latency across

https://doi.org/10.1145/3477132.3483569
https://doi.org/10.1145/3477132.3483569
https://doi.org/10.1145/3477132.3483569

heterogenous devices. Demikernel datapath OSes run with
a legacy controlplane kernel (e.g., Linux or Windows) and
consist of interchangeable library OSes with the same API,
OS management features and architecture. Each library OS is
device-specific: it offloads to the kernel-bypass device when
possible and implements remaining OS management in a user-
space library. These libOSes aim to simplify the development
of µs-scale datacenter systems across heterogenous kernel-
bypass devices with while minimizing OS overheads.

Demikernel follows a trend away from kernel-oriented
OSes to library-oriented datapath OSes, motivated by the
CPU bottleneck caused by increasingly efficient I/O devices.
It is not designed for systems that benefit from directly access-
ing kernel-bypass hardware (e.g., HPC [45], software mid-
dleboxes [90, 72], RDMA storage systems [17, 98, 7, 101])
because it imposes a common API that hides more complex
device features (e.g., one-sided RDMA).

This paper describes two prototype Demikernel datapath
OSes for Linux and Windows. Our implementation is largely
in Rust, leveraging its memory safety benefits within the data-
path OS stack. We also describe the design of a new zero-copy,
ns-scale TCP stack and kernel-bypass-aware memory alloca-
tor. Our evaluation found it easy to build and port Demikernel
applications with I/O processing latencies of ≈50ns per I/O,
and a 17-26% peak throughput overhead, compared to directly
using kernel-bypass APIs.

2 Demikernel Datapath OS Requirements
Modern kernel-bypass devices, OSes and libraries eliminate
the OS kernel from the I/O datapath but do not replace all
of its functionality, leaving a gap in the kernel-bypass OS
architecture. This gap exposes a key question: what is the right
datapath OS replacement for µs-scale systems? This section
details the requirements of µs-scale systems and heterogenous
kernel-bypass devices that motivate Demikernel’s design.

2.1 Support Heterogenous OS Offloads

As shown in Figure 1, today’s datapath architectures are ad
hoc: existing kernel-bypass libraries [34, 73] offer different
OS features atop specific kernel-bypass devices. Portability
is challenging because different device offload different OS
features. For example, DPDK provides a low-level, raw NIC
interface, while RDMA implements a network protocol with
congestion control and ordered, reliable transmission. Thus,
systems that work with DPDK implement a full networking
stack, which is unnecessary for systems using RDMA.

This heterogeneity stems from a fundamental trade-off that
hardware designers have long struggled with [50, 66, 10] –
offloading more features improves performance but increases
device complexity – which only becomes worse as recent
research proposes increasingly complex offloads [52, 41,
86].For example, DPDK is more general and widely usable,
but RDMA achieves the lowest CPU and latency overheads
for µs-scale systems within the datacenter, so any datapath

User-space
Software

Kernel-space
Software

I/O Hardware

Demikernel

Buf. Mgmt

SPDK
User I/O

libSPDK

Buf. Mgmt

RDMA
User I/O

Net. Transport

Buf. Mgmt

NIC - DPDK
User I/O

App
libRDMA

libDPDK

Control
Path Datapath

NIC - SR-IOV
User I/O

Arrakis
libOS

DPDK

App

User I/O
Buf. Mgmt

Caladan
library

Kernel-Bypass Architectures

eRPC Lib.

RDMA

App

User I/O
Buf. Mgmt
Net. Trans.

OS
Kernel

Control
Path Ad-hoc Datapaths

App

OS
Kernel

Figure 1. Example kernel-bypass architectures. Unlike the Demik-
ernel architecture (right), Arrakis [73], Caladan [23] and eRPC [8]’s
architectures do not flexibly support heterogenous devices.

OS must portably support both. Future NICs may introduce
other trade-offs, so Demikernel’s design must flexibly ac-
commodate heterogenous kernel-bypass devices with varied
hardware capabilities and OS offloads.

2.2 Coordinate Zero-Copy Memory Access

Zero-copy I/O is critical for minimizing latency; however, it
requires coordinating memory access carefully across the I/O
device, stack and application. Kernel-bypass zero-copy I/O
requires two types of memory access coordination, which are
both difficult for programmers to manage and not explicitly
managed by existing kernel-bypass OSes.

First, kernel-bypass requires the I/O device’s IOMMU (or
a user-level device driver) to perform address translation,
which requires coordination with the CPU’s IOMMU and
TLB. To avoid page faults and ensure address mappings stay
fixed during ongoing I/O, kernel-bypass devices require des-
ignated DMA-capable memory, which is pinned in the OS
kernel. This designation works differently across devices; for
example, RDMA uses explicit registration of DMA-capable
memory while DPDK and SPDK use a separate pool-based
memory allocator backed with huge pages for DMA-capable
memory. Thus, a programmer must know in advance what
memory to use for I/O, which is not always possible and can
be complex to deduce, and use the appropriate designation
for the available device.

The second form of coordination concerns actual access to
the I/O memory buffers. Since the I/O stack and kernel-bypass
device work directly with application memory, the program-
mer must not free or modify that memory while in use for
I/O. This coordination goes beyond simply waiting until the
I/O has completed. For example, the TCP stack might send
the memory to the NIC, but then network loses the packet. If
the application modified or freed the memory buffer in the
meantime, the TCP stack has no way to retransmit it. As a re-
sult, the application must also coordinate with the TCP stack
when freeing memory. This coordination becomes increas-
ingly complex, especially in asynchronous or multithreaded
distributed systems. Given this complexity, Demikernel’s
design must portably manage complex zero-copy I/O coordi-
nation between applications and OS components.

2.3 Multiplex and Schedule the CPU at µs-scale

µs-scale datacenter systems commonly perform I/O every few
microseconds; thus, a datapath OS must be able to multi-
plex and schedule I/O processing and application work at
similar speeds. Existing kernel-level abstractions, like pro-
cesses and threads, are too coarse-grained for µs-scale sched-
uling because they consume entire cores for hundreds of mi-
croseconds. As a result, kernel-bypass systems lack a general-
purpose scheduling abstraction.

Recent user-level schedulers [9, 75] allocate application
workers on a µs-scale per-I/O basis; however, they still use
coarse-grained abstractions for OS work (e.g., whole threads [23]
or cores [30]). Some go a step further and take a microkernel
approach, separating OS services into another process [57] or
ring [3] for better security.

µs-scale RDMA systems commonly interleave I/O and
application request processing. This design makes scheduling
implicit instead of explicit: a datapath OS has no way to
control the balance of CPU cycles allocated to the application
versus datapath I/O processing. For example, both FaRM [17]
and Pilaf [64] always immediately perform I/O processing
when messages arrive, even given higher priority tasks (e.g.,
allocating new buffer space for incoming packets that might
otherwise be dropped).

None of these systems are ideal because their schedul-
ing decisions remain distributed, either between the kernel
and user-level scheduler (for DPDK systems) or across the
code (for RDMA systems). Recent work, like eRPC [34],
has shown that multiplexing application work and datapath
OS tasks on a single thread is required to achieve ns-scale
overheads. Thus, Demikernel’s design requires a µs-scale
scheduling abstraction and scheduler.

3 Demikernel Overview and Approach
Demikernel is the first datapath OS that meets the require-
ments of µs-scale applications and kernel-bypass devices. It
has new OS features and a new portable datapath API, which
are programmer-visible, and a new OS architecture and de-
sign, which is not visible to programmers. This section gives
an overview of Demikernel’s approach, the next describes the
programmer-visible features and API, while Section 5 details
the Demikernel (lib)OS architecture and design.

3.1 Design Goals

While meeting the requirements detailed in the previous sec-
tion, Demikernel has three high-level design goals:
• Simplify µs-scale kernel-bypass system development. Demik-

ernel must offer OS management that meets common needs
for µs-scale applications and kernel-bypass devices.

• Offer portability across heterogenous devices. Demikernel
should let applications run across multiple types of kernel-
bypass devices (e.g., RDMA and DPDK) and virtualized
environments with no code changes.

• Achieve nanosecond-scale latency overheads. Demikernel
datapath OSes have a per-I/O budget of less than 1µs for
I/O processing and other OS services.

3.2 System Model and Assumptions

Demikernel relies on popular kernel-bypass devices, includ-
ing RDMA [61] and DPDK [16] NICs and SPDK disks [88],
but also accommodates future programmable devices [60, 58,
69]. We assume Demikernel datapath OSes run in the same
process and thread as the application, so they mutually trust
each other and any isolation and protection are offered by the
control path kernel or kernel-bypass device. These assump-
tions are safe in the datacenter where applications typically
bring their own libraries and OS, and the datacenter operator
enforces isolation using hardware.

Demikernel makes it possible to send application mem-
ory directly over the network, so applications must carefully
consider the location of sensitive data. If necessary, this ca-
pability can be turned off. Other techniques, like information
flow control or verification could also be leveraged to ensure
the safety and security of application memory.

To minimize datapath latency, Demikernel uses cooperative
scheduling, so applications must run in a tight I/O process-
ing loop (i.e., enter the datapath libOS to perform I/O at
least once every millisecond). Failing to allocate cycles to
the datapath OS can cause I/O failures (e.g., packets to be
dropped and acks/retries not sent). Other control path work
(e.g., background logging) can run on a separate thread or
core and go through the legacy OS kernel. Our prototypes cur-
rently focus on independently scheduling single CPU cores,
relying on hardware support for multi-core scheduling [27];
however, the architecture can fit more complex scheduling
algorithms [23, 71]. A companion paper [15] proposes a new
kernel-bypass request scheduler that leverages Demikernel’s
understanding of application semantics to provide better tail
latency for µs-scale workloads with widely varying request
execution times.

3.3 Demikernel Approach

This section summarizes the new features of Demikernel’s de-
sign – both internal and external – to meet the needs detailed
in the previous section.

A portable datapath API and flexible OS architecture.
Demikernel tackles heterogenous kernel-bypass offloads with
a new portable datapath API and flexible OS architecture.
Demikernel takes a library OS approach by treating the kernel-
bypass hardware the datapath kernel and accommodating het-
erogenous kernel-bypass devices with interchangeable library
OSes. As Figure 1 shows, the Demikernel kernel-bypass archi-
tecture extends the kernel-bypass architecture with a flexible
datapath architecture. Each Demikernel datapath OS works
with a legacy control path OS kernel and consists of several
interchangeable datapath library OSes (libOSes) that imple-
ment a new high-level datapath API, called PDPIX.

PDPIX extends the standard POSIX API to better accom-
modate µs-scale kernel-bypass I/O. Microsecond kernel-bypass
systems are I/O-oriented: they spend most time and memory
processing I/O. Thus, PDPIX centers around an I/O queue ab-
straction that makes I/O explicit: it lets µs-scale applications
submit entire I/O requests, eliminating latency issues with
POSIX’s pipe-based I/O abstraction.

To minimize latency, Demikernel libOSes offload OS fea-
tures to the device when possible and implement the remain-
ing features in software. For example, our RDMA libOS relies
on the RDMA NIC for ordered, reliable delivery, while the
DPDK libOS implements it in software. Demikernel libOSes
have different implementations, and can even be written in
different languages; however, they share the same OS features,
architecture and core design.

A DMA-capable heap, use-after-free protection. Demik-
ernel provides three new external OS features to simplify
zero-copy memory coordination: a portable API with clear
semantics for I/O memory buffer ownership, (2) a zero-copy,
DMA-capable heap and (3) use-after-free (UAF) protection
for zero-copy I/O buffers. Unlike POSIX, PDPIX defines
clear zero-copy I/O semantics: applications pass ownership
to the Demikernel datapath OS when invoking I/O and do not
receive ownership back until the I/O completes.

The DMA-capable heap eliminates the need for program-
mers to designate I/O memory. Demikernel libOSes replace
the application’s memory allocator to back the heap with
DMA-capable memory in a device-specific way. For example,
the RDMA libOS’s memory allocator registers heap memory
transparently for RDMA on the first I/O access, while the
DPDK libOS’s allocator backs the application’s heap with
memory from the DPDK memory allocator.

Demikernel libOS allocators also provide UAF protection.
It guarantees that shared, in-use zero-copy I/O buffers are not
freed until both the application and datapath OS explicitly
free them. It simplifies zero-copy coordination by preventing
applications from accidentally freeing memory buffers in
use for I/O processing (e.g., TCP retries). However, UAF
protection does not keep applications from modifying in-use
buffers because there is no affordable way to Demikernel
datapath OSes to offer write-protection.

Leveraging the memory allocator lets the datapath OS con-
trol memory used to back the heap and when objects are freed.
However, it is a trade-off: though the allocator has insight
into the application (e.g., object sizes), the design requires all
applications to use the Demikernel allocator.

Coroutines and µs-scale CPU scheduling. Kernel-bypass
scheduling commonly happens on a per-I/O basis; however,
the POSIX API is poorly suited to this use. epoll and select
have a well-known “thundering herd” issue [56]: when the
socket is shared, it is impossible to deliver events to precisely
one worker. Thus, PDPIX introduces a new asynchronous I/O
API, called wait, which lets applications workers wait on

Table 1. Demikernel datapath OS services. We compare Demik-
ernel to kernel-based POSIX implementations and kernel-bypass
programming APIs and libraries, including RDMA ib_verbs [78],
DPDK [16] (SPDK [88]), recent networking [30, 20, 70, 42], stor-
age [32, 44, 81] and scheduling [71, 33, 75, 23] libraries. = full
support, H# = partial support, none = no support.

Demikernel Datapath
OS Services PO

SI
X

R
D

M
A

D
PD

K

N
et

lib

St
or

lib

Sc
he

d

D
em

ik

I/
O

St
ac

k I1. Portable high-level API H# H# H# H#
I2. Microsecond Net Stack H# H#
I3. Microsecond Storage Stack

Sc
he

du
le C1. Alloc CPU to app and I/O H# H# H#

C2. Alloc I/O req to app workers H#
C3. App request scheduling API H# H#

M
em

or
y M1. Mem ownership semantics H#

M2. DMA-capable heap H#
M3. Use-after-free protection

specific I/O requests and the datapath OSes explicitly assign
I/O requests to workers.

For µs-scale CPU multiplexing, Demikernel uses corou-
tines to encapsulate both OS and application computation.
Coroutines are lightweight, have low-cost context switches
and are well-suited for the state-machine-based asynchro-
nous event handling that I/O stacks commonly require. We
chose coroutines over user-level threads (e.g., Caladan’s green
threads [23]), which can perform equally well, because corou-
tines encapsulate state for each task, removing the need for
global state management. For example, Demikernel’s TCP
stack uses one coroutine per TCP connection for retransmis-
sions, which keeps the relevant TCP state.

Every libOS has a centralized coroutine scheduler, opti-
mized for the kernel-bypass device. Since interrupts are un-
affordable at ns-scale [33, 15], Demikernel coroutines are
cooperative: they typically yield after a few microseconds
or less. Traditional coroutines typically work by polling: the
scheduler runs every coroutine to check for progress. How-
ever, we found polling to be unaffordable at ns-scale since
large numbers of coroutines are blocked on infrequent I/O
events (e.g., a packet for the TCP connection arrives). Thus,
Demikernel coroutines are also blockable. The scheduler sep-
arates runnable and blocked coroutines and moves blocked
ones to the runnable queue only after the event occurs.

4 Demikernel Datapath OS Features and API
Demikernel offers new OS features to meet µs-scale applica-
tion requirements. This section describes Demikernel from a
programmer’s perspective, including PDPIX.

4.1 Demikernel Datapath OS Feature Overview

Table 1 summarizes and compares Demikernel’s OS fea-
ture support to existing kernel-bypass APIs [62, 16] and li-
braries [30, 23, 44]. Unlike existing kernel-bypass systems,

the Demikernel datapath OS offers a portable I/O API for
kernel-bypass devices with high-level abstractions, like sock-
ets and files (Table 1:I1). For each device type, it also im-
plements (I2) a µs-scale networking stack with features like
ordered, reliable messaging, congestion control and flow con-
trol and (I3) a µs-scale storage stack with disk block allocation
and data organization.

Demikernel provides two types of CPU scheduling: (C1)
allocating CPU cycles between libOS I/O processing and ap-
plication workers, and (C2) allocating I/O requests among ap-
plication workers. This paper focuses on C1, as C2 is a well-
studied topic [23]. Our companion paper, Perséphone [15],
explores how to leverage Demikernel for better I/O request
scheduling at microsecond timescales. To better support kernel-
bypass schedulers, we replace epoll with a new API (C3)
that explicitly supports I/O request scheduling.

kernel-bypass applications require zero-copy I/O to make
the best use of limited CPU cycles. To better this task, Demik-
ernel offers (M1) a zero-copy I/O API with clear memory
ownership semantics between the application, the libOS and
the I/O device, and (M2) makes the entire application heap
transparently DMA-capable without explicit, device-specific
registration. Finally, Demikernel gives (M3) use-after-free
protection, which, together with its other features, lets ap-
plications that do not update in place, like Redis, leverage
zero-copy I/O with no application changes. Combined with
its zero-copy network and storage stacks and fine-grained
CPU multiplexing, Demikernel supports single-core run-to-
completion for a request (e.g., Redis PUT) from the NIC to
the application to disk and back without copies.

4.2 PDPIX: A Portable Datapath API

Demikernel extends POSIX with the portable datapath in-
terface (PDPIX). To minimize changes to existing µs-scale
applications, PDPIX limits POSIX changes to ones that mini-
mize overheads or better support kernel-bypass I/O. PDPIX
system calls go to the datapath OS and no longer require a
kernel crossing (and thus we call them PDPIX library calls
or libcalls). PDPIX is queue-oriented, not file-oriented; thus,
system calls that return a file descriptor in POSIX return a
queue descriptor in PDPIX.

I/O Queues. To reduce application changes, we chose to
leave the socket, pipe and file abstractions in place. For exam-
ple, PDPIX does not modify the POSIX listen/accept in-
terface for accepting network connections; however, accept
now returns a queue descriptor, instead of a file descriptor,
through which the application can accept incoming connec-
tions. queue() creates a light-weight in-memory queue, sim-
ilar to a Go channel [25].

While these library calls seem like control path operations,
they interact with I/O and thus are implemented in the datap-
ath OS. For example, incoming connections arrive as network

I/O and must be processed efficiently by the datapath network-
ing stack. Likewise, sockets remain on the datapath because
they create I/O queues associated with network connections
that the datapath OS needs to dispatch incoming packets.

Network and Storage I/O. push and pop are datapath opera-
tions for submitting and receiving I/O operations, respectively.
To avoid unnecessary buffering and poor tail latencies, these
libcalls take a scatter-gather array of memory pointers. They
are intended to be a complete I/O operation, so the datapath
OS can take a fast path and immediately issue or return the
I/O if possible. For example, unlike the POSIX write oper-
ation, Demikernel immediately attempts to submit I/O after
a push. Both push and pop are non-blocking and return a
qtoken indicating their asynchronous result. Applications use
the qtoken to fetch the completion when the operation has
been successfully processed via the wait_* library calls. Nat-
urally, an application can simulate a blocking library call by
calling the operation and immediately waiting on the qtoken.

Memory. Applications do not allocate buffers for incoming
data; instead, pop and wait_* return scatter-gather arrays
with pointers to memory allocated in the application’s DMA-
capable heap. The application receives memory ownership of
the buffers and frees them when no longer needed.

PDPIX requires that all I/O must be from the DMA-capable
heap (e.g., not on the stack). On push, the application grants
ownership of scatter-gather buffers to the Demikernel data-
path OS and receives it back on completion. Use-after-free
protection guarantees that I/O buffers are not be freed until
both the application and datapath OS free them.

UAF protection does not offer write-protection; the ap-
plication must respect push semantics and not modify the
buffer until the qtoken returns. We chose to offer only UAF
protection as there is no low cost way for Demikernel to
provide full write-protection. Thus, UAF protection is a com-
promise: it captures a common programming pattern but does
not eliminate all coordination. However, applications that do
not update in place (i.e., their memory is immutable, like
Redis’s keys and values) require no additional code to support
zero-copy I/O coordination.

Scheduling. PDPIX replaces epoll with the asynchronous
wait_* call. The basic wait blocks on a single qtoken;
wait_any provides functionality similar to select or epoll,
and wait_all blocks until all operations complete. This ab-
straction solves two major issues with POSIX epoll: (1)
wait directly returns the data from the operation so the appli-
cation can begin processing immediately, and (2) assuming
each application worker waits on a separate qtoken, wait
wakes only one worker on each I/O completion. Despite these
semantic changes, we found it easy to replace an epoll loop
with wait_any. However, wait_* is a low-level API, so we
hope to eventually implement libraries, like libevent [54], to
reduce application changes.

1 / / Q u e u e c r e a t i o n a n d m a n a g e m e n t

2 int qd = socket(...);

3 int err = listen(int qd, ...);

4 int err = bind(int qd, ...);

5 int qd = accept(int qd, ...);

6 int err = connect(int qd, ...);

7 int err = close(int qd);

8 int qd = queue();

9 int qd = open(...);

10 int qd = creat(...);

11 int err = lseek(int qd, ...);

12 int err = truncate(int qd, ...);

1 / / I / O p r o c e s s i n g , n o t i f c a t i o n a n d m e m o r y c a l l s

2 qtoken qt = push(int qd, const sgarray &sga);

3 qtoken qt = pop(int qd, sgarray *sga);

4 int ret = wait(qtoken qt, sgarray *sga);

5 int ret = wait_any(qtoken *qts,

6 size_t num_qts,

7 qevent **qevs,

8 size_t *num_qevs,

9 int timeout);

10 int ret = wait_all(qtoken *qts, size_t num_qts,

11 qevent **qevs, int timeout);

12 void *dma_ptr = malloc(size_t size);

13 free(void *dma_ptr);

Figure 2. Demikernel PDPIX library call API. PDPIX retains features of the POSIX interface – ... represents unchanged arguments – with
three key changes. To avoid unnecessary buffering on the I/O datapath, PDPIX is queue-oriented and lets applications submit complete I/O
operations. To support zero-copy I/O, PDPIX queue operations define clear zero-copy I/O memory ownership semantics. Finally, PDPIX
replaces epoll with wait_* to let libOSes explicitly assign I/O to workers.

5 Demikernel Datapath Library OS Design
Figure 3 shows the Demikernel datapath OS architecture:
each OS consists of interchangeable library OSes that run on
different kernel-bypass devices with a legacy kernel. While
each library OS supports a different kernel-bypass device on
a different legacy kernel, they share a common architecture
and design, described in this section.

5.1 Design Overview

Each Demikernel libOS supports a single kernel-bypass I/O
device type (e.g., DPDK, RDMA, SPDK) and consists of
an I/O processing stack for the I/O device, a libOS-specific
memory allocator and a centralized coroutine scheduler. To
support both networking and storage, we integrate libOSes
into a single library for both devices (e.g., RDMAxSPDK).

We implemented the bulk of our library OS code in Rust.
We initially prototyped several libOSes in C++; however,
we found that Rust performs competitively with C++ and
achieves ns-scale latencies while offering additional benefits.
First, Rust enforces memory safety through language fea-
tures and its compiler. Though our libOSes use unsafe code
to bind to C/C++ kernel-bypass libraries and applications,

User-space
Software

Kernel-space
Software

I/O Hardware I/O Device
???

libFuture
???

DPDK
User I/O

Buf. Mgmt

libRDMA

RDMA
User I/O

Buf. Mgmt
Net. Trans.

OS
Kernel

Control
Path

Demikernel Datapath Architecture

App

libPOSIX libDPDK

SPDK
User I/O

Buf. Mgmt

libSPDK

Future

Demikernel PDPIX Datapath API

Figure 3. Demikernel kernel-bypass architecture. Demikernel ac-
commodates heterogenous kernel-bypass devices, including poten-
tial future hardware, with a flexible library OS-based datapath ar-
chitecture.We include a libOS that goes through the OS kernel for
development and debugging.

Rust ensures memory safety internally within our libOSes.
We also appreciated Rust’s improved build system with porta-
bility across platforms, compared to the difficulties that we
encountered with CMake. Finally, Rust has excellent support
for co-routines, which we are being actively developing, let-
ting us use language features to implement our scheduling
abstraction and potentially contribute back to the Rust com-
munity. The primary downside to using Rust is the need for
many cross-language bindings as kernel-bypass interfaces
and µs-scale applications are still largely written in C/C++.

Each libOS has a memory allocator that allocates or regis-
ters DMA-capable memory and performs reference counting
for UAF protection. Using the memory allocator for memory
management is a trade-off that provides good insight into
application memory but requires that applications use our
memory allocator. Other designs are possible; for example,
having the libOSes perform packet-based refcounting. Our
prototype Demikernel libOSes use Hoard [4], a popular mem-
ory allocator that is easily extensible using C++ templates [5].
We intend to integrate a more modern memory allocator (i.e.,
mimalloc [46]) in the future.

Demikernel libOSes use Rust’s async/await language fea-
tures [85] to implement asynchronous I/O processing within
coroutines. Rust leverages support for generators to compile
imperative code into state machines with a transition function.
The Rust compiler does not directly save registers and swap
stacks; it compiles coroutines down to regular function calls
with values “on the stack” stored directly in the state machine
[55]. This crucial benefit of using Rust makes a coroutine
context switch lightweight and fast (≈12 cycles in our Rust
prototype) and helps our I/O stacks avoid a real context switch
on the critical path. While Rust’s language interface and com-
piler support for writing coroutines is well-defined, Rust does
not currently have a coroutine runtime. Thus, we implement
a simple coroutine runtime and scheduler within each libOS

that optimizes for the amount of I/O processing that each
kernel-bypass devices requires.

5.2 I/O Processing

The primary job of Demikernel libOSes is µs-scale I/O pro-
cessing. Every libOS has an I/O stack with this process-
ing flow but different amounts and types of I/O process-
ing and different background tasks (e.g., sending acks). As
noted previously, Demikernel I/O stacks minimize latency
by polling, which is CPU-intensive but critical for microsec-
ond latency. Each stack uses a fast-path I/O coroutine to poll
a single hardware interface (e.g., RDMA poll_cq, DPDK
rte_rx_burst), then multiplexes sockets, connections, files,
etc. across them.

Taking inspiration from TAS [39], Demikernel I/O stacks
optimize for an error-free fast-path (e.g., packets arrive in
order, send windows are open), which is the common case in
the datacenter [37, 34]. Unlike TAS, Demikernel I/O stacks
share application threads and aim for run-to-completion: the
fast-path coroutine processes the incoming data, finds the
blocked qtoken, schedules the application coroutine and pro-
cesses any outgoing messages before moving on to the next
I/O. Likewise, Demikernel I/O stacks inline outgoing I/O
processing in push (in the application coroutine) and submit
I/O (to the asynchronous hardware I/O API) in the error-free
case. Although a coroutine context switch occurs between
the fast-path and application coroutines, it does not interrupt
run-to-completion because Rust compiles coroutine switches
to a function call.

Figure 4 shows normal case I/O processing for the DPDK
TCP stack, but the same applies to all libOS I/O stacks. To
begin, the application: (1) calls pop to ask for incoming data.
If nothing is pending, the libOS (2) allocates and returns a
qtoken to the application, which calls wait with the qtoken.
The libOS (3) allocates a blocked coroutine for each qtoken
in wait, then immediately yields to the coroutine scheduler.
We do not allocate the coroutine for each queue token unless
the application calls wait to indicate a waiting worker. If
the scheduler has no other work, it runs the fast-path corou-
tine, which (4) polls DPDK’s rte_rx_burst for incoming
packets. If the fast-path coroutine finds a packet, then it (5)
processes the packet immediately (if error-free), signals a
blocked coroutine for the TCP connection and yields.

The scheduler runs the unblocked application coroutine,
which (6) returns the incoming request to the application
worker, which in turn (7) processes the request and pushes
any response. On the error-free path, the libOS (8) inlines
the outgoing packet processing and immediately submits the
I/O to DPDK’s rte_tx_burst, then (9) returns a qtoken to
indicate when the push completes and the application will
regain ownership of the memory buffers. To restart the loop,
the application (1) calls pop on the queue to get the next I/O
and then calls wait with the new qtoken. To serve multiple

DPDK

Scheduler

App co-routine

Fast-path
co-routine

4.
Polling

App co-routine

PDPIX pop(qd) qt

2.alloc qtoken

wait(qt)

3. alloc
co-routine

rte_rx_burst

yield

5. process
packet

yield

6. return
incoming

data

7. process req

qt,buf push(qd)

1. fetch first request

rte_tx_burst

8. process
outgoing

data
9. alloc
qtoken

qt

Figure 4. Example Demikernel I/O processing flow for DPDK.

connections, the application calls pop on all connections and
then wait_any with the returned qtokens.

We use DPDK as an example; however, the same flow
works for any asynchronous kernel-bypass I/O API. The fast
path coroutine yields after every 𝑛 polls to let other I/O stacks
and background work run. For non-common-case scenarios,
the fast-path coroutine unblocks another coroutine and yields.

5.3 Memory Management

Each Demikernel libOS uses a device-specific, modified Hoard
for memory management. Hoard is a pool-based memory al-
locator; Hoard memory pools are called superblocks, which
each hold fixed-size memory objects. We use superblocks to
manage DMA-capable memory and reference counting: the
superblock header holds reference counts and meta-data for
DMA-capable memory (e.g., RDMA rkeys).

As noted in Section 2, different kernel-bypass devices have
different requirements for DMA-capable memory. For ex-
ample, RDMA requires memory registration and a memory
region-specific rkey on every I/O, so Catmint’s memory al-
locator provides a get_rkey interface to retrieve the rkey
on every I/O. get_rkey(void *) registers an entire su-
perblock on the first invokation and stores the rkey in the
superblock header. Likewise, Catnip and Cattree allocate ev-
ery superblock with memory from the DPDK mempool for
the DMA-capable heap.

For UAF protection, all Demikernel allocators provide a
simple reference counting interface: inc_ref(void *) and
dec_ref(void *). Note that these interfaces are not part of
PDPIX but are internal to Demikernel libOSes. The libOS I/O
stack calls inc_ref when issuing I/O on a memory buffer
and dec_ref when done with the buffer. As noted earlier,
Demikernel libOSes may have to hold references for a long
time; for example, the TCP stack can safely dec_ref only
after the receiver has acked the packet.

Hoard keeps free objects in a LIFO linked list with the head
pointer in the superblock header, which Demikernel amends
with a bitmap of per-object reference counts. To minimize
overhead, we use a single bit per-object, representing one
reference from the application and one from the libOS. If
the libOS has more than one reference to the object (e.g., the
object is used for multiple I/Os), it must keep a reference
table to track when it is safe to dec_ref.

Zero-copy I/O offers a significant performance improve-
ment only for buffers over 1 kB in size, so Demikernel OSes

perform zero-copy I/O only for buffers over that size. Hoard
superblocks make it easy to limit reference counting and
kernel-bypass DMA support to superblocks holding objects
larger than 1 kB, minimizing additional meta-data.

5.4 Coroutine Scheduler

A Demikernel libOS has three coroutine types, reflecting com-
mon CPU consumers: (1) a fast-path I/O processing coroutine
for each I/O stack that polls for I/O and performs fast-path
I/O processing, (2) several background coroutines for other
I/O stack work (e.g., managing TCP send windows), and (3)
one application coroutine per blocked qtoken, which runs
an application worker to process a single request. Generally,
each libOS scheduler gives priority to runnable application
coroutines, and then to background coroutines and the fast-
path coroutine, which is always runnable, in a FIFO manner.
Demikernel libOSes are single threaded; thus, each scheduler
runs one coroutine at a time. We expect the coroutine design
will scale to more cores. However, Demikernel libOSes will
need to be carefully designed to avoid shared state across
cores, so we do not yet know if this will be a major limitation.

Demikernel schedulers offer a yield interface that lets
coroutines express whether they are blocked and provide
a readiness flag for the unblocking event. A coroutine can
be in one of three states: running, runnable or blocked. To
separate runnable and blocked coroutines, Demikernel sched-
ulers maintain a readiness bit per coroutine. Following Rust’s
Future trait’s [97] design, coroutines that block on an event
(e.g., a timer, receiving on a connection), stash a pointer to
a readiness flag for the event. Another coroutine triggers the
event (e.g., by receiving a packet on the connection), sees the
pointer, and sets the stashed readiness bit, signaling to the
scheduler that the blocked coroutine is now runnable.

Implementing a ns-scale scheduler is challenging: it may
manage hundreds or thousands of coroutines and have only
hundreds of cycles to find the next to run. For example, heap
allocations are unaffordable on the datapath, so the scheduler
maintains a list of waker blocks that contains the readiness bit
for 64 different coroutines in a bitset. To make ns-scale sched-
uling decisions, the scheduler must efficiently iterate over
all set bits in each waker block to find runnable coroutines.
We use Lemire’s algorithm [47], which uses x86’s tzcnt

instruction to efficiently skip over unset bits. A microbench-
mark shows that the scheduler can context switch between an
empty yielding coroutine and find another runnable coroutine
in 12 cycles.

5.5 Network and Storage LibOS Integration

A key Demikernel goal is fine-grained CPU multiplexing of
networking and storage I/O processing with application pro-
cessing and integrated zero-copy memory coordination across
all three. For example, Demikernel lets Redis receive a PUT
request from the network, checkpoint it to disk, and respond

to the client without copies or thread context switches. Cur-
rent kernel-bypass libraries do not achieve this goal because
they separate I/O and application processing [30, 39] or do
not support applications [43, 28, 96].

To support network and storage devices together, Demik-
ernel integrates its network and storage libOSes. Doing so
is challenging because not all kernel-bypass devices work
well together. For example, though DPDK and SPDK work
cooperatively, RDMA and SPDK were not designed to inter-
act. SPDK shares the DPDK memory allocator, so initializing
it creates a DPDK instance, which Catnip×Cattree shares
betwen the networking and storage stacks. This automatic
initialization creates a problem for RDMA integration be-
cause the DPDK instance will make the NIC inaccessible for
RDMA. Thus, Catmint×Cattree must carefully blocklist all
NICs for DPDK.

Demikernel memory allocator provides DMA-capable mem-
ory for DPDK network or SPDK storage I/O. We modify
Hoard to allocate memory objects from the DPDK memory
pool for SPDK and register the same memory with RDMA.
We split the fast path coroutine between polling DPDK de-
vices and SPDK completion queues in a round-robin fashion,
allocating a fair share of CPU cycles to both given no pending
I/O. More complex scheduling of CPU cycles between net-
work and storage I/O processing is possible in the future. In
general, portable integration between networking and storage
datapath libOSes significantly simplifies µs-scale applications
running across network and storage kernel-bypass devices.

6 Demikernel Library OS Implementations
We prototype two Demikernel datapath OSes: DEMILIN for
Linux and DEMIWIN for Windows. Table 2 lists the library
Oses that make up each datapath OS. The legacy kernels
have little impact on the design of the two datapath OSes;
instead, they primarily accommodate differences in kernel-
bypass frameworks on Windows and Linux (e.g., the Linux
and Windows RDMA interfaces are very different). DEMILIN
supports RDMA, DPDK and SPDK kernel-bypass devices.
It compiles into 6 shared libraries: Catnap, Catmint, Catnip,
Cattree, Catmint×Cattree and Catnip×Cattree. It uses DPDK
19.08 [16], SPDK 19.10 [88], and the rdmacm and ibverbs

interface included with the Mellanox OFED driver [61] 5.0.2
and Ubuntu 18.04. DEMIWIN currently supports only RDMA
kernel-bypass devices with Catpaw and the Catnap POSIX
libOS through WSL. DPDK and SPDK are not well supported
on Windows; however, mainline support for both is currently
in development. Catpaw is built on NDSPI v2 [63]. This
section describes their implementation.

6.1 Catnap POSIX Library OS

We developed Catnap to test and develop Demikernel applica-
tions without kernel-bypass hardware, which is an important
feature for building µs-scale datacenter applications. Demik-
ernel’s flexible library OS architecture lets us support such a

Table 2. Demikernel library operating systems. We implement two
prototype Demikernel datapath OSes: DEMILIN for Linux and
DEMIWIN for Windows. Each datapath OS consists of a set of
library OSes (e.g., DEMIWIN includes Catpaw and Catnap), which
offer portability across different kernel-bypass devices.

LibOS Name Datapath OS Kernel-bypass LoC

Catpaw DEMIWIN RDMA 6752 C++
Catnap DEMILIN, DEMIWIN N/A 822 C++
Catmint DEMILIN RDMA 1904 Rust
Catnip DEMILIN DPDK 9201 Rust
Cattree DEMILIN SPDK 2320 Rust

libOS without increasing the overhead or complexity of our
other libOSes. Catnap follows the flow shown in Figure 4 but
uses POSIX read and write in non-blocking mode instead
of epoll to minimize latency. Catnap supports storage with
files in a similar fashion. Catnap does not require memory
management since POSIX is not zero-copy, and it has no
background tasks since the Linux kernel handles all I/O.

6.2 Catmint and Catpaw RDMA Library OSes

Catmint builds PDPIX queues atop the rdma_cm [79] inter-
faces to manage connections and the ib_verbs interface
to efficiently send and receive messages. It uses two-sided
RDMA operations to send and receive messages, which sim-
plifies support for the wait_* interface. We use a similar
design for Catpaw atop NSDPI.

We found that using one RDMA queue pair per connection
was unaffordable [35], so Catmint uses one queue pair per
device and implements connection-based multiplexing for
PDPIX queues. It processes I/O following the common flow,
using poll_cq to poll for completions and ibv_post_wr to
submit send requests to other nodes and post receive buffers.
The only slow path operation buffers sends for flow control;
Catmint allocates one coroutine per connection to re-send
when the receiver updates the send window.

Catmint implements flow control using a simple message-
based send window count and a one-sided write to update
the sender’s window count. It currently only supports mes-
sages up to a configurable buffer size. Further, it uses a flow-
control coroutine per connection to allocate and post receive
buffers and remotely update the send window. The fast-path
coroutine checks the remaining receive buffers on each in-
coming I/O and unblocks the flow-control coroutine if the
remaining buffers fall below a fixed number.

6.3 Catnip DPDK Library OS

Catnip implements UDP and TCP networking stacks on DPDK
according to RFCs 793 and 7323 [82, 6] with the Cubic
congestion control algorithm [26]. Existing user-level stacks
did not meet our needs for ns-scale latencies: mTCP [30],
Stackmap [102], f-stack [20] and SeaStar [42] all report
double-digit microsecond latencies. In contrast, Catnip can

process an incoming TCP packet and dispatch it to the waiting
application coroutine in 53ns.

Unlike existing TCP implementations [71, 30], it is able to
leverage coroutines for a linear programming flow through
the state machine. Because coroutines efficiently encapsulate
TCP connection state, they allow asynchronous programming
without managing significant global state.

The Catnip TCP stack is deterministic. Every TCP oper-
ation is parameterized on a time value, and Catnip moves
time forward by synchronizing with the system clock. As a
result, Catnip is able control all inputs to the TCP stack, in-
cluding packets and time, which let us easily debug the stack
by feeding it a trace with packet timings.

Figure 4 shows Catnip’s I/O loop assuming sufficient send
window space, congestion window space, and that the physi-
cal address is in the ARP cache; otherwise, it spawns a send
coroutine. Established sockets have four background corou-
tines to handle sending outgoing packets, retransmitting lost
packets, sending pure acknowledgments, and manage connec-
tion close state transitions. During normal operation, all are
blocked. However, if there is an adverse event (e.g. packet
loss), the fast-path coroutine unblocks the needed background
coroutine. Additional coroutines handle connection establish-
ment: sockets in the middle of an active or passive open each
have a background coroutine for driving the TCP handshake.

For full zero-copy, Catnip cannot use a buffer to account
for TCP windows. Instead, it uses a ring buffer of I/O buffers
and indices into the ring buffer as the start and end of the TCP
window. This design increases complexity but eliminates an
unnecessary copy from existing designs. Catnip limits its use
of unsafe Rust to C/C++ bindings. As a result, it is the first
zero-copy, ns-scale memory-safe TCP stack.

6.4 Cattree SPDK Library OS

Cattree maps the PDPIX queue abstraction onto an abstract
log for SPDK devices. We map each device as a log file;
applications open the file and push writes to the file for per-
sistence. Cattree keeps a read cursor for every storage queue.
pop reads (a specified number of bytes) from the read cur-
sor and push appends to the log. seek and truncate move
the read cursor and garbage collect the log. This log-based
storage stack worked well for our echo server and Redis’s
persistent logging mechanism, but we hope to integrate more
complex storage stacks.

Cattree uses its I/O processing fast path coroutine to poll
for completed I/O operations and deliver them to the waiting
application qtoken. Since the SPDK interface is asynchronous,
Cattree submits disk I/O operations inline on the application
coroutine and then yields until the request is completed. It
has no background coroutines because all its work is directly
related to active I/O processing. Cattree is a minimal storage
stack with few storage features. While it works well for our
logging-based applications, we expect that more complex
storage systems might be layered above it in the future.

7 Evaluation
Our evaluation found that the prototype Demikernel datapath
OSes simplified µs-scale kernel-bypass applications while
imposing ns-scale overheads. All Demikernel and application
code is available at: https://github.com/demikernel/demikernel.

7.1 Experimental Setup

We use 5 servers with 20-core dual-socket Xeon Silver 4114
2.2 GHz CPUs connected with Mellanox CX-5 100 Gbps
NICs and an Arista 7060CX 100 Gbps switch with a min-
imum 450 ns switching latency. We use Intel Optane 800P
NVMe SSDs, backed with 3D XPoint persistent memory.
For Windows experiments, we use a separate cluster of 14-
core dual-socket Xeon 2690 2.6 GHz CPU servers connected
with Mellanox CX-4 56 Gbps NICs and a Mellanox SX6036
56 Gbps Infiniband switch with a minimum 200 ns latency.

On Linux, we allocate 2 GB of 2 MB huge pages, as re-
quired by DPDK. We pin processes to cores and use the
performance CPU frequency scaling governor. To further re-
duce Linux latency, we raise the process priority using nice

and use the real-time scheduler, as recommended by Li [53].
We run every experiment 5 times and report the average; the
standard deviations are minimal – zero in some cases – except
for § 7.6 where we report them in Figure 12.

Client and server machines use matching configurations
since some Demikernel libOSes require both clients and
servers run the same libOS; except the UDP relay application,
which uses a Linux-based traffic generator. We replicated
experiments with both Hoard and the built-in Linux libc allo-
cator and found no apparent performance differences.

Comparison Systems. We compare Demikernel to 2 kernel-
bypass applications – testpmd [93] and perftest [84] – and
3 recent kernel-bypass libraries – eRPC [34] Shenango [71]
and Caladan [23]. testpmd and perftest are included with
the DPDK and RDMA SDKs, respectively, and used as raw
performance measurement tools. testpmd is an L2 packet
forwarder, so it performs no packet processing, while perftest
measures RDMA NIC send and recv latency by pinging a
remote server. These applications represent the best “native”
performance with the respective kernel-bypass devices.

Shenango [71] and Caladan [23] are recent kernel-bypass
schedulers with a basic TCP stack; Shenango runs on DPDK,
while Caladan directly uses the OFED API [2, 59]. eRPC is a
low-latency kernel-bypass RPC library that supports RDMA,
DPDK and OFED with a custom network transport. We al-
locate two cores to Shenango and Caladan for fairness: one
each for the IOKernel and application.

7.2 Programmability for µs-scale Datacenter Systems

To evaluate Demikernel’s impact on µs-scale kernel-bypass
development, we implement four µs-scale kernel-bypass sys-
tems for Demikernel, including a UDP relay server built by
a non-kernel-bypass, expert programmer. Table 3 presents a

Table 3. LoC for µs-scale kernel-bypass systems. POSIX and Demik-
ernel versions of each application. The UDP relay also supports
io_uring (1782 Loc), and TxnStore has a custom RDMA RPC li-
brary (12970 LoC).

OS/API Echo Server UDP Relay Redis TxnStore

POSIX 328 1731 52954 13430
Demikernel 291 2076 54332 12610

summary of the lines of code needed for POSIX and Demik-
ernel versions. In general, we found Demikernel easier to use
than POSIX-based OSes because its API is better suited to
µs-scale datacenter systems and its OS services better met
their needs, including portable I/O stacks, a DMA-capable
heap and UAF protection.

Echo Server and Client. To identify Demikernel’s design
trade-offs and performance characteristics, we build two echo
systems with servers and clients using POSIX and Demik-
ernel. This experiment demonstrates the benefits of Demik-
ernel’s API and OS management features for even simple
µs-scale, kernel-bypass applications compared to current kernel-
bypass libraries that preserve the POSIX API (e.g., Arrakis [73],
mTCP [30], F-stack [20]).

Both echo systems run a single server-side request loop
with closed-loop clients and support synchronous logging to
disk. The Demikernel server calls pop on a set of I/O queue
descriptors and uses wait_any to block until a message ar-
rives. It then calls push with the message buffer on the same
queue to send it back to the client and immediately frees the
buffer. Optionally, the server can push the message to on-disk
file for persistence before responding to the client.

To avoid heap allocations on the datapath, the POSIX echo
server uses a pre-allocated buffer to hold incoming messages.
Since the POSIX API is not zero-copy, both read and write
require a copy, adding overhead. Even if the POSIX API were
updated to support zero-copy (and it is unclear what the se-
mantics would be in that case), correctly using it in the echo
server implementation would be non-trivial. Since the POSIX
server reuses a pre-allocated buffer, the server cannot re-use
the buffer for new incoming messages until the previous mes-
sage has been successfully sent and acknowledged. Thus, the
server would need to implement a buffer pool with reference
counting to ensure correct behavior. This experience has been
corroborated by the Shenango [71] authors.

In contrast, Demikernel’s clear zero-copy API dictates
when the echo server receives ownership of the buffer, and its
use-after-free semantics make it safe for the echo server to
free the buffer immediately after the push. Demikernel’s API
semantics and memory management let Demikernel’s echo
server implementation process messages without allocating
or copying memory on the I/O processing path.

TURN UDP Relay. Teams and Skype are large video con-
ferencing services that operate peer-to-peer over UDP. To

https://github.com/demikernel/demikernel

support clients behind NATs, Microsoft Azure hosts millions
of TURN relay servers [100, 29]. While end-to-end latency
is not concern for these servers, the number of cycles spent
on each relayed packet directly translate to the service’s CPU
consumption, which is significant. A Microsoft Teams en-
gineer ported the relay server to Demikernel. While he has
10+ years of experience in the Skype and Teams groups, he
was not a kernel-bypass expert. It took him 1 day [38] to
port the TURN server to Demikernel and 2 days each for
io_uring [12] and Seastar [42]. In the end, he could not
get Seastar working and had issues with io_uring. Com-
pared to io_uring and Seastar, he reported that Demikernel
was the simplest and easiest to use, and that PDPIX was his
favorite part of the system. This experience demonstrated
that, compared to existing kernel-bypass systems, Demikernel
makes kernel-bypass easier to use for programmers that are
not kernel-bypass experts.

Redis. We next evaluate the experience of porting the popular
Redis [80] in-memory data structure server to Demikernel.
This port required some architectural changes because Redis
uses its own event processing loop and custom event handler
mechanism. We implement our own Demikernel-based event
loop, which replicated some functionality that already exists
in Redis. This additional code increases the total modified
LoC, but much of it was template code.

Redis’s existing event loop processes incoming and out-
going packets in a single epoll event loop. We modify this
loop to pop and push to Demikernel I/O queues and block
using wait_any. Redis synchronously logs updates to disk,
which we replace with a push to a log file without requiring
extra buffers or copies.

The Demikernel implementation fixes several well-known
inefficiencies in Redis due to epoll. For example, wait_any
directly returns the packet, so Redis can immediately begin
processing without further calls to the (lib)OS. Redis also pro-
cesses outgoing replies in an asynchronous manner; it queues
the response, waits on epoll for notification that the socket
is ready and then writes the outgoing packet. This design is
ineffcient: it requires more than one system call and several
copies to send a reply. Demikernel fixes this inefficiency
by letting the server immediately push the response into the
outgoing I/O queue.

Demikernel’s DMA-capable heap lets Redis directly place
incoming PUTs and serve outgoing GETs to and from its
in-memory store. For simple keys and values (e.g., not sets
or arrays), Redis does not update in place, so Demikernel’s
use-after-free protection is sufficient for correct zero-copy
I/O coordination. As a result, Demikernel lets Redis correctly
implement zero-copy I/O from its heap with no code changes.

TxnStore. TxnStore [103] is a high-performance, in-memory,
transactional key-value store that supports TCP, UDP, and
RDMA. It illustrates Demikernel’s benefits for a feature-rich,

µs-scale system: TxnStore has double-digit µs latencies, im-
plements transactions and replication, and uses the Protobuf
library [76]. TxnStore also has its own implementation of
RPC over RDMA, so this experiment let us compare Demik-
ernel to custom RDMA code.

TxnStore uses interchangeable RPC transports. The stan-
dard one uses libevent for I/O processing, which relies on
epoll. We implemented our own transport to replace libevent
with a custom event loop based on wait_any. As a result
of this architecture, the Demikernel port replicates signifi-
cant code for managing connections and RPC, increasing the
LoC but not the complexity of the port. TxnStore’s RDMA
transport does not support zero-copy I/O because it would
require serious changes to ensure correctness. Compared to
the custom solution, Demikernel simplifies the coordination
needed to support zero-copy I/O.

7.3 Echo Application

To evaluate our prototype Demikernel OSes and their over-
heads, we measure our echo system. Client and server use
matching OSes and kernel-bypass devices.

DEMILIN Latencies and Overheads. We begin with a study
of Demikernel performance for small 64B messages. Figure 5
shows unloaded RTTs with a single closed-loop client. We
compare the Demikernel echo system to the POSIX version,
with eRPC, Shenango and Caladan. Catnap achieves better
latency than the POSIX echo implementation because it polls
read instead of using epoll; however, this is a trade-off,
Catnap consumes 100% of one CPU even with a single client.

Catnip is 3.1µs faster than Shenango but 1.7µs slower
than Caladan. Shenango has higher latency because packets
traverse 2 cores for processing, while Caladan has run-to-
completion on a single core. Caladan has lower latency be-
cause it uses the lower-level OFED API but sacrifices portabil-
ity for non-Mellanox NICs. Similarly, eRPC has 0.2µs lower
latency than Catmint but is carefully tuned for Mellanox CX5
NICs. This experiment demonstrates that, compared to other
kernel-bypass systems, Demikernel can achieve competitive
µs latencies without sacrificing portability.

Av
g

La
te

nc
y

(u
s)

0

8

16

24

32

Linux
Catnap

Catmint
Catnip 

(UDP) Catnip 

(TCP) eRPC
Shenango

Caladan Raw 

DPDK Raw 

RDMA

0.0530.0250.949

11.720

3.44.86.67.55.87.16.05.316.930.4

Everything else
Demikernel

Figure 5. Echo latencies on Linux (64B). The upper number reports
total time spent in Demikernel for 4 I/O operations: client and server
send and receive; the lower ones show network and other latency;
their sum is the total RTT on Demikernel. Demikernel achieves
ns-scale overheads per I/O and has latencies close to those of eRPC,
Shenango and Caladan, while supporting a greater range of devices
and network protocols. We perform 1 million echos over 5 runs, the
variance between runs was below 1%.

(a) DEMIWIN (b) DEMILIN in Azure VM
Figure 6. Echo latencies on Windows and Azure (64B). We demon-
strate portability by running the Demikernel echo server on Windows
and in a Linux VM with no code changes. We use the same testing
methodology and found minimal deviations.

On average, Catmint imposes 250ns of latency overhead
per I/O, while Catnip imposes 125ns per UDP packet and
200ns per TCP packet. Catmint trades off latency on the
critical path for better throughput, while Catnip uses more
background co-routines. In both cases, Demikernel achieves
ns-scale I/O processing overhead.

DEMIWIN and Azure Latencies and Overhead. To fur-
ther demonstrate portability, we evaluate the echo system
on Windows and Azure. To our knowledge, Demikernel is
the only kernel-bypass OS to portably support Windows and
virtualized environments.

DEMIWIN supports Catnap through the WSL (the Win-
dows Subsystem for Linux) POSIX interface and Catpaw.
Figure 6a reports that Catnap again offers a small latency im-
provement by avoiding epoll, while Catpaw reduces latency
by 27×. This improvement is extreme; however, WSL is not
as optimized as the native Windows API.

Azure supports DPDK in general-purpose VMs and of-
fers bare metal RDMA VMs with an Infiniband intercon-
nect. Azure does not virtualize RDMA because networking
support for congestion control over virtual networks is com-
plex, demonstrating the pros and cons of heterogenous kernel-
bypass devices in different environments.

Figure 6b shows DEMILIN in an Azure virtual machine.
Catnap’s polling design shows even lower latency in a VM
because it spins the vCPU, so the hypervisor does not de-
schedule it. Catnip offers a 5× latency improvement over
the Linux kernel. This is less than the bare metal perfor-
mance improvement because DPDK still goes through the
Azure virtualization layer in the SmartNIC [21] for vnet trans-
lation. Catmint runs bare metal on Azure over Infiniband;
thus, it offers native performance. This experiment shows
that Demikernel lets µs-scale applications portably run on
different platforms and kernel-bypass devices.

DEMILIN Network and Storage Latencies. To show Demik-
ernel’s network and storage support, we run the same exper-
iment with server-side logging. We use the Linux ext4 file
system for the POSIX echo server and Catnap, and we inte-
grate Catnip×Cattree and Catmint×Cattree. Figure 7 shows
that writing every message synchronously to disk imposes a

Av
g

La
te

nc
y

(u
s)

0
15
30
45
60
75
90

105

Linux
Catnap

Catmint 

x Cattree Catnip (UDP) 

x Cattree Catnip (TCP) 

x Cattree

7.97.95.4

23.0

70.0

7.96.24.3

55.4

31.6

Everything else
Sync disk write/push

Figure 7. Echo latencies on Linux with synchronous logging to disk
(64B). Demikernel offers lower latency to remote disk than kernel-
based OSes to remote memory. We use the same testing methodology
and found less than 1% deviation.

Figure 8. NetPIPE Comparison. We measure the bandwidth achiev-
able with a single client and server sending and receiving messages
of varying sizes, replicating NetPIPE [3].

high latency penalty on Linux and Catnap. Catnap’s polling-
based design lowers the overhead, but Catnip and Catmint are
much faster. Due to its coroutine scheduler and memory man-
agement, Demikernel can process an incoming packet, pass
it to the echo server, write it to disk and reply back in a tight
run-to-completion loop without copies. As a result, a client
sees lower access latencies to remote disk with Demikernel
than remote memory on Linux. This experiment demonstrates
that Demikernel portably achieves ns-scale I/O processing,
run-to-completion and zero-copy for networking and storage.

DEMILIN Single Client Throughput Overheads. To study
Demikernel’s performance for varying message sizes, we use
NetPIPE [68] to compare DEMILIN with DPDK testpmd and
RDMA perftest. Figure 8 shows that testpmd offers 40.3Gbps
for 256kB messages, while perftest achieves 37.7Gbps. testpmd
has better performance because it is strictly an L2 forwarder,
while perftest uses the RoCE protocol, which requires header
processing and acks to achieve ordered, reliable delivery.

Catmint achieves 31.5Gbps with 256kB messages, which is
a 17% overhead on perftest’s raw RDMA performance. Catnip
has 33.3Gbps for UDP and 29.7Gbps for TCP, imposing a
17% and 26% performance penalty, respectively, on testpmd
for 256kB messages. Again, note that testpmd performs no
packet processing, while Catnip has a software networking
stack. Compared to native kernel-bypass applications, we
found that Demikernel provides OS management services
with reasonable cost for a range of packet sizes.

Figure 9. Latency vs. throughput. We skip RDMA (because perftest
does not support parallelism) and the kernel-based solutions for
readability. We use 1 core for Demikernel and eRPC, and 2 cores for
Shenango and Caladan. Catmint and Catnip (UDP) are optimized for
latency but not throughput, as we focused our efforts on improving
Catnip’s software TCP stack.

.

DEMILIN Peak Throughput and Latency Overheads. To
evaluate Demikernel’s throughput impact, we compare to
Shenango, Caladan and eRPC. We increase offered load and
report both sustained server-side throughput and client-side
latency in Figure 9. Catnip (UDP) achieves 70% of the peak
throughput of Caladan on DPDK and Catmint has 46% the
throughput of eRPC on RDMA. However, Catnip outper-
forms Caladan and is competitive with eRPC due to many
optimizations in the TCP stack. We focused our initial opti-
mization efforts on per-I/O datapath latency overheads since
µs-scale datacenter systems prioritize datapath latencies and
tail latencies; however, future optimizations could improve
throughput, especially single-core throughput (e.g., offloading
background coroutines to another core). Overall, this experi-
ment shows that Demikernel demonstrates that a high-level
API and OS features do not have to come at a significant cost.

7.4 UDP Relay Server

To evaluate the performance of a µs-scale system built by a
non-kernel-bypass expert, we compare the performance of the
UDP relay server on Demikernel to Linux and io_uring. We
use a non0-kernel-bypass Linux-based traffic generator and
measure the latency between sending the generated packet
and receiving the relayed packet.

Figure 10 shows the average and p99 latencies for the UDP
relay server. Since all versions use the same Linux-based
client, the reduced latency directly translates to fewer CPU
cycles used on the server. While io_uring gives modest
improvements, Catnip reduces the server-side latency per
request by 11µs on average and 13.7µs at the p99, demon-
strating that Demikernel lets non-kernel-bypass experts reap
performance benefits for their µs-scale applications.

7.5 Redis In-memory Distributed Cache

To evaluate a ported µs-scale application, we measure Redis
using GET and SET operations with the built-in redis-benchmark

La
te

nc
y

(u
s)

0

10

20

30

Linux io_uring Catnip

14.9

25.827.6

13.9

24.424.9
Average
p99

Figure 10. Average and tail latencies for UDP relay. We send 1
million packets and perform the experiment 5 times. Demikernel has
better performance than io_uring and requires fewer changes.

Figure 11. Redis benchmark throughput in-memory and on-disk. We
use 64B values and 1 million keys. We perform separate runs for
each operation with 500,000 accesses repeated 5 times. Demikernel
improves Redis performance and lets it maintain that performance
with synchronous writes to disk.

utility. Figure 11 (left) reports the peak throughput for unmod-
ified Redis and Demikernel Redis running in-memory. Catnap
has 75-80% lower peak throughput because its polling-based
design trades off latency for throughput. Catmint gives 2×
throughput, and Catnip offers 20% better throughput.

We add persistence to Redis by turning on its append-only
file. We fsync after each SET operation for strong guaran-
tees and fairness to Cattree, which does not buffer or cache
in memory. Figure 11 (left) gives the results. In this case,
Catnap’s polling increases throughput because it decreases
disk access latencies, which block the server from process-
ing more requests. Notably, Catnip and Catmint with Cattree
have throughput within 10% of unmodified Redis without
persistence. This result shows that Demikernel provides ex-
isting µs-scale applications portable kernel-bypass network
and storage access with low overhead.

7.6 TxnStore Distributed Transactional Storage

To measure the performance of Demikernel for a more fully
featured µs-scale application, we evaluate TxnStore with
YCSB-t workload F, which performs read-modify-write oper-
ations using transactions. We use a uniform Zipf distribution,
64 B keys, and 700 B values. We use the weakly consistent
quorum-write protocol: every get accesses a single server,
while every put replicates to three servers.

Figure 12 reports the average and 99th percentile tail trans-
action latency. Again, Catnap has 69% lower latency than
TxnStore’s TCP stack and 27% lower latency than its UDP
stack due to polling. As a trade-off, Catnap uses almost 100%
of a single CPU to poll for packets, while TxnStore uses 40%.

YC
SB

-t
La

te
nc

y

0 us

200 us

400 us

600 us

Linux (TCP) Linux (UDP) RDMA Catnap Catmint Catnip (TCP)

Average
p99

Figure 12. YCSB-t average and tail latencies for TxnStore. Demik-
ernel offers lower latency than TxnStore’s custom RDMA stack
because we are not able to remove copies in the custom RDMA
stack without complex zero-copy memory coordination.

Both Catnip and Catmint are competitive with TxnStore’s
RDMA messaging stack. TxnStore uses the rdma_cm [79].
However, it uses one queue pair per connection, requires
a copy, and has other inefficiencies [36], so Catmint outper-
forms TxnStore’s native RDMA stack. This experiment shows
that Demikernel improves performance for higher-latency
µs-scale datacenter applications compared to a naive custom
RDMA implementation.

8 Related Work

Demikernel builds on past work in operating systems, espe-
cially library OSes [18, 74, 49] and other flexible, extensible
systems [31, 89, 87], along with recent work on kernel-bypass
OSes [73, 3] and libraries [30, 44]. Library operating systems
separate protection and management into the OS kernel and
user-level library OSes, respectively, to better meet custom
application needs. We observe that kernel-bypass architec-
tures offload protection into I/O devices, along with some OS
management, so Demikernel uses library OSes for portability
across heterogenous kernel-bypass devices.

OS extensions [99, 19, 22, 24] also let applications cus-
tomize parts of the OS for their needs. Recently, Linux intro-
duced io_uring [12, 11], which gives applications faster ac-
cess to the kernel I/O stack through shared memory. LKL [77,
94] and F-stack [20] move the Linux and FreeBSD network-
ing stacks to userspace but do not meet the requirements of
µs-scale systems (e.g., accommodating heterogenous device
hardware and zero-copy I/O memory management). Device
drivers, whether in the OS kernel [91, 13] or at user level [48],
hide differences between hardware interfaces but do not im-
plement OS services, like memory management.

Previous efforts to offload OS functionality focused on lim-
ited OS features or specialized applications, like TCP [14,
65, 67, 39]. DPI [1] proposes an interface similar to the
Demikernel libcall interface but uses flows instead of queues
and considers network I/O but not storage. Much recent
work on distributed storage systems uses RDMA for low-
latency access to remote memory [17], FASST [37], and
more [98, 64, 35, 92, 7, 40] but does not portably support
other NIC hardware. Likewise, software middleboxes have
used DPDK for low-level access to the NIC [95, 90] but do
not consider other types of kernel-bypass NICs or storage.

Arrakis [73] and Ix [3] offer alternative kernel-bypass ar-
chitectures but are not portable, especially to virtualized en-
vironments, since they leverage SR-IOV for kernel-bypass.
Netmap [83] and Stackmap [102] offer user-level interfaces
to NICs but no OS management. eRPC [34] and ScaleRPC [8]
are user-level RDMA/DPDK stacks, while ReFlex [43], PASTE [28]
and Flashnet [96] provide fast remote access to storage, but
none portably supports both storage and networking.

User-level networking [51, 39, 70, 30, 42] and storage
stacks [44, 81, 32] replace missing functionality and can
be used interchangeably if they maintain the POSIX API;
however, they lack features needed by µs-scale kernel-bypass
systems, as described in Section 2. Likewise, recent user-
level schedulers [75, 71, 33, 23, 9] assign I/O requests to
application workers but are not portable and do not implement
storage stacks. As a result, none serve as general-purpose
datapath operating systems.

9 Conclusion And Future Work

Demikernel is a first step towards datapath OSes for µs-scale
kernel-bypass applications. While we present an OS and ar-
chitecture that implement PDPIX, other designs are possible.
Each Demikernel OS feature represents a rich area of fu-
ture work. We have barely scratched the surface of portable,
zero-copy TCP stacks and have not explored in depth what
semantics a µs-scale storage stack might supply. While there
has been recent work on kernel-bypass scheduling, efficient
µs-scale memory resource management with memory allo-
cators has not been explored in depth. Given the insights
of the datapath OS into the memory access patterns of the
application, improved I/O-aware memory scheduling is cer-
tainly possible. Likewise, Demikernel does not eliminate all
zero-copy coordination and datapath OSes with more explicit
features for memory ownership are a promising direction for
more research. Generally, we hope that Demikernel is the first
of many datapath OSes for µs-scale datacenter applications.

10 Acknowledgements

It took a village to make Demikernel possible. We thank
Emery Berger for help with Hoard integration, Aidan Woolley
and Andrew Moore for Catnip’s Cubic implementation, and
Liam Arzola and Kevin Zhao for code contributions. We
thank Adam Belay, Phil Levis, Josh Fried, Deepti Raghavan,
Tom Anderson, Anuj Kalia, Landon Cox, Mothy Roscoe,
Antoine Kaufmann, Natacha Crooks, Adriana Szekeres, and
the entire MSR Systems Group, especially Dan Ports, Andrew
Baumann, and Jay Lorch, who read many drafts. We thank
Sandy Kaplan for repeatedly editing the paper. Finally, we
acknowledge the dedication of the NSDI, OSDI and SOSP
reviewers, many of whom reviewed the paper more than once,
and the tireless efforts of our shepherd Jeff Mogul.

References

[1] ALONSO, G., BINNIG, C., PANDIS, I., SALEM, K., SKRZYPCZAK,
J., STUTSMAN, R., THOSTRUP, L., WANG, T., WANG, Z., AND

ZIEGLER, T. DPI: The data processing interface for modern networks.
In 9th Biennial Conference on Innovative Data Systems Research
CIDR (2019).

[2] BARAK, D. The OFED package, April 2012. https://www.
rdmamojo.com/2012/04/25/the-ofed-package/.

[3] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN, S.,
KOZYRAKIS, C., AND BUGNION, E. IX: A protected dataplane op-
erating system for high throughput and low latency. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
14) (2014), USENIX Association.

[4] BERGER, E. D., MCKINLEY, K. S., BLUMOFE, R. D., AND WIL-
SON, P. R. Hoard: A scalable memory allocator for multithreaded
applications. SIGARCH Comput. Archit. News 28, 5 (Nov. 2000),
117–128.

[5] BERGER, E. D., ZORN, B. G., AND MCKINLEY, K. S. Composing
high-performance memory allocators. SIGPLAN Not. 36, 5 (May
2001), 114–124.

[6] BORMAN, D., BRADEN, R. T., JACOBSON, V., AND SCHEFFENEG-
GER, R. TCP Extensions for High Performance. RFC 7323, 2014.

[7] CHEN, H., CHEN, R., WEI, X., SHI, J., CHEN, Y., WANG, Z.,
ZANG, B., AND GUAN, H. Fast in-memory transaction processing
using RDMA and HTM. ACM Trans. Comput. Syst. 35, 1 (July 2017).

[8] CHEN, Y., LU, Y., AND SHU, J. Scalable RDMA RPC on reliable
connection with efficient resource sharing. In Proceedings of the Four-
teenth EuroSys Conference 2019 (2019), Association for Computing
Machinery.

[9] CHO, I., SAEED, A., FRIED, J., PARK, S. J., ALIZADEH, M., AND

BELAY, A. Overload control for µs-scale RPCs with Breakwater. In
14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 20) (2020), USENIX Association.

[10] CORBET. Linux and TCP offload engines. LWN Articles, August 2005.
https://lwn.net/Articles/148697/.

[11] CORBET, J. Ringing in a new asynchronous I/O API. lwn.net, Jan
2019. https://lwn.net/Articles/776703/.

[12] CORBET, J. The rapid growth of io_uring. lwn.net, Jan 2020. https:
//lwn.net/Articles/810414.

[13] CORBET, J., RUBINI, A., AND KROAH-HARTMAN, G. Linux Device
Drivers: Where the Kernel Meets the Hardware. " O’Reilly Media,
Inc.", 2005.

[14] CURRID, A. TCP offload to the rescue: Getting a toehold on TCP
offload engines—and why we need them. Queue 2, 3 (May 2004),
58–65.

[15] DEMOULIN, M., FRIED, J., PEDISICH, I., KOGIAS, M., LOO, B. T.,
PHAN, L. T. X., AND ZHANG, I. When idling is ideal: Optimizing tail-
latency for highly-dispersed datacenter workloads with Persephone. In
Proceedings of the 26th Symposium on Operating Systems Principles
(2021), Association for Computing Machinery.

[16] Data plane development kit. https://www.dpdk.org/.
[17] DRAGOJEVIĆ, A., NARAYANAN, D., CASTRO, M., AND HODSON,

O. FaRM: Fast remote memory. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14) (2014),
USENIX Association.

[18] ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE, J. Exoker-
nel: An operating system architecture for application-level resource
management. In Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles (1995), Association for Computing
Machinery.

[19] EVANS, J. A scalable concurrent malloc (3) implementation for
FreeBSD. In Proceedings of the BSDCan Conference (2006).

[20] F-Stack. http://www.f-stack.org/.

[21] FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU, D.,
DABAGH, A., ANDREWARTHA, M., ANGEPAT, H., BHANU, V.,
CAULFIELD, A., CHUNG, E., CHANDRAPPA, H. K., CHATUR-
MOHTA, S., HUMPHREY, M., LAVIER, J., LAM, N., LIU, F.,
OVTCHAROV, K., PADHYE, J., POPURI, G., RAINDEL, S., SAPRE,
T., SHAW, M., SILVA, G., SIVAKUMAR, M., SRIVASTAVA, N.,
VERMA, A., ZUHAIR, Q., BANSAL, D., BURGER, D., VAID, K.,
MALTZ, D. A., AND GREENBERG, A. Azure accelerated network-
ing: SmartNICs in the public cloud. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18) (2018),
USENIX Association.

[22] FLEMING, M. A thorough introduction to eBPF. lwn.net, December
2017. https://lwn.net/Articles/740157/.

[23] FRIED, J., RUAN, Z., OUSTERHOUT, A., AND BELAY, A. Caladan:
Mitigating interference at microsecond timescales. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
20) (2020), USENIX Association.

[24] File system in user-space. https://www.kernel.org/doc/html/latest/
filesystems/fuse.html.

[25] A Tour of Go: Channels. https://tour.golang.org/concurrency/2.
[26] HA, S., RHEE, I., AND XU, L. Cubic: a new tcp-friendly high-speed

tcp variant. ACM SIGOPS Operating Systems Review 42, 5 (2008).
[27] HERBERT, T., AND DE BRUIJN, W. Scaling in the Linux Networking

Stack. kernel.org. https://www.kernel.org/doc/Documentation/
networking/scaling.txt.

[28] HONDA, M., LETTIERI, G., EGGERT, L., AND SANTRY, D. PASTE:
A network programming interface for non-volatile main memory. In
15th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 18) (2018), USENIX Association.

[29] INTERNET ENGINEERING TASK FORCE. Traversal Using Relays
around NAT. https://tools.ietf.org/html/rfc5766.

[30] JEONG, E., WOOD, S., JAMSHED, M., JEONG, H., IHM, S., HAN,
D., AND PARK, K. mTCP: a highly scalable user-level TCP stack for
multicore systems. In 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14) (2014), USENIX Association.

[31] JIN, Y., TSENG, H.-W., PAPAKONSTANTINOU, Y., AND SWAN-
SON, S. KAML: A flexible, high-performance key-value SSD. In
2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA) (2017), IEEE.

[32] KADEKODI, R., LEE, S. K., KASHYAP, S., KIM, T., KOLLI, A.,
AND CHIDAMBARAM, V. SplitFS: Reducing software overhead in
file systems for persistent memory. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (2019), Association for
Computing Machinery.

[33] KAFFES, K., CHONG, T., HUMPHRIES, J. T., BELAY, A., MAZ-
IÈRES, D., AND KOZYRAKIS, C. Shinjuku: Preemptive scheduling for
µsecond-scale tail latency. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19) (2019), USENIX As-
sociation.

[34] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. Datacenter RPCs
can be general and fast. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19) (2019), USENIX
Association.

[35] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Using RDMA
efficiently for key-value services. SIGCOMM Comput. Commun. Rev.
44, 4 (Aug. 2014), 295–306.

[36] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. Design guide-
lines for high performance RDMA systems. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16) (2016), USENIX Associa-
tion.

[37] KALIA, A., KAMINSKY, M., AND ANDERSEN, D. G. FaSST: Fast,
scalable and simple distributed transactions with two-sided RDMA
datagram RPCs. In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16) (2016), USENIX Association.

https://www.rdmamojo.com/2012/04/25/the-ofed-package/
https://www.rdmamojo.com/2012/04/25/the-ofed-package/
https://lwn.net/Articles/148697/
https://lwn.net/Articles/776703/
https://lwn.net/Articles/810414
https://lwn.net/Articles/810414
https://www.dpdk.org/
http://www.f-stack.org/
https://lwn.net/Articles/740157/
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://tour.golang.org/concurrency/2
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://tools.ietf.org/html/rfc5766

[38] KALLAS, S. Turn server. Github. https://github.com/seemk/urn.
[39] KAUFMANN, A., STAMLER, T., PETER, S., SHARMA, N. K., KR-

ISHNAMURTHY, A., AND ANDERSON, T. TAS: TCP acceleration as
an OS service. In Proceedings of the Fourteenth EuroSys Conference
2019 (2019), Association for Computing Machinery.

[40] KIM, D., MEMARIPOUR, A., BADAM, A., ZHU, Y., LIU, H. H.,
PADHYE, J., RAINDEL, S., SWANSON, S., SEKAR, V., AND SE-
SHAN, S. Hyperloop: Group-based NIC-Offloading to accelerate repli-
cated transactions in multi-tenant storage systems. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication (2018), Association for Computing Machinery.

[41] KIM, H.-J., LEE, Y.-S., AND KIM, J.-S. NVMeDirect: A user-space
I/O framework for application-specific optimization on NVMe SSDs.
In 8th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 16) (2016), USENIX Association.

[42] KIVITY, A. Building efficient I/O intensive applications with Seastar,
2019. https://github.com/CoreCppIL/CoreCpp2019/blob/
master/Presentations/Avi_Building_efficient_IO_intensive_
applications_with_Seastar.pdf.

[43] KLIMOVIC, A., LITZ, H., AND KOZYRAKIS, C. ReFlex: Remote
flash = local flash. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (2017), Association for Computing Machinery.

[44] KWON, Y., FINGLER, H., HUNT, T., PETER, S., WITCHEL, E.,
AND ANDERSON, T. Strata: A cross media file system. In Proceed-
ings of the 26th Symposium on Operating Systems Principles (2017),
Association for Computing Machinery.

[45] LAGUNA, I., MARSHALL, R., MOHROR, K., RUEFENACHT, M.,
SKJELLUM, A., AND SULTANA, N. A large-scale study of MPI usage
in open-source HPC applications. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage
and Analysis (2019), Association for Computing Machinery.

[46] LEIJEN, D., ZORN, B., AND DE MOURA, L. Mimalloc: Free list
sharding in action. In Asian Symposium on Programming Languages
and Systems (2019).

[47] LEMIRE, D. Iterating over set bits quickly, Feb 2018. https://lemire.
me/blog/2018/02/21/iterating-over-set-bits-quickly/.

[48] LESLIE, B., CHUBB, P., FITZROY-DALE, N., GÖTZ, S., GRAY, C.,
MACPHERSON, L., POTTS, D., SHEN, Y.-T., ELPHINSTONE, K.,
AND HEISER, G. User-level device drivers: Achieved performance.
Journal of Computer Science and Technology 20, 5 (2005), 654–664.

[49] LESLIE, I., MCAULEY, D., BLACK, R., ROSCOE, T., BARHAM, P.,
EVERS, D., FAIRBAIRNS, R., AND HYDEN, E. The design and im-
plementation of an operating system to support distributed multimedia
applications. IEEE Journal on Selected Areas in Communications 14,
7 (1996), 1280–1297.

[50] LESOKHIN, I. tls: Add generic NIC offload infrastructure. LWN Arti-
cles, September 2017. https://lwn.net/Articles/734030.

[51] LI, B., CUI, T., WANG, Z., BAI, W., AND ZHANG, L. Socksdirect:
Datacenter sockets can be fast and compatible. In Proceedings of
the ACM Special Interest Group on Data Communication (2019),
Association for Computing Machinery.

[52] LI, B., RUAN, Z., XIAO, W., LU, Y., XIONG, Y., PUTNAM, A.,
CHEN, E., AND ZHANG, L. KV-Direct: High-performance in-memory
key-value store with programmable NIC. In Proceedings of the 26th
Symposium on Operating Systems Principles (2017), Association for
Computing Machinery.

[53] LI, J., SHARMA, N. K., PORTS, D. R. K., AND GRIBBLE, S. D.
Tales of the tail: Hardware, OS, and application-level sources of tail
latency. In Proceedings of the ACM Symposium on Cloud Computing
(2014), Association for Computing Machinery.

[54] libevent: an event notification library. http://libevent.org/.
[55] MANDRY, T. How Rust optimizes async/await I, Aug 2019. https:

//tmandry.gitlab.io/blog/posts/optimizing-await-1/.

[56] MAREK. Epoll is fundamentally broken
1/2, Feb 2017. https://idea.popcount.org/
2017-02-20-epoll-is-fundamentally-broken-12/.

[57] MARTY, M., DE KRUIJF, M., ADRIAENS, J., ALFELD, C., BAUER,
S., CONTAVALLI, C., DALTON, M., DUKKIPATI, N., EVANS, W. C.,
GRIBBLE, S., KIDD, N., KONONOV, R., KUMAR, G., MAUER, C.,
MUSICK, E., OLSON, L., RUBOW, E., RYAN, M., SPRINGBORN,
K., TURNER, P., VALANCIUS, V., WANG, X., AND VAHDAT, A.
Snap: A microkernel approach to host networking. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (2019),
Association for Computing Machinery.

[58] MELLANOX. BlueField Smart NIC. http://www.mellanox.com/
page/products_dyn?product_family=275&mtag=bluefield_
smart_nic1.

[59] MELLANOX. Mellanox OFED for Linux User Manual.
https://www.mellanox.com/related-docs/prod_software/
Mellanox_OFED_Linux_User_Manual_v4.1.pdf.

[60] MELLANOX. An introduction to smart NICs. The Next Plat-
form, 3 2019. https://www.nextplatform.com/2019/03/04/
an-introduction-to-smartnics/.

[61] MELLANOX. Mellanox OFED RDMA libraries, April 2019. http:
//www.mellanox.com/page/mlnx_ofed_public_repository.

[62] MELLANOX. RDMA Aware Networks Programming User Man-
ual, September 2020. https://community.mellanox.com/s/article/
rdma-aware-networks-programming--160--user-manual.

[63] MICROSOFT. Network Direct SPI Reference, v2 ed., July
2010. https://docs.microsoft.com/en-us/previous-versions/
windows/desktop/cc904391(v%3Dvs.85).

[64] MITCHELL, C., GENG, Y., AND LI, J. Using one-sided RDMA
reads to build a fast, CPU-Efficient key-value store. In 2013 USENIX
Annual Technical Conference (USENIX ATC 13) (2013), USENIX
Association.

[65] MOGUL, J. C. TCP offload is a dumb idea whose time has come. In
9th Workshop on Hot Topics in Operating Systems (HotOS IX) (2003),
USENIX Association.

[66] MOON, Y., LEE, S., JAMSHED, M. A., AND PARK, K. AccelTCP:
Accelerating network applications with stateful TCP offloading. In
17th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 20) (2020), USENIX Association.

[67] NARAYAN, A., CANGIALOSI, F., GOYAL, P., NARAYANA, S., AL-
IZADEH, M., AND BALAKRISHNAN, H. The case for moving con-
gestion control out of the datapath. In Proceedings of the 16th ACM
Workshop on Hot Topics in Networks (2017), Association for Comput-
ing Machinery.

[68] Network Protocol Independent Performance Evaluator. https://linux.
die.net/man/1/netpipe.

[69] NETRONOME. Agilio CX SmartNICs. https://www.netronome.
com/products/agilio-cx/.

[70] OPENFABRICS INTERFACES WORKING GROUP. RSockets. GitHub.
https://github.com/ofiwg/librdmacm/blob/master/docs/
rsocket.

[71] OUSTERHOUT, A., FRIED, J., BEHRENS, J., BELAY, A., AND

BALAKRISHNAN, H. Shenango: Achieving high CPU efficiency for
latency-sensitive datacenter workloads. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19) (2019),
USENIX Association.

[72] PANDA, A., HAN, S., JANG, K., WALLS, M., RATNASAMY, S., AND

SHENKER, S. Netbricks: Taking the V out of NFV. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16) (2016), USENIX Association.

[73] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS, D., KR-
ISHNAMURTHY, A., ANDERSON, T., AND ROSCOE, T. Arrakis: The
operating system is the control plane. ACM Trans. Comput. Syst. 33, 4
(Nov. 2015).

https://github.com/seemk/urn
https://github.com/CoreCppIL/CoreCpp2019/blob/master/Presentations/Avi_Building_efficient_IO_intensive_applications_with_Seastar.pdf
https://github.com/CoreCppIL/CoreCpp2019/blob/master/Presentations/Avi_Building_efficient_IO_intensive_applications_with_Seastar.pdf
https://github.com/CoreCppIL/CoreCpp2019/blob/master/Presentations/Avi_Building_efficient_IO_intensive_applications_with_Seastar.pdf
https://lemire.me/blog/2018/02/21/iterating-over-set-bits-quickly/
https://lemire.me/blog/2018/02/21/iterating-over-set-bits-quickly/
https://lwn.net/Articles/734030
http://libevent.org/
https://tmandry.gitlab.io/blog/posts/optimizing-await-1/
https://tmandry.gitlab.io/blog/posts/optimizing-await-1/
https://idea.popcount.org/2017-02-20-epoll-is-fundamentally-broken-12/
https://idea.popcount.org/2017-02-20-epoll-is-fundamentally-broken-12/
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic1
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic1
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic1
https://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v4.1.pdf
https://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_Linux_User_Manual_v4.1.pdf
https://www.nextplatform.com/2019/03/04/an-introduction-to-smartnics/
https://www.nextplatform.com/2019/03/04/an-introduction-to-smartnics/
http://www.mellanox.com/page/mlnx_ofed_public_repository
http://www.mellanox.com/page/mlnx_ofed_public_repository
https://community.mellanox.com/s/article/rdma-aware-networks-programming--160--user-manual
https://community.mellanox.com/s/article/rdma-aware-networks-programming--160--user-manual
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/cc904391(v%3Dvs.85)
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/cc904391(v%3Dvs.85)
https://linux.die.net/man/1/netpipe
https://linux.die.net/man/1/netpipe
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://github.com/ofiwg/librdmacm/blob/master/docs/rsocket
https://github.com/ofiwg/librdmacm/blob/master/docs/rsocket

[74] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J., OLINSKY, R.,
AND HUNT, G. C. Rethinking the library OS from the top down. In
Proceedings of the Sixteenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(2011), Association for Computing Machinery.

[75] PREKAS, G., KOGIAS, M., AND BUGNION, E. ZygOS: Achieving
low tail latency for microsecond-scale networked tasks. In Proceed-
ings of the 26th Symposium on Operating Systems Principles (2017),
Association for Computing Machinery.

[76] Protocol buffers. https://developers.google.com/
protocol-buffers/.

[77] PURDILA, O., GRIJINCU, L. A., AND TAPUS, N. LKL: The linux
kernel library. In 9th RoEduNet IEEE International Conference (2010),
IEEE.

[78] RDMA CONSORTIUM. A RDMA protocol specification, October
2002. http://rdmaconsortium.org/.

[79] RDMA communication manager. https://linux.die.net/man/7/
rdma_cm.

[80] Redis: Open source data structure server, 2013. http://redis.io/.
[81] REN, Y., MIN, C., AND KANNAN, S. CrossFS: A cross-layered direct-

access file system. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20) (2020), USENIX Association.

[82] Transmission Control Protocol. RFC 793, 1981. https://tools.ietf.
org/html/rfc793.

[83] RIZZO, L. Netmap: A novel framework for fast packet I/O. In 2012
USENIX Annual Technical Conference (USENIX ATC 12) (2012),
USENIX Association.

[84] RDMA CM connection and RDMA ping-pong test. http://manpages.
ubuntu.com/manpages/bionic/man1/rping.1.html.

[85] RUST. The Async Book. https://rust-lang.github.io/async-book/.
[86] SESHADRI, S., GAHAGAN, M., BHASKARAN, S., BUNKER, T.,

DE, A., JIN, Y., LIU, Y., AND SWANSON, S. Willow: A user-
programmable SSD. In 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 14) (2014), USENIX Associ-
ation.

[87] SIEGEL, A., BIRMAN, K., AND MARZULLO, K. Deceit: A flexi-
ble distributed file system. In [1990] Proceedings. Workshop on the
Management of Replicated Data (1990), pp. 15–17.

[88] Storage performance development kit. https://spdk.io/.
[89] STRIBLING, J., SOVRAN, Y., ZHANG, I., PRETZER, X., KAASHOEK,

M. F., AND MORRIS, R. Flexible, wide-area storage for distributed
systems with WheelFS. In 6th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 09) (2009), USENIX
Association.

[90] SUN, C., BI, J., ZHENG, Z., YU, H., AND HU, H. NFP: Enabling
network function parallelism in NFV. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication
(2017), Association for Computing Machinery.

[91] SWIFT, M. M., MARTIN, S., LEVY, H. M., AND EGGERS, S. J.
Nooks: An architecture for reliable device drivers. In Proceedings
of the 10th Workshop on ACM SIGOPS European Workshop (2002),
Association for Computing Machinery.

[92] TARANOV, K., ALONSO, G., AND HOEFLER, T. Fast and strongly-
consistent per-item resilience in key-value stores. In Proceedings of
the Thirteenth EuroSys Conference (2018), Association for Computing
Machinery.

[93] Testpmd Users Guide. https://doc.dpdk.org/guides/testpmd_app_
ug/.

[94] THALHEIM, J., UNNIBHAVI, H., PRIEBE, C., BHATOTIA, P., AND

PIETZUCH, P. rkt-io: A direct I/O stack for shielded execution. In Pro-
ceedings of the Sixteenth European Conference on Computer Systems
(2021), Association for Computing Machinery.

[95] TOOTOONCHIAN, A., PANDA, A., LAN, C., WALLS, M., ARGY-
RAKI, K., RATNASAMY, S., AND SHENKER, S. ResQ: Enabling

SLOs in network function virtualization. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18) (2018),
USENIX Association.

[96] TRIVEDI, A., IOANNOU, N., METZLER, B., STUEDI, P., PFEF-
FERLE, J., KOURTIS, K., KOLTSIDAS, I., AND GROSS, T. R. Flash-
Net: Flash/network stack co-design. ACM Trans. Storage 14, 4 (Dec.
2018).

[97] TURON, A. Designing futures for Rust, Sep 2016. https://aturon.
github.io/blog/2016/09/07/futures-design/.

[98] WEI, X., DONG, Z., CHEN, R., AND CHEN, H. Deconstructing
RDMA-enabled distributed transactions: Hybrid is better! In 13th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 18) (2018), USENIX Association.

[99] WELCH, B. B., AND OUSTERHOUT, J. K. Pseudo devices: User-level
extensions to the Sprite file system. Tech. Rep. UCB/CSD-88-424,
EECS Department, University of California, Berkeley, Jun 1988.

[100] WIKIPEDIA. Traversal Using Relays around NAT, May 2021.
https://en.wikipedia.org/wiki/Traversal_Using_Relays_
around_NAT.

[101] YANG, J., IZRAELEVITZ, J., AND SWANSON, S. FileMR: Rethinking
RDMA networking for scalable persistent memory. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20) (2020), USENIX Association.

[102] YASUKATA, K., HONDA, M., SANTRY, D., AND EGGERT, L.
Stackmap: Low-latency networking with the OS stack and dedicated
NICs. In 2016 USENIX Annual Technical Conference (USENIX ATC
16) (2016), USENIX Association.

[103] ZHANG, I., SHARMA, N. K., SZEKERES, A., KRISHNAMURTHY, A.,
AND PORTS, D. R. Building consistent transactions with inconsistent
replication. ACM Transactions on Computer Systems 35, 4 (2018), 12.

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://rdmaconsortium.org/
https://linux.die.net/man/7/rdma_cm
https://linux.die.net/man/7/rdma_cm
http://redis.io/
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc793
http://manpages.ubuntu.com/manpages/bionic/man1/rping.1.html
http://manpages.ubuntu.com/manpages/bionic/man1/rping.1.html
https://rust-lang.github.io/async-book/
https://spdk.io/
https://doc.dpdk.org/guides/testpmd_app_ug/
https://doc.dpdk.org/guides/testpmd_app_ug/
https://aturon.github.io/blog/2016/09/07/futures-design/
https://aturon.github.io/blog/2016/09/07/futures-design/
https://en.wikipedia.org/wiki/Traversal_Using_Relays_around_NAT
https://en.wikipedia.org/wiki/Traversal_Using_Relays_around_NAT

	Abstract
	1 Overview
	2 Demikernel Datapath OS Requirements
	2.1 Support Heterogenous OS Offloads
	2.2 Coordinate Zero-Copy Memory Access
	2.3 Multiplex and Schedule the CPU at µs-scale

	3 Demikernel Overview and Approach
	3.1 Design Goals
	3.2 System Model and Assumptions
	3.3 Demikernel Approach

	4 Demikernel Datapath OS Features and API
	4.1 Demikernel Datapath OS Feature Overview
	4.2 PDPIX: A Portable Datapath API

	5 Demikernel Datapath Library OS Design
	5.1 Design Overview
	5.2 I/O Processing
	5.3 Memory Management
	5.4 Coroutine Scheduler
	5.5 Network and Storage LibOS Integration

	6 Demikernel Library OS Implementations
	6.1 Catnap POSIX Library OS
	6.2 Catmint and Catpaw RDMA Library OSes
	6.3 Catnip DPDK Library OS
	6.4 Cattree SPDK Library OS

	7 Evaluation
	7.1 Experimental Setup
	7.2 Programmability for µs-scale Datacenter Systems
	7.3 Echo Application
	7.4 UDP Relay Server
	7.5 Redis In-memory Distributed Cache
	7.6 TxnStore Distributed Transactional Storage

	8 Related Work
	9 Conclusion And Future Work
	10 Acknowledgements

