
Extreme Memoization: Everything in a LUT!

Pratyush Patel Luis Ceze

University of Washington

CPUs are not getting any faster, whereas memory and storage continue to
scale with new technologies such as NVMs and DNA storage. Based on these
trends, we propose that to prepare for an energy-efficient future, we should
memoize everything* and share previously computed values at a global level
rather than recomputing anything!

Well, *almost everything. . . We consider the question of when it is worth-
while to memoize: clearly, this should be when the energy consumed for storage
and lookups is lower than that spent in computing the function. Although this is
only true for large computations today, lookups are likely to get more and more
efficient with on-going improvements in networking and storage, while compute
remains bottlenecked.

To justify extreme memoization, we take inspiration from the human brain
which performs ”computation” using extremely energy-efficient memory lookups.
We argue that memoization is a good idea by drawing parallels with the two
ends of the computing spectrum. On the low-resource end, microprocessors and
FPGAs already use lookup tables for floating point computation to improve
energy efficiency; On a larger scale, memoization is widespread in the form of
caches in CDNs and datacenters.

We describe our approach to create a global system to support large-scale
caching of computation. Our plan is to build a worldwide lookup table with
keys that represent language-level functions and their inputs, and values that
represent their outputs. We expect to set a threshold on the number of function
inputs to cache, as this will likely capture the most common inputs. We also
plan to only cache functions that are long-running enough to justify the energy
tradeoff. We argue that such a system can be supported by a centralized DNA-
storage backend with an internet-esque architecture for low-latency memoized
lookups.

Finally, we present new research questions that are opened up to support
efficient extreme memoization. These range from new methods for data storage
and lookups, programming language-agnostic function equivalence (e-graphs),
approximate look-up tables, and large-scale hash functions.


