
File Systems are not Enough:
Rethinking the Storage API for Microsecond-Scale Cloud Applications

Ashlie Martinez Katie Lim Pratyush Patel Irene Zhang Dan Ports
Jacob Nelson Thomas Anderson

Abstract
Cloud applications struggle to efficiently and correctly
persist state required for fault tolerance. This paper argues
that traditional file systems, which many microsecond-
scale cloud applications directly build upon, do not pro-
vide the right abstractions to meet application needs of
fast persistence and fast recovery. We propose raising the
semantic level of the storage interface exposed to cloud
applications from a file-centric one to one centered around
a coordinated persistent log and transactional key-value
store. In doing so, we simultaneously address the crash
consistency problems applications face and hide internal
storage library details, enabling portability across diverse
storage interfaces. We show that a modified version of
Redis using our new abstraction is able to reduce latency
up to 30% and improve throughput by 42% when using
SPDK.

1 Introduction
A growing class of cloud applications are designed to
accept client requests, modify internal state, and return a
response to the client. These applications must provide
both fault tolerance, ensuring that data is preserved when a
machine crashes or the application stops running, and high
availability, that recovery is rapid after a crash. To accom-
plish these goals, applications write state modifications
to persistent storage and checkpoint internal state period-
ically. For performance, applications are often designed
to serve reads directly from in-memory data, persisting
state updates only for recovery purposes. We call these
persistent in-memory applications (PIMAs).

While slow storage operations have traditionally led
PIMAs to batch storage updates, recent advances in stor-
age technology make fine-grained persistence more fea-
sible. New 3D XPoint drives are capable of perform-
ing operations in as little as 7µs and recently released
PCIe 4.0 SSDs are capable of 7 GB/s sequential reads
and writes [31, 38]. Other storage technologies like non-
volatile memory (NVM) also exist but are not yet widely
available. In this paper, we restrict ourselves to block-
based storage devices.

A storage backend, such as a POSIX-based file system,
often sits between cloud applications and storage devices.

Originally designed as a human-compatible interface to
the storage layer, file systems are a poor fit for modern
cloud applications as they have high overhead relative to
storage devices [33]; provide only a generic, low-level
API that does not match application needs [34]; do not pro-
vide the crash consistency guarantees applications need;
and have an API incompatible with newer and faster stor-
age backends such as SPDK [8] and io_uring [18]. For
PIMAs, the result is often poor performance coupled with
complex and potentially buggy persistence code.

Despite the drawbacks, cloud applications still over-
whelmingly use POSIX-based file systems to persist their
data. One reason is that there is no single, widely used,
“next generation” storage backend that can serve as the
universal standard going forward. New storage backends
like SPDK and io_uring have different APIs from each
other, and their APIs are even lower level than POSIX,
requiring even more complex reasoning by application
developers in order to adapt to them. If a different stor-
age backend becomes popular, applications would require
further changes to support it.

Instead, we propose a replacement for POSIX that pro-
vides low overhead, crash consistent persistence along
with support for multiple storage backends. We accom-
plish this by raising the semantic level of the API from a
file-centric one to one that has an application-accessible
log and a transactional key-value store (kv-store). A log
and kv-store are appropriate for PIMAs because the log
can quickly absorb application updates on the critical path
and the kv-store provides a consistent snapshot mecha-
nism to speed recovery after a failure. Additionally, a log
allows PIMAs to easily persist information even when log
entries do not have a one-to-one correspondence with kv-
store updates. This is common in distributed applications
that use the log for both application data and consensus
state.

PIMAs care about their data being persisted in a crash
consistent way, not the exact format used for persistent
data. Based on this observation, we move the semantic
level of the API up to something that better suits appli-
cation needs and is independent of underlying storage
backends. In doing so, we hide implementation details of
the storage stack from applications, giving us leeway to

1

implement optimizations and interface with new storage
backends. Finally, by making crash consistency of the log
and kv-store part of the API guarantee, we free applica-
tions of the need to implement complex crash consistency
logic of their own.

FASL (Fast Application Storage Layer), our prototype
implementation of this new API, includes a crash con-
sistent application log and a copy-on-write transactional
kv-store. FASL currently supports the POSIX, SPDK, and
io_uring storage backends.

We show how applications can use FASL to quickly log
data on the critical path while moving data from the log to
the kv-store in the background. Our benchmarks show that
even highly optimized applications like Redis gain latency
improvements of up to 30% and throughput improvements
of 42% when using FASL with newer storage backends.

In summary, this paper:
• defines a new persistence API for PIMAs
• presents FASL, an implementation of the API that

abstracts over POSIX, SPDK, and io_uring
• shows FASL can provide performance benefits to

even heavily optimized applications like Redis.

2 Background/Motivation
The persistence problems that PIMAs face are not con-
fined to any single layer of the storage stack or any single
design choice. At a high level, PIMAs require a fast, crash
consistent persistence mechanism on the critical path and
a low-overhead way to recover after a crash. Such require-
ments necessitate the use of multiple data structures for
persistence: a log and a snapshot. However, in choosing to
split the persisted application state, PIMAs create serious
data consistency issues for themselves which are further
exacerbated by the weak crash consistency guarantees
provided by POSIX-based file systems.

2.1 Application Overview
To illustrate these issues, we use Redis [7], a widely-used
kv-store, as an example. Like many PIMAs, Redis uses
a POSIX-based file system as the storage backend. We
discuss, at a high level, what Redis does when serving
client requests and how Redis initializes its state at startup.
Section 2.3 takes a closer look at how Redis and other
applications persist data for crash consistency.

Serving requests. Figure 1 shows the different operations
that occur during a single iteration of the event loop in
Redis. In a single iteration, all requests that have been re-
ceived are processed, and responses are returned to clients
for requests that require no further processing. Read re-
quests for PIMAs do not require any storage I/O, so we
omit them from this discussion.

For every request that is pending in the event loop,
Redis updates the in-memory state of the database (2⃝)

Application Code

Logging Code

File System

SSD

Checkpoint Code

In-memory State

❶ client
request

❷ update
memory state❸ batch of

operations

❹ write + fsync
batch

❺ log updates

❽ bulk file write
+ fsync

❼ checkpoint

❾ checkpoint updates

POSIX API

❻ client
reply

Figure 1: The different steps a PIMA must perform for write
operations. Solid arrows are executed for every operation the
application receives while dashed arrows represent work that
is only periodically executed. Shaded boxes show components
outside the application’s control.

and appends the request body to an in-memory buffer for
the log (3⃝). Once all requests for that iteration have been
processed, Redis appends the log buffer containing all the
processed requests to the persistent log file on disk (4⃝).
After the log has been synced to disk in 5⃝, Redis sends
replies to clients (6⃝).

When the log file grows large enough, Redis forks off
a background process to dump the current in-memory
database to disk as a snapshot in a new file (7⃝- 9⃝).
While the new snapshot is being created, incoming re-
quests are logged to the existing log file and the back-
ground process is notified of the requests. In this period,
in-memory updates for requests use copy-on-write to en-
sure the snapshot thread has a consistent view of the in-
memory database.

When the snapshot is completed, all updates the back-
ground process was notified of are added to a new log file.
The background process then exits, and the main process
appends any remaining requests to the new log file and
replaces the old snapshot and log with the new ones.

Crash recovery. Initializing Redis after a crash requires
reading the snapshot and log to rebuild the in-memory
application state. The snapshot is first read back into mem-
ory to initialize the base application state. Next, the log
is read sequentially, and each operation is applied to the
current in-memory state. If an invalid operation is encoun-
tered, Redis exits with an error by default.

In general, an application can handle an invalid log
entry if it can ensure that no response was returned for
that entry or any entries that follow it in the log. In those
instances, the remainder of the log is truncated, and the
application begins serving client requests with the state

2

POSIX

SPDK

Device Driver

SSD

io_uring userspace
kernel

File System

Figure 2: Storage backends present an uneven layer of APIs for
applications to program against. Some storage backends, like
SPDK, also do not include common features like access to the
page cache or file system, requiring developers to write more
code to use them.

generated from the snapshot and prefix of the log.

Distributed PIMAs. Distributed applications like
ZooKeeper and etcd [1, 2] use a log and snapshot sim-
ilar to Redis. The only difference is that the log contains
consensus operations instead of client requests. Because
these consensus operations include information required
to execute client operations, the application is still able to
reconstruct its state from the log and snapshot. However,
recovery is more complex because multiple log entries
may be required for each client request to determine if
the operation was committed or aborted by the consensus
protocol. An important consequence is that log operations
may not directly correspond to updates in the snapshot.

Storage backends. Figure 2 illustrates the different APIs
presented by storage backends. For example, SPDK, un-
like POSIX, provides kernel-bypass access to storage de-
vices. However, it does not include a file system nor ac-
cesses the kernel page cache. Therefore, applications that
use SPDK must design and implement their own on-disk
data structures and manage I/O when multiple reads or
writes are issued to the same block on disk.1

io_uring uses shared ring buffers to provide asyn-
chronous, zero-copy communication between the kernel
and userspace for file operations. Although it uses the
page cache and file system, it requires crash consistent
applications to implement their own storage I/O manager
because completions are not ordered.

2.2 Why a Log and Snapshot?
Even though using a log and a snapshot complicates ap-
plication logic, it allows PIMAs to obtain both fast per-
sistence on the critical path and fast recovery times. For
fault tolerance, operations that update the application state

1The NVMe spec [10] allows storage devices to execute operations
in the submission queue out of order, so users must ensure that multiple
operations targeted at the same block are not present in the submission
queue at the same time.

Put A: 2

Abstract Log

Put B: 42 Put A: 7 Put B: 1 Put B: 3

Put B: 1 Put B: 3

Log

A: 7
B: 42

Snapshot

unconsumedconsumed

Figure 3: Relationship between the abstract log of all operations
ever executed by a PIMA and the concrete snapshot and log
that encode them. Shaded entries in the abstract log represent
data present in the snapshot but not the concrete log. Operations
that modify the same part of application state may be duplicated
in the concrete log, but not in the snapshot. If operations are
not idempotent, the concrete log and the snapshot must contain
disjoint subsets of the abstract log.

must be persisted on the critical path before responding
to clients. This makes a write-optimized structure like an
append-only log attractive. However, during recovery, the
entire application state must be restored. Because the re-
covery time and storage space of a log scale linearly with
the number of operations executed by the PIMA, appli-
cations use a snapshot to represent state more compactly
and decrease recovery time.

Figure 3 shows how the snapshot and log work together
to compactly represent the application state, shown as the
abstract log of all operations the application has executed.
Importantly, the snapshot only needs a single data point to
represent a series of updates to a piece of state (key A in
the figure), allowing it to reduce the amount of data that
must be read, deserialized, and applied to the in-memory
state during recovery.

The catch is that the application must ensure the log
and snapshot are consistent with each other [13]. If the
snapshot represents a compacted prefix of the abstract log,
then the persisted log must contain all operations in the
abstract log spanning from the one immediately following
the snapshot’s prefix to the last operation the application
executed. If the log contains operations that occurred
before the final operation represented in the snapshot and
operations are not idempotent, then that portion of the
log must be skipped during recovery. If operations are
idempotent, then it is safe for the application to replay
the portion of the persisted log that overlaps with the
snapshot’s data.

2.3 File Systems are Not Enough
When it comes to implementing a coordinated, crash
consistent log and snapshot, POSIX-based file systems
present real problems for PIMAs in terms of crash consis-
tency and portability. Together, these shortcomings often
result in application developers creating their own storage
stack, which is often tightly coupled with application logic.

3

Section 2.1 already addressed the problem of portability
across storage backends, so here we restrict ourselves to
crash consistency.

PIMAs struggle with two different high-level opera-
tions related to crash consistency: updating information
in the state snapshot atomically and maintaining consis-
tency between the snapshot and the log. These operations
translate into atomic updates to parts of a single file and
atomic updates to multiple files, neither of which POSIX-
based file systems support.

Single file consistency. As an API, POSIX defines some
crash consistency operations, but relies on underlying file
systems to provide crash consistency guarantees. Unfortu-
nately file systems offer only weak guarantees and, in prac-
tice, those guarantees differ across various POSIX-based
file systems [11,34]. Therefore, the only crash consistency
guarantees developers may assume are that appends to a
file are atomic (atomic append)2 and renaming a file over
an existing file in the same directory is atomic (atomic
replace-via-rename).

While atomic appends can be used to grow the applica-
tion’s log files in a crash consistent manner, POSIX pro-
vides no way to do incremental updates to the application
snapshot. As a result, many applications dump the entire
in-memory state to a new file when making a new snap-
shot instead of just applying the changes specified in the
log file to the existing snapshot. This transforms the crash
consistency problem into a performance and bandwidth
problem and leads to application-level write amplifica-
tion. A few applications, like etcd, perform incremental
updates to persistent application state, but they rely on a
transactional storage library that runs on top of POSIX
to do so. For example, etcd uses a fork of boltdb [3], a
transactional kv-store. However, these applications still
require a custom crash consistent log implementation.

Cross-file consistency. POSIX provides no mechanism
for applications to atomically update multiple files at the
same time, forcing applications to develop their own solu-
tions to ensure the log and snapshot are consistent with
each other. Redis works around this by storing the log and
snapshot in the same file, ensuring that if one is present,
so is the other. ZooKeeper stores logs and snapshots sep-
arately and ensures that only log files with operations
before the snapshot was taken are garbage collected. etcd
uses a transactional kv-store to store the location of the
most recently executed log operation before garbage col-
lecting the operations in the log applied to the snapshot.

Application Code

Logging Code

IO-Backend Specific Code

SSD

Key-Value Store

In-memory State

❶ client
request

❷ update
memory state

❸ batch of
operations

❹ write + fsync
batch

❺ log updates

❽ incremental
update

❼ log consumer

❾ KV-store updates

FASL API

❻ client
reply

App-logic

Figure 4: PIMA architecture when using the FASL API. The
persistent log acts like a persistent producer-consumer queue
connecting application logic to the incrementally updated state
snapshot. Dashed arrows show code executed in the background
and shaded boxes denote elements outside the application’s
control.

3 A Unified, Persistent Log Abstraction
We design the FASL API to meet the following goals:
(1) provide microsecond-scale persistence, (2) simplify
the persistence mechanism applications use, and (3) al-
low the use of different storage backends without further
application modifications.

Non-goals for the FASL API are providing a thread-
safe log and kv-store and creating a persistence abstrac-
tion that understands application data. Thread-safety is
not addressed in this project because POSIX’s lack of
concurrent access guarantees already forces applications
to coordinate access to storage. We do not propose an
abstraction that understands application data because that
would limit the generality of the API, either making it
unsuitable for some PIMAs or requiring extra specialized
logic in our implementation.

System and Data Models. The FASL API targets a spe-
cific set of applications: those that cache all their state
in memory for performance and rely on block-based per-
sistent storage for fault tolerance. It does not place any
restrictions on the type of data that applications can store,
but the application must be able to interpret the data to
move it from the log to the kv-store. The FASL API does
not change the requirement that applications must be able
to construct the current state of the system by replaying
log data on top of some (possibly empty) checkpoint; this
means the application must deterministically update state
based on information in the log.

2Appends may be atomic, but not all file systems guarantee pre-
fix appends, further complicating matters. Bornholt et al. use litmus
tests to find and test which basic file system guarantees developers can
expect [11].

4

3.1 Abstraction Interface
The FASL API is made up of two parts: a log and a
kv-store. Both have relatively simple interfaces that al-
low applications to interact with them to read and write
data. Like existing custom persistence solutions, the API
takes advantage of the natural split in applications that
separates data quickly persisted on the critical path from
data that is stored en masse as an application checkpoint.
However, as shown in Figure 4, the log also acts as a
producer-consumer queue that connects the portion of
the application that communicates with other machines
over the network to the local persistent data store. The
FASL API is built on the idea of making constant, incre-
mental updates to the application checkpoint instead of
occasionally dumping the entire application state to disk
as a snapshot. The full API is show in Table 1.

3.1.1 Log Interface

The log acts like a persistent FIFO queue, allowing ap-
plications to quickly persist data before moving the data
to a long-term store. We design the log interface such
that it meets applications’ persistence needs while provid-
ing a flexible interface and taking advantage of the way
applications normally use a log for recovery.

The log provides applications with the following guar-
antees for data placed in it: (1) appended entries are guar-
anteed to be recoverable once LogWrite() returns; (2) if
an entry is read from the log, then it is guaranteed to be
durable and complete; and (3) the log will always return
a (possibly complete) prefix of the entries currently in it.

By returning only persisted log entries, the log ensures
the application can recover any changes made before a
crash that were dependent on log data. Entries read from
the log are also guaranteed to be complete, meaning no
data in the log has been lost due to a crash. Finally, the
log will stop returning entries if it finds a corrupted entry
(e.g., if it was being written at the time of the crash). This
makes it easy for an application to reason about what
information will be available after a crash by reasoning
about the order that data is appended to the log.

We provide a flexible interface that allows applications
to choose when they flush log entries to disk by providing
separate append and sync functions. This allows appli-
cations to decide the level of batching they want when
persisting log data.

We take advantage of existing application behavior by
limiting the concurrency the log supports and requiring
the log to be read during initialization. Our log does not
support concurrent readers or concurrent writers. Instead,
we support one reader and one writer operating on the
log concurrently. Note that most PIMAs using POSIX
already fit these restrictions. POSIX does not provide any
guarantees about data when there are concurrent writers,
and since log reading only happens during recovery and

copy-back, PIMAs typically do not use concurrent readers
to consume their log.

Our interface also does not stipulate the log’s write
pointer must be persisted. Instead, we provide functions
for log bootstrap. As applications already need to read the
log when they start up to reconstruct the current applica-
tion state, this allows us to overlap application work with
finding the end of the log. By not persisting the log write
pointer, we avoid contention on in-memory data structures
and avoid sending additional writes to the storage device.

In order to allow applications to restart as quickly as
possible, we provide the LogRewind() function, allowing
them to read the log into the in-memory state during
recovery, rewind the log, and then replay it again into the
kv-store. Doing so avoids the need to wait for the kv-store
to catch up with the log before allowing the application
to start serving requests again.

3.1.2 Key-Value Store Interface

The kv-store provides a place for the application to store
state long-term. It uses transactions to group operations
into collections that are executed atomically. The kv-store
API provides applications with functions to update indi-
vidual parts of the state and iterate through kv-pairs.

Transactions provide atomicity and durability to appli-
cations, but not isolation. We omit isolation guarantees be-
cause we expect applications to either use a single thread
to access the kv-store or coordinate access to the store
themselves.

Based on our investigations of existing PIMAs, we ex-
pect different kv-store functions to be called based on the
phase of execution the application is in. While the appli-
cation is initializing, we expect the application to use the
cursor to sequentially access keys to move data from the
kv-store to memory. During normal operation, we expect
PIMAs to mostly use put and delete operations to execute
log operations on the kv-store in a background thread.
Get operations may be used if the application needs to do
read-update-writes, e.g., on a partial key update.

3.1.3 Cross-Structure Consistency

Since the APIs of both the log and the kv-store are con-
structed to provide strong crash consistency guarantees
alone, the only remaining challenge is ensuring the log
and kv-store are consistent with each other. We solve this
by having the kv-store update the log’s read pointer in-
side transactions that update the store. This ensures no
operation in the log is skipped or repeated due to a crash
and the log read pointer always matches the most recently
changed data in the kv-store. Log entries are only eligible
for garbage collection after the transaction updating the
read pointer has been persisted.

5

Table 1: Log and key-value store APIs.

Function Description

added = LogAppend(pair<char *, size> entries...) Append to the in-memory log
LogWrite() Synchronously write log data
data = LogRead(bool isBootstrap) Return next log entry if exists
LogRewind() Rewind read pointer to start
tx = TxBegin(isWrite) Start new transaction
TxCommit(numCompletedEntries) Commit transaction and persist a new log read pointer
TxRollback() Rollback transaction
TxGet(key, val) Retrieve val if key in store
TxPut(key, val) Add or update key

TxDelete(key) Delete key

c = TxGetCursor() Get cursor object
CursorFirst(key, val) Move to and return first key
CursorLast(key, val) Move to and return last key
CursorNext(key, val) Move to and return next key
CursorPrev(key, val) Move to and return previous key
CursorCurrent(key, val) Return the current key-value pair
CursorSeek(key, val) Move to and return the given key or the key immediately after
CursorDelete() Delete current key

This also supports non-idempotent operations. Tradi-
tionally, these operations have been challenging for log-
based systems because the storage system was not de-
signed to atomically update the log’s read pointer when
an operation was applied to the state checkpoint.

3.2 Contrasting with Write-Optimized Key-
Value Stores

Since we focus on quickly persisting writes in the log
prior to moving them to the kv-store, it may seem we are
suggesting PIMAs use a write-optimized storage library,
such as a log-structured merge (LSM) tree. However, the
design we propose differs from LSM trees in two funda-
mental ways: the log is visible to the application and the
kv-store does not know how to interpret log data. Even
though our kv-store can view the logged data as a logical
log of the work it has yet to do, it relies on the applica-
tion’s own logic to translate that data into operations it
understands. Combined with the fact that the log is visible
to the application, the FASL API is especially beneficial to
applications that log data which does not directly specify
kv-store operations. Distributed systems are an excellent
example of this as they log prepare and commit messages.

This is in contrast to LSM trees where the log is an
internal element in the kv-store architecture. The kv-store
completely controls the log, down to the format of the
data in it, and executes operations in the log on the kv-
store state without any application input. This leaves the
application two choices: either implement its own crash
consistent log and coordinate with the LSM tree or use the
LSM tree to persist the log. Implementing, maintaining,
and coordinating the log with the LSM tree has all the
problems discussed in Section 2. Placing the log in the
LSM tree can lead to high write amplification due to the

design of LSM trees [35].

4 Implementation
We implement the log and kv-store in C++ code and in-
terface with SPDK, io_uring, and POSIX. For portability,
we create an interface between the log and kv-store and
the code that performs I/O, allowing us to change storage
backends without modifying the log or B+tree.

4.1 Key-Value Store
We implement the kv-store as a transactional, copy-on-
write (CoW) B+tree. Our choice of a B+tree is guided by a
few different observations: (1) the kv-store does not have
to be write-optimized because the log will absorb writes
on the critical path, (2) for flexibility, the kv-store should
allow multi-key transactions, and (3) the kv-store should
be easy to implement. Other kv-store structures like LSM
trees and Bε-trees might suffice but write-optimized trees
tend to be harder to implement and increase write ampli-
fication. On the other hand, persistent hash-maps do not
provide a way to atomically update multiple keys.

Overview. Our design is loosely based on BoltDB [3] and
prioritizes simplicity over optimizations or features, so it
does not have zero-copy for writes and assumes it will be
accessed by only a single thread. Therefore, transactions
are used to group operations into atomic units of work
instead of providing data isolation for concurrent threads.
We do not find this a major drawback since existing appli-
cations already have logic to coordinate access to storage
as POSIX also lacks an isolation mechanism for file data.

The store provides a number of guarantees about data
during a transaction. Buffers associated with TxPut()
operations can be freed once the operation completes as

6

the store keeps an internal copy of the data. Similarly, all
buffers returned from a Get() operation are guaranteed
to be valid until the end of the current transaction, even if
the key-value pair is deleted during the transaction.

Internals. The kv-store persists three different structures:
a free list, tree nodes, and superblocks. The free list con-
tains all blocks (each of fixed size) that do not currently
contain valid data.

Tree nodes are either leaf nodes that contain keys and
values or internal nodes that contain keys and block num-
bers for the block that contains the child node for that key.
Data is rebalanced among the tree nodes when transac-
tions are committed. This amortizes the rebalancing cost
across multiple operations but can lead to higher lookup
costs within a transaction if the transient in-memory ver-
sion of a node has been the target of many insertions.

The kv-store maintains two superblocks, each of which
contains bootstrap information for a version of the kv-
store as well as the log read pointer. One of the su-
perblocks is written as the last step of committing a trans-
action, and the superblock that is written alternates for
each transaction. This guarantees that at least one su-
perblock points to a consistent version of the kv-store.

As noted in Section 3.1.1, we persisted only the log’s
read pointer as the write pointer can be discovered during
application initialization with no extra cost. Section 4.2
details internal log state changes required to support this.

4.2 Log
Our prototype log implementation is a simple, fixed size,
statically allocated log. The log focuses on providing
low-overhead persistence for applications to use on the
critical path. To ensure fast appends, garbage collection,
log wrapping, and recovery, the log adds a small amount
of metadata to each log entry.

Metadata. The log adds metadata to each entry detailing
the size of the application data in the entry, the log epoch
of the entry (how many times the log has wrapped around),
and a checksum of the other two metadata fields and the
application data in the entry.

Wrapping. When the write pointer reaches the end of
the log, it wraps back around to the beginning, and the
log epoch is incremented for the first log entry that is
completely after the wrap. Log entries that span the log
wrap are automatically split when they are persisted and
reassembled when they are read.

Garbage collection. Garbage collection only requires
changing the persisted read pointer of the log. Updating
the read pointer makes previous log entries inaccessible
to future reads as they only operate on data greater than
or equal to the pointer. Bits in the garbage collected space
are not modified. Instead, the log relies on the persisted
read pointer and log epoch in entries to distinguish old

entries from new ones.

Ensuring complete, valid entries. The checksum and
log epoch metadata entries are used to determine if an
entry is complete and valid. The log epoch recorded in
each entry is used to separate old entries from new ones.
Old entries will have a log epoch that is lower than the
previous entry’s log epoch while new entries will have a
log epoch that is greater than (if the log wrapped) or equal
to the previous entry’s log epoch.

Initialization. As the log’s write pointer is not persisted,
work is required during initialization to determine where
the next append to the log should go. The crux of the
problem is that the log needs to be read to determine what
the last complete entry is (which will also be the location
of the next append). Since the application must also read
the log to reconstruct its state, we can overlap reading the
log for application recovery with reading the log to find
the next spot to append. Internally, reading the log during
recovery adjusts log state variables and checks the log
epoch in entries.

5 Evaluation
We aim to answer the following with our evaluation:

• how does FASL compare to other kv-stores?
• how do storage backends affect performance?
• how does available log space affect performance?
• do single-node applications benefit from FASL?
• do distributed applications benefit from FASL?

5.1 Experimental Setup
We run our benchmarks on up to 3 machines, each of
which has a Xeon Gold 6138 CPU with 20 cores. We
disable HyperThreading for all experiments. Machines
that run FASL use an Intel Optane 905P 380GB NVMe
PCIe 3.0 x4 SSD. The machines run Ubuntu 20.04.3, and
unless stated otherwise, use Linux kernel version 5.9.16
with TurboBoost disabled. All benchmarks that require a
file system use xfs as it supports io_uring in polling mode.
io_uring in polling mode requires files to be opened with
the O_DIRECT flag, bypassing the page cache and reduc-
ing performance compared to regular xfs for benchmarks
that have a large working set. When FASL with a log is
used in the benchmark, we report the size of the log used
for each configuration. We use an additional machine to
run clients. The client machine has a Xeon E5-2680 v3,
64GB of RAM, and runs Ubuntu 18.04.1.

5.2 Applications
As a microbenchmark, we connect DBBench directly into
FASL’s log and kv-store APIs as a driver program where
it makes requests without any other application logic. We
also port two applications to FASL: Redis as an example
single-node application and a viewstamp-replicated opti-
mistic concurrency control kv-store (VR+OCC) from the

7

public TAPIR repo [9] as an example distributed applica-
tion.

Redis is a fast in-memory key-value store, with the
optional ability to persist data. As we described in Sec-
tion 2.1, Redis logs batches of operations to disk. When
the log size is a configured percentage larger than the
previous log size, Redis forks off a background thread to
make a new snapshot. We replace the Redis persistence
layer with FASL.

VR+OCC is a replicated in-memory kv-store. Origi-
nally, it lacked a persistence layer. OCC transaction op-
erations are replicated on top of VR. Each node has an
in-memory log that tracks the status of operations at the
VR layer and an in-memory kv-store for application state.
When a VR commit is logged, an upcall is made to the
OCC layer to modify the in-memory kv-store as appropri-
ate. Provided no more than f out of 2 f +1 nodes fail, a
failed replica can recover its VR state by updating its log
from other nodes. To recover from more than f failures,
both log and application data must be persisted to disk so
that the outcome of consensus operations can be recon-
structed. A recovering replica first reads its local persisted
data before requesting log entries made since the last seen
local VR operation. Finally, the replica enters the same
view as the VR leader and finishes recovery.

5.3 Ease-of-Use
To estimate whether our new storage system is easier to
use than creating a custom storage stack for each applica-
tion, we count the lines of code required to convert Redis
and VR+OCC to FASL.

Redis changes. Porting Redis to FASL required modify-
ing about 1,700 lines of code. Of those, approximately
1,600 add logic while the remaining lines define structs
or instantiate extra state. Our changes focus on logging
data, consuming the log, and reloading data from FASL.
Calls to the FASL log replace existing code for logging
data. We add code to run another thread to consume and
garbage collect the log. Logic for parsing and executing
entries in the log already exists in Redis, we just modify it
to operate on either the kv-store or the in-memory data, so
it can be used for consuming the log and for recovery. For
recovery, we also add code to iterate through all keys in
the kv-store but use existing code to deserialize kv-pairs.

VR+OCC changes. VR+OCC required adding about
1,250 lines of code. About 1,000 of those lines add logic
that appends or consumes the log and restores the in-
memory state after failures. The remaining define structs
or instantiate additional state.

To add FASL as a persistence layer, all operations writ-
ten to the in-memory log are also written to the FASL
log. The in-memory log is modified in-place, but since the
FASL log is append-only, new entries are created for every

Table 2: Average operation latency for dbbench writes and reads.
FASL reduces write latency by 45%. FASL-no-log has 25%
worse latency than other kv-stores. FASL has worse random
read performance due to its simplistic caching algorithm.

Average latency per op (µs)
Benchmark FASL FASL-no-log leveldb lmdb

fillrand 31.9 72.6 61.3 61.7
fillseq 32.6 71.7 57.1 61.0
readrand - 7.06 1.97 2.81
readseq - 0.302 0.147 2.71

operation on the in-memory log. As we consume FASL’s
log, we track the status of operations both at the VR layer
and the OCC layer. Logic for tracking these operations is
based on pre-existing logic for maintaining the in-memory
data structures. When the log shows that an OCC trans-
action has committed, we modify FASL’s kv-store. We
also log VR metadata, namely the last prepared and last
committed operation seen during log consumption, for
use on recovery. We only garbage collect entries in the
persistent log such that either all or no VR operations for
an OCC transaction will be in the log to ensure that all
operations can be reconstructed in the event of a crash.

For recovery, we first recover entries directly from
FASL’s kv-store and log to recreate application in-
memory state by committing up to the persisted last
committed operation. To bring the replica to the current
leader’s state, we reuse the log-shipping logic from in-
memory VR and obtain the subset of the log since the
last seen local VR operation. If remote replicas are un-
reachable, the local replica remains at the state read from
FASL’s persistence layer.

5.4 DBbench
We use dbbench [6] to get a better understanding of
FASL’s performance in comparison to other common
kv-stores. We also compare the performance of different
storage backends in FASL to show the benefits of newer
storage backends like SPDK and io_uring.

Configuration. We use dbbench to benchmark FASL,
leveldb [4], and lmdb [5]. Dbbench is configured to use
16B keys and 100B values. Unless stated otherwise, each
benchmark consists of 10M operations and FASL uses
a 1GB log. We run only the sync version of fill bench-
marks to ensure lmdb and leveldb persist data at the end
of every transaction but drop the “sync” specifier in tables
for space. Fill benchmarks start with an empty database
and perform only writes while read benchmarks use a
database that has the entire range of keys pre-populated
and perform only reads. All benchmarks in this subsection
except those using io_uring were run on kernel version
5.6.19. io_uring benchmarks use kernel 5.9.16.

Comparing with existing systems. We run the sequential
and random fill workloads on leveldb, lmdb, and FASL

8

Table 3: Average operation latency for dbbench writes and reads.
Storage backends that do not use a file system, like SPDK, show
clear advantages over file-system-based storage backends when
the kv-store is accessed directly for writes. Due to caching
effects, the xfs performs much better than others for reads.

Average latency per op (µs)
Benchmark SPDK io_uring/blkdev io_uring/xfs xfs

L
og fillrand 29.5 29.1 31.6 31.9

fillseq 32.3 29.0 32.0 32.6

N
o

L
og

fillrand 46.6 56.1 83.0 72.6
fillseq 36.2 43.4 62.1 71.7
readrand 16.5 24.3 24.9 7.06
readseq 0.623 0.755 0.768 0.302

with and without the log. Table 2 shows that when FASL
has access to log space, it reduces per-operation latency
by almost 45% compared to other, more mature kv-stores.
In the extreme case that only the FASL kv-store is used
(FASL-no-log), it has about 25% worse latency than other
kv-stores.

The table also shows per-operation latency for reads for
FASL-no-log, lmdb, and leveldb. We do not provide read
benchmarks for FASL because it does not provide index-
ing on log entries. FASL has comparable performance to
leveldb and lmdb for sequential reads but has 3.5x worse
latency when doing random reads. This latency increase
is likely due to the simplistic LRU cache that FASL uses.
Increasing the cache size and improving the caching algo-
rithm would likely reduce per-operation latency by a few
microseconds, thus closing the gap. However, we expect
applications to use reads mainly during recovery, where
most reads are sequential as the application transfers state
from the kv-store to main memory. Applications may
occasionally use random reads to find specific kv-pairs
during recovery or to do read-modify-write operations
when transferring data from the log.

Effects of storage backends. Next, we compare the per-
formance of the SPDK, io_uring, and POSIX storage back-
ends in FASL both with and without the log by repeating
the above benchmarks. Table 3 shows that newer stor-
age backends like SPDK and io_uring on a raw block
device (io_uring/blkdev) have better performance than
configurations that use xfs when doing writes. Although
performance is similar for all storage backends when us-
ing the log, SPDK and io_uring/blkdev have much better
performance when storing data directly in the kv-store.

The performance for reads shown in Table 3 is a little
counter-intuitive as FASL with xfs outperforms all other
configurations, with the largest gains seen for random
reads. Additional experiments reveal that xfs is able to
take advantage of the page cache, allowing it to effectively
increase the amount of cached tree data. Neither io_uring
nor SPDK can use the page cache, the former because
polling mode requires the O_DIRECT flag and the latter
because it does not use the kernel for storage I/O.

0.256 0.512 1.024 2.048 4.096 8.192 16.384 32.768
Num MOps (log scale)

0

20

40

60

80

100

120

Av
g

la
te

nc
y

(u
s/

op
)

Latency vs log size, random writes

FASL/SPDK
FASL/io_uring/blkdev
FASL/io_uring/xfs
FASL/xfs

Figure 5: Mean operation latency for random write operations as
the number of operations is increased while maintaining a fixed
size log and keyspace. The vertical line denotes when the dataset
size equal the log size. When log space is available, latency per
operation remains low. As the dataset size increases, the average
time per operation approaches the time required to commit a
transaction in the kv-store.

Log size tuning. Next, we characterize the performance
impact of the size of the log relative to the dataset size.
We fix the log to be 135MB and run workloads with a
modified version of dbbench that uses a fixed keyspace
of 2M keys and increasing numbers of operations. Doing
so allows us to increase the amount of data logged in
the workload without causing the B+tree to grow without
bound. Figure 5 shows that when the dataset size is less
than the log size (left of the vertical line), FASL provides
latencies on par with those found in the fill random bench-
mark. Once the dataset size surpasses the size of the log,
the latency per operation begins to rise, eventually evening
out at a little more than the latency of operations on the
kv-store alone. The slightly higher latency for points on
the right of the line compared to Table 3 may be due to
SSD contention between the log and the kv-store.

5.5 Redis

Configuration. We benchmark a single Redis node con-
figured to persist data after every operation and Redis with
FASL configured with different storage backends and log
sizes. For both vanilla Redis and Redis with FASL, only
put operations are logged. Vanilla Redis is configured
to rewrite the log file when it reaches 1.25x the size the
file was to start with. For all configurations, Redis is pre-
populated with 250M kv-pairs and has an empty log. Keys
are 32B and values are 128B. Both get and put operations
use a uniform random distribution to pick the key to op-
erate on, and all operations use keys that already exist in
the Redis. We run closed loop clients on another machine
and vary the number of clients to scale load.

Mixed workloads. Figure 6a shows the mean latency of
15M operations sent from 40 clients for different read-
write mix workloads. The greater the percentage of reads,
the more slack FASL has to copy updates from the log
in the background. Redis with FASL uses a 512MB

9

(a) Mean latency per operation in µs (b) Mean throughput in op/s
Figure 6: Mean operation latency and throughput of Redis in various configurations with different read/write workloads. Redis with
FASL/SPDK is able to provide lower latency and higher throughput than vanilla Redis for workloads with 60% or fewer writes.

Figure 7: Mean operation latency vs. mean throughput for vari-
ous Redis configurations for a 100% write workload. Redis with
FASL/SPDK or FASL/io_uring is able to outperform vanilla
Redis as long as there is log space.

log (roughly a quarter of the total data operated on dur-
ing the benchmark). When compared to vanilla Redis,
FASL/io_uring/xfs and FASL/SPDK reduce mean latency
by 17% and 18% for workloads with 20% writes respec-
tively. For workloads with 40% writes, FASL/io_uring/xfs
has no performance gain while FASL/SPDK decreases
latency by 20% compared to vanilla Redis. As the per-
centage of writes in the workload increases, the fixed size
log in FASL becomes consistently full, leading to higher
latency for all storage backends. With 100% writes, FASL
shows latencies 1.75-2.75x that of vanilla Redis.

When the dataset size is larger than the log
(>20% writes), the performance of FASL/xfs and
FASL/io_uring/xfs is about equal. This implies that when
the log is full, file system overheads, not kernel crossings
dominate the cost of persistence.

Figure 6b shows the mean throughput for the same
benchmark. FASL supports up to 25% higher throughput

Table 4: Redis and VR+OCC recovery times. VR+OCC with
FASL outperforms over-the-network recovery by 54x when re-
covering 1.2GB of data. Redis with FASL is up to 1.65x slower
than vanilla Redis when recovering 40GB of data, largely due
to a lack of prefetching for FASL kv-store tree nodes. Recovery
times for VR+OCC with io_uring are excluded due to stability
issues.

Mean Recovery Time (s)
App vanilla FASL/xfs FASL/io_uring FASL/SPDK

Redis 327 538 531 478
VR+OCC 65.1 1.41 - 1.21

compared to vanilla Redis when writes make up 40%
or less of the workload. With more than 40% writes in
the workload, the FASL log is full most of the time, so
throughput drops as the system spends more time waiting
for log garbage collection.

Worst-case latency vs. throughput. To really stress the
system, we run another set of benchmarks performing
15M puts and vary the number of clients from 4 to 40 in
increments of 4. Figure 7 shows the latency vs. through-
put curve for different Redis configurations. Due to the
bimodal performance of FASL, we use two different log
configurations: one very small log of 100MB which is
full for the majority of the benchmark, and another log of
3GB which is roughly the size of the dataset.

Similar to the read-write mix benchmarks, FASL with
a large log is able to provide higher throughput at a lower
latency than vanilla Redis. FASL/SPDK with log space
continues to dominate, with 42% higher thoughput and
30% lower latencies than vanilla Redis with 40 clients.
When FASL is configured with a small log, the throughput
drops to that of the FASL kv-store alone while the latency
continues to increase as more clients are added.

Recovery. The first row of Table 4 shows the worst case
time Redis recovers 250M kv-pairs of data under each
configuration. All experiments enable TurboBoost, and

10

Table 5: Retwis workload operation breakdown.

Transaction Type # gets # puts workload %

Add User 1 3 5%
Follow/Unfollow 2 2 15%

Post 3 5 30%
Load Timeline rand(1,10) 0 50%

ones that use FASL have a modified database image con-
taining a snapshot of all data and a full 512MB log. Vanilla
Redis recovers from an append-only file containing both a
snapshot and log. Redis normally compresses data in the
snapshot, so the append-only file is 16GB. Redis config-
urations that use FASL show recovery latencies ranging
from 1.46x to 1.65x that of vanilla Redis. Optimizing
sequential iterations through the FASL kv-store by pre-
fetching the next tree node would help reduce this latency
gap, especially since Redis with FASL spends no more
than 1.9% of the total recovery time processing the log
across all configurations.

5.6 Consensus Application
Normal operation. Adding persistence allows us to pro-
vide better fault tolerance via faster and more capable
recovery as we show later. However, persistence also has
a runtime penalty, so we start by comparing the perfor-
mance of the in-memory VR+OCC system with our mod-
ified persistent VR+OCC assuming no failures.

Workload & Configuration. We use three replicas and
run Retwis [28], an open-source Twitter clone, to generate
a synthetic workload. Retwis has several transaction types
which perform different mixes of puts and gets on a kv-
store. The transaction mix and number of gets and puts
per transaction is shown in Table 5. We use 64B keys
and values, and a FASL log of 1GB. We populate the kv-
store with 1M keys and run 100,000 transactions. Keys
are selected using a Zipf distribution with a coefficient of
0.75. We then vary the number of clients in increments
of 10 from 10 to 40 for the persistent versions and 10 to
60 for the non-persistent version to find the knee of the
curve. For each data point, we do five runs and average
the measurements.

Results. Figure 8 shows that at low loads, the difference
in performance between all versions is small; with all sys-
tems within 20% of the throughput of the non-persistent
version. However, as load increases, the impact of per-
sistence on performance becomes clearer with the non-
persistent version able to provide about 1.6x the maximum
throughput of SPDK.

Recovery. We run two recovery experiments with our
3-replica cluster. First, we compare the best-case recovery
latency of a single replica failure across the persistent and
non-persistent versions of VR+OCC. To do so, we fill
the system with 5M single-op write transactions, which

0 10 20 30 40 50 60 70 80 90
Throughput (KTx/s)

0

2

4

6

8

10

12

La
te

nc
y

(m
s)

Latency vs Throughput

FASL/SPDK
FASL/io_uring/xfs
FASL/xfs
no persist

Figure 8: Average transaction latency vs. throughput for
VR+OCC running Retwis transactions on different backends.
The SPDK configuration has 65% the peak throughput of the no
persistence configuration but outperforms other configurations
with persistence by 25%.

1 3 5 7 9 11 13 15 17 19 21 23 25 27
Time (s)

1

2

3

4

Th
ro

ug
hp

ut
 (x

10
00

 re
q/

s)

Replica Recovery

Figure 9: Average system throughput over time as VR+OCC
replicas crash and are brought back up. Vertical dashed lines
indicate crash and recovery events. At t=5s, one of the three
replica crashes. Next, at t=10s, the remaining replicas crash.
Finally, at t=15s, all replicas are restarted in recovery mode.

corresponds to about 1.2GB of in-memory log data and
wait for replicas to consume the entire FASL log. Then,
we crash one of the replicas and restart it, measuring the
time it takes to recover. Table 4 shows our results. The
non-persistent (vanilla) VR+OCC takes over a minute to
ship the entire log from a quorum of replicas over the
network. In contrast, FASL-based recovery finishes in
under 2s for both POSIX and SPDK as the entire state
is read locally, and no remote log shipping takes place.
While not empirically evaluated, we further note that by
avoiding or reducing the amount of log data to be shipped,
FASL-based VR+OCC uses less network bandwidth for
recovery than the in-memory version.

Second, we demonstrate that the persistence offered by
FASL allows us to enhance the fault tolerance guarantees
provided by VR+OCC. Specifically, persistence enables
recovery of application data even when all replicas fail.
This was previously not possible as at least a quorum
of replicas had to be alive to ship in-memory logs for
recovery [9]. Figure 9 demonstrates this by plotting the
system throughput as replicas crash and recover over time.
The workload is generated by 10 clients performing single-
op write transactions using FASL/SPDK. At t=5s, one of
the replicas crashes, causing a slight drop in throughput.
Next, at t=10s, both remaining replicas crash, causing the
throughput to drop to zero. Finally, at t=15s, we restart
all the replicas in recovery mode. This causes two of the

11

replicas to come back up, and ship the log-delta to the
replica that crashed first in order to finish recovery. After
all replicas recover at around t=20s, the system is able to
serve requests about 4,000 transactions per second again.

6 Related Work
Existing PIMAs. Redis [7], ZooKeeper [1], and etcd [2]
each implement their own log and snapshot system tai-
lored to their application logic. As noted in Section 2, each
application solves the coordination problem between the
log and the snapshot in a slightly different way. However,
none of these applications create a more general persis-
tence API that other applications can use nor do they al-
low other storage backends to be used without application
changes. We extend these works by solidifying the persis-
tence API and providing a prototype implementation that
runs across POSIX, SPDK, and io_uring.

NVM frameworks. NVM frameworks that either store
all application state in NVM [12, 22, 26, 42] or allow pro-
grammers to specify what data to store in NVM [16, 21,
23, 37,39, 41] offer opportunities for low-latency fault tol-
erance. Persimmon is closest in spirit in that it proposes
a framework for fault tolerance in state-machine-based
applications. Using a log of operations and shadow execu-
tion, it maintains application state in both RAM and NVM,
allowing fast execution and fast recovery. Our evaluation
does not compare to any of these systems because the
different in persistence latency between NVMe devices
and NVM is so large.

Our work differs from previous work on NVM because
we assume only a block device interface to storage de-
vices, and we propose a generic persistence API that mir-
rors already existing persistence structures in PIMAs. By
proposing an interface similar to what developers already
implement, we ease the transition from custom code to
library code because developers do not have to reason
about new persistence and crash consistency models. Fur-
thermore, many implementations of our API can exist,
allowing future work to implement an NVM version of
the FASL API.

Application crash consistency. Researchers have long
known that crash consistency was difficult both for dis-
tributed applications [13] and applications in general. This
is due to both the complexity of crash consistency mecha-
nisms in applications as well as the subtle differences in
the guarantees that file systems provide [11, 34]. Though
Chandra et al. present their crash consistency problems
in the context of Paxos, they apply more broadly to ap-
plications providing both fault tolerance and crash recov-
ery with minimal latency. We build upon these works by
first detailing the interplay between maintaining a log and
snapshot and file system crash consistency guarantees. We

then provide a new storage API that avoids these crash
consistency problems.

Transactional file systems. Transactional file sys-
tems [19, 24, 36] and some dependency-based file sys-
tems [20] solve the cross-file and single-file crash consis-
tency problems by extending the POSIX API. Transac-
tions and write dependencies provide a generic, powerful
interface compared to what the FASL API offers, but
forces application developers to create and performance-
tune their own customized storage library.

KV-stores. The release of NVMe and NVM storage
devices has led to a renewed interest in kv-store re-
search, where each system has its own performance trade-
offs [14,15,17,25,27,29,30,32]. While our work includes
a kv-store implementation, it is used to show the FASL
API can provide material benefits to PIMAs. Therefore,
previous works on kv-store implementations are orthog-
onal to the FASL API and can be added as part of a con-
crete implementation of the FASL API as long as the
kv-store allows multi-key transactions. Although this pa-
per focuses on block-based storage devices, NVM imple-
mentations of our API are possible. However, the precise
kv-store implementation used should be carefully chosen
to balance the cost of recovery with how quickly data
can be written. Furthermore, the kv-store implementation
should avoid maintaining its own log for crash consistency
as that would lead to double journaling overheads.

Cross I/O-backend portability. Demikernel [40] pro-
poses a set of library OSes providing a single interface
to microsecond-latency applications. While Demikernel
mostly focuses on networking, it does include a simple
queue-based storage interface. Similar to Demikernel, we
choose a single, high-level interface for applications and
rely on the library we provide to fill in any missing pieces
of functionality storage backends may lack. However, we
tailor the FASL API to the needs of PIMAs, especially
when it comes to crash consistency and moving data be-
tween the log and snapshot.

7 Conclusion
As microsecond-scale cloud applications grow increas-
ingly popular, and storage devices continue to improve,
we observe that the traditional POSIX API used for stor-
ing application data is inefficient, difficult to port to up-
coming fast storage backends, and complicates reason-
ing about crash consistency. After studying how existing
microsecond-scale applications are structured, this paper
proposes raising the semantic level of the storage interface
from a file-centric API to one centered around a coordi-
nated persistent log and transactional key-value store. We
demonstrate the practicality of our API by implement-
ing it in FASL, a portable, crash-consistent storage library
that can be used to construct persistent in-memory applica-

12

tions. Our evaluation shows that applications can improve
throughput by up to 42% while reducing latency by 30%
when using FASL. We also show that FASL can help
distributed applications recover faster and enable them to
recover after failure of all replicas, which is impossible to
support with only in-memory data structures.

References

[1] Apache ZooKeeper. https://
zookeeper.apache.org.

[2] etcd. https://etcd.io.

[3] etcd-io/bbolt. https://github.com/etcd-io/
bbolt.

[4] google/leveldb. https://github.com/google/
leveldb.

[5] LMDB – Lightening Memory-Mapped Database
Manager. http://www.lmdb.tech/doc/.

[6] LMDB/dbbench. https://github.com/LMDB/
dbbench.

[7] Redis. https://redis.io.

[8] Storage Performance Development Kit. https://
spdk.io.

[9] UWSysLab/tapir. https://github.com/
UWSysLab/tapir.

[10] What is the NVM Express Base Specifica-
tion? https://nvmexpress.org/developers/
nvme-specification/.

[11] James Bornholt, Antoine Kaufmann, Jialin Li,
Arvind Krishnamurthy, Emina Torlak, and Xi Wang.
Specifying and Checking File System Crash-
Consistency Models. In Proceedings of the Twenty-
First International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems, ASPLOS ’16, page 83–98, 2016.

[12] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud
Bhandari. Atlas: Leveraging Locks for Non-Volatile
Memory Consistency. In Proceedings of the 2014
ACM International Conference on Object Oriented
Programming Systems Languages and Applications,
OOPSLA ’14, page 433–452, 2014.

[13] Tushar D. Chandra, Robert Griesemer, and Joshua
Redstone. Paxos Made Live: An Engineering Per-
spective. In Proceedings of the Twenty-Sixth Annual
ACM Symposium on Principles of Distributed Com-
puting, PODC ’07, page 398–407, 2007.

[14] Badrish Chandramouli, Guna Prasaad, Donald Koss-
mann, Justin Levandoski, James Hunter, and Mike
Barnett. FASTER: An Embedded Concurrent Key-
Value Store for State Management. Proc. VLDB
Endow., 11(12):1930–1933, Aug 2018.

[15] Hao Chen, Chaoyi Ruan, Cheng Li, Xiaosong Ma,
and Yinlong Xu. SpanDB: A Fast, Cost-Effective
LSM-tree Based KV Store on Hybrid Storage. In
19th USENIX Conference on File and Storage Tech-
nologies, FAST ’21, pages 17–32, February 2021.

[16] Joel Coburn, Adrian M. Caulfield, Ameen Akel,
Laura M. Grupp, Rajesh K. Gupta, Ranjit Jhala, and
Steven Swanson. NV-Heaps: Making Persistent
Objects Fast and Safe with next-Generation, Non-
Volatile Memories. In Proceedings of the Sixteenth
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, ASPLOS ’11, page 105–118, 2011.

[17] Alexander Conway, Abhishek Gupta, Vijay Chi-
dambaram, Martin Farach-Colton, Richard Spillane,
Amy Tai, and Rob Johnson. SplinterDB: Closing
the Bandwidth Gap for NVMe Key-Value Stores.
In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 49–63, July 2020.

[18] Rubini J. Corbet. Ringing in a New Asynchronous
I/O API. https://lwn.net/Articles/776703/.

[19] Microsoft Windows Developer Docu-
mentation. Transactional NTFS (TxF).
https://docs.microsoft.com/en-us/windows/
win32/fileio/about-transactional-ntfs.

[20] Christopher Frost, Mike Mammarella, Eddie Kohler,
Andrew de los Reyes, Shant Hovsepian, Andrew
Matsuoka, and Lei Zhang. Generalized File System
Dependencies. 41(6).

[21] Jerrin Shaji George, Mohit Verma, Rajesh Venkata-
subramanian, and Pratap Subrahmanyam. go-pmem:
Native Support for Programming Persistent Memory
in Go. In 2020 USENIX Annual Technical Confer-
ence, USENIX ATC ’20, pages 859–872, July 2020.

[22] Terry Ching-Hsiang Hsu, Helge Brügner, In-
drajit Roy, Kimberly Keeton, and Patrick Eug-
ster. NVthreads: Practical Persistence for Multi-
Threaded Applications. In Proceedings of the
Twelfth European Conference on Computer Systems,
EuroSys ’17, page 468–482, 2017.

13

https://zookeeper.apache.org
https://zookeeper.apache.org
https://etcd.io
https://github.com/etcd-io/bbolt
https://github.com/etcd-io/bbolt
https://github.com/google/leveldb
https://github.com/google/leveldb
http://www.lmdb.tech/doc/
https://github.com/LMDB/dbbench
https://github.com/LMDB/dbbench
https://redis.io
https://spdk.io
https://spdk.io
https://github.com/UWSysLab/tapir
https://github.com/UWSysLab/tapir
https://nvmexpress.org/developers/nvme-specification/
https://nvmexpress.org/developers/nvme-specification/
https://lwn.net/Articles/776703/
https://docs.microsoft.com/en-us/windows/win32/fileio/about-transactional-ntfs
https://docs.microsoft.com/en-us/windows/win32/fileio/about-transactional-ntfs

[23] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu,
and Thomas Moscibroda. Log-Structured Non-
Volatile Main Memory. In 2017 USENIX Annual
Technical Conference, USENIX ATC ’17, pages 703–
717, July 2017.

[24] Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon,
Tianyu Cheng, Vijay Chidambaram, and Emmett
Witchel. TxFS: Leveraging File-System Crash Con-
sistency to Provide ACID Transactions. ACM Trans.
Storage, 15(2), May 2019.

[25] Deukyeon Hwang, Wook-Hee Kim, Youjip Won,
and Beomseok Nam. Endurable Transient Inconsis-
tency in Byte-Addressable Persistent B+-Tree. In
16th USENIX Conference on File and Storage Tech-
nologies, FAST ’18, pages 187–200, February 2018.

[26] Joseph Izraelevitz, Terence Kelly, and Aasheesh
Kolli. Failure-Atomic Persistent Memory Updates
via JUSTDO Logging. In Proceedings of the Twenty-
First International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems, ASPLOS ’16, page 427–442, 2016.

[27] Wook-Hee Kim, R. Madhava Krishnan, Xinwei Fu,
Sanidhya Kashyap, and Changwoo Min. PACTree:
A High Performance Persistent Range Index Us-
ing PAC Guidelines. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 424–439, 2021.

[28] Costin Leau. Spring Data Redis - Retwis-J,
2013. http://docs.spring.io/spring-data/
data-keyvalue/examples/retwisj/current/.

[29] Se Kwon Lee, K. Hyun Lim, Hyunsub Song, Beom-
seok Nam, and Sam H. Noh. WORT: Write Optimal
Radix Tree for Persistent Memory Storage Systems.
In 15th USENIX Conference on File and Storage
Technologies, FAST ’17, pages 257–270, February
2017.

[30] Baptiste Lepers, Oana Balmau, Karan Gupta, and
Willy Zwaenepoel. KVell: The Design and Imple-
mentation of a Fast Persistent Key-Value Store. In
Proceedings of the 27th ACM Symposium on Oper-
ating Systems Principles, SOSP ’19, page 447–461,
2019.

[31] Paul Lilly. Bandwidth Busting PCIe 4.0
SSDs Rated Over 7GB/s are Launching by
the Day. https://www.pcgamer.com/bandwidth-
busting-pcie-40-ssds-rated-over-7gbs-
are-launching-by-the-day/.

[32] Lanyue Lu, Thanumalayan Sankaranarayana Pillai,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. WiscKey: Separating Keys from Values
in SSD-conscious Storage. In 14th USENIX Confer-
ence on File and Storage Technologies, FAST ’16,
pages 133–148, February 2016.

[33] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas E. An-
derson, and Timothy Roscoe. Arrakis: The Operat-
ing System is the Control Plane. In 11th USENIX
Symposium on Operating Systems Design and Im-
plementation, OSDI ’14, pages 1–16, October 2014.

[34] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-
Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. All File Systems Are Not Cre-
ated Equal: On the Complexity of Crafting Crash-
Consistent Applications. In 11th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation, OSDI ’14, pages 433–448, October 2014.

[35] Pandian Raju, Rohan Kadekodi, Vijay Chi-
dambaram, and Ittai Abraham. PebblesDB:
Building Key-Value Stores Using Fragmented
Log-Structured Merge Trees. In Proceedings of the
26th Symposium on Operating Systems Principles,
SOSP ’17, page 497–514, 2017.

[36] Richard P. Spillane, Sachin Gaikwad, Manjunath
Chinni, Erez Zadok, and Charles P. Wright. En-
abling Transactional File Access via Lightweight
Kernel Extensions. In 7th USENIX Conference on
File and Storage Technologies, FAST ’09, February
2009.

[37] Haris Volos, Andres Jaan Tack, and Michael M.
Swift. Mnemosyne: Lightweight Persistent Memory.
In Proceedings of the Sixteenth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’11,
page 91–104, 2011.

[38] Kan Wu, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. Towards an Unwritten Contract of
Intel Optane SSD. In 11th USENIX Workshop on
Hot Topics in Storage and File Systems, HotStorage
’19, July 2019.

[39] Mingyu Wu, Ziming Zhao, Haoyu Li, Heting
Li, Haibo Chen, Binyu Zang, and Haibing Guan.
Espresso: Brewing Java For More Non-Volatility
with Non-Volatile Memory. In Proceedings of the
Twenty-Third International Conference on Architec-
tural Support for Programming Languages and Op-
erating Systems, ASPLOS ’18, page 70–83, 2018.

14

 http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
 http://docs.spring.io/spring-data/data-keyvalue/examples/retwisj/current/
https://www.pcgamer.com/bandwidth-busting-pcie-40-ssds-rated-over-7gbs-are-launching-by-the-day/
https://www.pcgamer.com/bandwidth-busting-pcie-40-ssds-rated-over-7gbs-are-launching-by-the-day/
https://www.pcgamer.com/bandwidth-busting-pcie-40-ssds-rated-over-7gbs-are-launching-by-the-day/

[40] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Su-
jay Jayakar, Pedro Henrique Penna, Max Demoulin,
Piali Choudhury, and Anirudh Badam. The Demik-
ernel Datapath OS Architecture for Microsecond-
Scale Datacenter Systems. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP ’21, page 195–211, 2021.

[41] Lu Zhang and Steven Swanson. Pangolin: A Fault-
Tolerant Persistent Memory Programming Library.
In 2019 USENIX Annual Technical Conference,
USENIX ATC ’19, pages 897–912, July 2019.

[42] Wen Zhang, Scott Shenker, and Irene Zhang. Per-
sistent State Machines for Recoverable In-memory
Storage Systems with NVRam. In 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI ’20, pages 1029–1046, November
2020.

15

	Introduction
	Background/Motivation
	Application Overview
	Why a Log and Snapshot?
	File Systems are Not Enough

	A Unified, Persistent Log Abstraction
	Abstraction Interface
	Log Interface
	Key-Value Store Interface
	Cross-Structure Consistency

	Contrasting with Write-Optimized Key-Value Stores

	Implementation
	Key-Value Store
	Log

	Evaluation
	Experimental Setup
	Applications
	Ease-of-Use
	DBbench
	Redis
	Consensus Application

	Related Work
	Conclusion

