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I. RESEARCH PROBLEM

Today, humans rely on large-scale computing infrastructures, i.e., data centers (DCs), to satisfy their computing needs [1].
For example, six in ten people use modern web services such as social media, online messaging, web search, video streaming,
and online banking that require DCs that scale to hundreds of thousands of high-end computers or servers [1], [2].

Large-scale DC computing is fundamentally inequitable in several ways due to its distributed implementation that often
prioritizes tasks [3]. For example, prior work has found that web search result quality varies across diverse end-users, with
certain results prioritized or hidden based on user profiles [4]. Hence, it is critical to identify when prioritization-based solutions
in modern DC web systems can result in biases, compromising equity. To the best of our knowledge, we are the first to explore
equity as a first-order hardware/software system design metric.

In this work, we investigate whether prioritization-driven algorithmic bias in DC scheduling systems (especially those that
are ML-driven) can make inequitable scheduling decisions to improve performance. Specifically, we posit that bias may stem
from user demographics. For example, to improve latency headroom, a scheduler might supply a slower response to a user in
a remote location with poor internet connection (vs. a user in an urban area). Similarly, a scheduler might be able to exploit
the notion that an older user might be more patient and willing to wait longer for a response [5], causing active discrimination
against users.

Designing equitable scheduling systems is especially important since several modern web applications can be life critical.
For example, in the 1995 Kobe Earthquake, initial earthquake updates and information on relief resources were disseminated
via internet-scale web services in the absence of operational physical phone lines [6]. More recently, social media has become
essential to emergency response, both in mitigating primary deaths (resulting directly from the emergency) and secondary
deaths (resulting from infrastructure breakdown) [7]. Today, during and after the initial impact of disasters and emergency
situations, first responders and survivors use web services to communicate between each other and among themselves. Hence,
making unbiased DC scheduling decisions is essential to ensure reliable and rapid web service response in these situations.

II. BACKGROUND AND RELATED WORK

Due to the volume of connections and computing occurring concurrently in large-scale web systems, workload distribution
and task prioritization over limited DC resources is an important component in determining Quality of Service (QoS) [8]. To this
end, current schedulers primarily prioritize efficiency metrics such as performance-, cost- [9]–[11], and energy-efficiency [12].

Many scheduler designs incorporate Machine Learning (ML) models (e.g., deep reinforcement learning [13], reinforcement
learning, and neural networks [14]). However, as shown by prior works [15] [16], the use of learning algorithms may cause
algorithmic bias. One notorious example is COMPAS, an AI-based criminal justice tool that was found to predict higher
recidivism rates for Black defendants [17]. Although the context is different, such biases could also arise in ML-driven DC
scheduling algorithms if not monitored, creating an unintentional layer of inequity in web systems beyond those already known
and studied. Typically, modern DC schedulers aim to optimize resources utilization based on the QoS requirements (e.g., 300
ms response latency [18]) of each application or user. Hence, if discrete demographics of web service users represent certain
groups of traits and constraints that schedulers optimize by (e.g., tolerance to a delayed response), the schedulers could “learn”
bias unintentionally.

Another side to the question of scheduler bias is whether there is an ethical way for schedulers to deliberately leverage such
biases. If we find demographic-based QoS tolerances through the user study, part of the task of monitoring schedulers for bias
would also be to determine whether learning schedulers already exploit such correlations.

III. KEY CONTRIBUTIONS

The first part of our work is to determine whether users’ perceptions of web service latency are impacted by their
demographics. To further investigate this question, we are designing a user study composed of three phases: a pre-task
demographic questionnaire, search tasks on a custom web application, and a post-task response survey. The questionnaire
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and survey will provide the data to analyze whether tolerance to web service response delays has any bearing on respondent
demographics.

Driven by this study’s results, we will next design a scheduler that deliberately leverages demographic-dependent latency tol-
erance to suitably make inequitable scheduling decisions. Using this scheduler, we will determine the performance improvement
that a DC scheduler might achieve by trading off equity for latency.

Finally, we will create a scheduling framework that monitors and corrects unintentional algorithmic biases under the hood.
To measure demographic-based algorithmic bias, we propose monitoring latency per user-type, where user-type is a multi-
dimensional feature vector composed of demographic information. Our framework will include real-time bias assessments, so
that the deployed scheduler can determine the existence of bias and address it immediately.

There are currently two main methods of evaluating algorithmic bias—(1) algorithmic impact assessments, which analyze
concrete societal impacts that arise through an algorithm-based system, and (2) auditing, which evaluates the underlying
technology itself for bias metrics [19]. Since the former involves risk and impact assessments rather than a technical evaluation
of the scheduling algorithms as we propose, our current solution will fall under auditing. However, impact assessments could
be a logical further step once auditing is in place.

IV. PRELIMINARY EXPERIMENTS

For the experimental design of our user study, we draw from the Internet latency studies performed by Borella et al. [5]
and Arapakis et al. [20]. We are creating a web application to run on a desktop browser, structured as a simple wiki based on
the Bookstack open source project [21]. Here, we include a homepage with five options for navigation, each of which takes
participants to a page with information pertinent to several predefined search tasks, drawn from Kelly et al. [22]. Fig. 1 depicts
a basic UI mock of the web application based on Bookstack’s design.

Fig. 1: User Study Web Application UI Mock

Without the participants’ knowledge, we also vary the render time of the info pages to imitate varying latencies. We then poll
participants’ levels of frustration or satisfaction with the web application, and use these reactions to determine whether there
are notable correlations to draw between user demographic profiles, latencies, and user satisfaction (i.e., correlating QoS with
user demographics). So far, from reviewing existing literature around the relation between latency tolerance and demographics,
we have found the factors of age and spoken language to be potential features of interest, which we will particularly survey
for [5]. For both the pre-task demographic questionnaire and the post-task survey, we are utilizing the Questionnaire for User
Interaction Satisfaction, or QUIS, developed by UMD [23].

Next, to create an intentionally biased scheduling system, we will build a scheduler based on an existing ML-driven scheduler,
such as Paragon [24], Quasar [8], Decima [14], or DeepRM [13]. We will then augment or modify the datasets from which
the schedulers learn based on the results of our user study. Essentially, we will intentionally push a scheduler towards a bias
based on the demographic features we observed, measuring the ensuing performance improvements.

Finally, we will build our bias-free scheduler framework. The user features our auditing framework monitors will be the same
demographics we initially used to bias the scheduler. For example, the auditing tool could collect data on user ages and the
latency they experience and raise an alert if the scheduler routinely deprioritizes requests from older users. Additionally, various
tools currently exist to measure a breakdown of network latency and performance, such as Performance-Bookmarklet [25] and
Page Load Time [26]. We could leverage these tools to more accurately determine for what part of the end-to-end latency the
scheduler is responsible.
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