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Abstract—We propose a server-based approach to manage a
general-purpose graphics processing unit (GPU) in a predictable
and efficient manner. Our proposed approach introduces a GPU
server task that is dedicated to handling GPU requests from
other tasks on their behalf. The GPU server ensures bounded
time to access the GPU, and allows other tasks to suspend
during their GPU computation to save CPU cycles. By doing
so, we address the two major limitations of the existing real-
time synchronization-based GPU management approach: busy
waiting and long priority inversion. We implemented a prototype
of the server-based approach on a real embedded platform. This
case study demonstrates the practicality and effectiveness of the
server-based approach. Experimental results indicate that the
server-based approach yields significant improvements in task
schedulability over the existing synchronization-based approach
in most practical settings. Although we focus on a GPU in this
paper, the server-based approach can also be used for other types
of computational accelerators.

I. INTRODUCTION

The high computational demands of complex algorithmic
tasks used in recent embedded and cyber-physical systems
pose substantial challenges in guaranteeing their timeliness.
For example, a self-driving car [19, 31] executes perception
and motion planning algorithms in addition to running tasks
for data fusion from tens of sensors equipped within the ve-
hicle. Since these tasks are computation intensive, it becomes
hard to satisfy their timing requirements when they execute
on the same hardware platform. Fortunately, many of today’s
embedded multi-core processors, such as NXP i.MX6 [4]
and NVIDIA TX1/TX2 [3], have an on-chip, general-purpose
graphics processing unit (GPU), which can greatly help in
addressing the timing challenges of computation-intensive
tasks by accelerating their execution.

The use of GPUs in a time predictable manner brings
up several challenges. First, many of today’s commercial-
off-the-shelf (COTS) GPUs do not support a preemption
mechanism, and GPU access requests from application tasks
are handled in a sequential, non-preemptive manner. This is
primarily due to the high overhead expected on GPU context
switching [30]. Although some recent GPU architectures, such
as NVIDIA Pascal [2], claim to offer GPU preemption, there
is no documentation regarding their explicit behavior, and
existing drivers (and GPU programming APIs) do not offer
any programmer control over GPU preemption at the time of
writing this paper. Second, COTS GPU device drivers do not
respect task priorities and the scheduling policy used in the

system. Hence, in the worst case, the GPU access request of
the highest-priority task may be delayed by the requests of all
lower-priority tasks in the system, which could possibly cause
unbounded priority inversion.

The aforementioned issues have motivated the develop-
ment of predictable GPU management techniques to ensure
task timing constraints while achieving performance improve-
ment [12, 14, 13, 16, 17, 20, 32]. Among them, the work
in [12, 14, 13] introduces a synchronization-based approach
that models GPUs as mutually-exclusive resources and uses
real-time synchronization protocols to arbitrate GPU access.
This approach has many benefits. First, it can schedule GPU
requests from tasks in an analyzable manner, without making
any change to GPU device drivers. Second, it allows the exist-
ing task schedulability analysis methods, originally developed
for real-time synchronization protocols, to be easily applied to
analyze tasks accessing GPUs. However, due to the underlying
assumption on critical sections, this approach requires tasks
to busy-wait during the entire GPU access, thereby resulting
in substantial CPU utilization loss. Also, the use of real-time
synchronization protocols for GPUs may unnecessarily delay
the execution of high-priority tasks due to the priority-boosting
mechanism employed in some protocols, such as MPCP [29]
and FMLP [8]. We will review these issues in Section IV-B.

In this paper, we develop a server-based approach for
predictable GPU access control to address the aforemen-
tioned limitations of the existing synchronization-based ap-
proach. Our proposed approach introduces a dedicated GPU
server task that receives GPU access requests from other
tasks and handles the requests on their behalf. Unlike the
synchronization-based approach, the server-based approach
allows tasks to suspend during GPU computation while pre-
serving analyzability. This not only yields CPU utilization
benefits, but also reduces task response times. We present
the schedulability analysis of tasks under our server-based
approach, which accounts for the overhead of the GPU server
task. Although we have focused on a GPU in this work,
our approach can be used for other types of computational
accelerators, such as a digital signal processor (DSP).

We implemented a prototype of our approach on a SABRE
Lite embedded platform [1] equipped with four ARM Cortex-
A9 CPUs and one Vivante GC2000 GPU. Our case study
using this implementation with the workzone recognition al-
gorithm [23] developed for a self-driving car demonstrates the
practicality and effectiveness of our approach in saving CPU978-1-5386-1898-1/17/$31.00 © 2017 IEEE



utilization and reducing response time. We also conducted de-
tailed experiments on task schedulability. Experimental results
show that while our server-based approach does not dominate
the synchronization-based approach, it outperforms the latter
in most of the practical cases.

The rest of this paper is organized as follows: Section II
reviews relevant prior work. Section III describes our system
model. Section IV reviews the use of the synchronization-
based approach for GPU access control and discusses its
limitations. Section V presents our proposed server-based
approach. Section VI evaluates the approach using a practical
case study and overhead measurements, along with detailed
schedulabilty experiments. Section VII concludes the paper.

II. RELATED WORK

Many techniques have been developed to utilize a GPU as a
predictable, shared computing resource. TimeGraph [17] is a
real-time GPU scheduler that schedules GPU access requests
from tasks with respect to task priorities. This is done by
modifying an open-source GPU device driver and monitoring
GPU commands at the driver level. RGEM [16] allows split-
ting a long data-copy operation into smaller chunks, reducing
blocking time on data-copy operations. Gdev [18] provides
common APIs to both user-level tasks and the OS kernel to
use a GPU as a standard computing resource. GPES [32]
is a software technique to break a long GPU execution
segment into smaller sub-segments, allowing preemptions at
the boundaries of sub-segments. While all these techniques can
mitigate the limitations of today’s GPU hardware and device
drivers, they have not considered the schedulability of tasks
using the GPU. In other words, they handle GPU requests from
tasks in a predictable manner, but do not formally analyze the
worst-case timing behavior of tasks on the CPU side, which
is addressed in this paper.

Elliott et al. [12, 14, 13] modeled GPUs as mutually-
exclusive resources and proposed the use of real-time syn-
chronization protocols for accessing GPUs. Based on this,
they developed GPUSync [14], a software framework for GPU
management in multi-core real-time systems. GPUSync sup-
ports both fixed- and dynamic-priority scheduling policies, and
provides various features, such as budget enforcement, multi-
GPU support, and clustered scheduling. It uses separate locks
for copy and execution engines of GPUs to enable overlapping
of GPU data transmission and computation. The pros and
cons of the synchronization-based approach in general will
be thoroughly discussed in Section IV.

The self-suspension behavior of tasks has been studied
in the context of real-time systems [6, 7, 11, 20]. This is
motivated by the fact that tasks can suspend while accessing
hardware accelerators like GPUs. Kim et al. [20] proposed
segment-fixed priority scheduling, which assigns different pri-
orities and phase offsets to each segment of tasks. They
developed several heuristics for priority and offset assignment
because finding the optimal solution for that assignment is
NP-hard in the strong sense. Chen et al. [11] reported errors
in existing self-suspension analyses and presented corrections
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Fig. 1: Execution pattern of a task accessing a GPU

for the errors. Those approaches assume that the duration of
self-suspension is given as a fixed task parameter. However,
this assumption does not comply with the case where a task
accesses a shared GPU and the waiting time for the GPU is
affected by other tasks in the system. In this work, we use
the results in [7, 11] to take into account the effect of self-
suspension in task schedulability, and propose techniques to
bound the worst-case access time to a shared GPU.

III. SYSTEM MODEL

The work in this paper assumes a multi-core platform
equipped with a single general-purpose GPU device.1 The
GPU is shared among multiple tasks, and GPU requests from
tasks are handled in a sequential, non-preemptive manner.
The GPU has its own memory region, which is assumed to
be sufficient enough for the tasks under consideration. We
do not assume the concurrent execution of GPU requests
from different tasks, called GPU co-scheduling, because recent
work [27] reports that “co-scheduled GPU programs from
different programs are not truly concurrent, but are multi-
programmed instead” and “this (co-scheduling) may lead to
slower or less predictable total times in individual programs”.

We consider sporadic tasks with constrained deadlines. The
execution time of a task using a GPU is decomposed into
normal execution segments and GPU access segments. Normal
execution segments run entirely on CPU cores and GPU access
segments involve GPU operations. Figure 1 depicts an example
of a task having a single GPU access segment. In the GPU
access segment, the task first copies data needed for GPU
computation, from CPU memory to GPU memory (Step 1© in
Figure 1). This is typically done using Direct Memory Access
(DMA), which requires no (or minimal) CPU intervention.
The task then triggers the actual GPU computation, also
referred to as GPU kernel execution, and waits for the GPU
computation to finish (Step 2©). The task is notified when the
GPU computation finishes (Step 3©), and it copies the results
back from the GPU to the CPU (Step 4©). Finally, the task
continues its normal execution segment. Note that during the
time when CPU intervention is not required, e.g., during data
copies with DMA and GPU kernel execution, the task may
suspend or busy-wait, depending on the implementation of the
GPU device driver and the configuration used.
Synchronous and Asynchronous GPU Access. The example
in Figure 1 uses synchronous mode for GPU access, where

1This assumption reflects today’s GPU-enabled embedded processors, e.g.,
NXP i.MX6 [4] and NVIDIA TX1/TX2 [3]. A multi-GPU platform would be
used for future real-time embedded and cyber-physical systems, but extending
our work to handle multiple GPUs remains as future work.



each GPU command, such as memory copy and GPU kernel
execution, can be issued only after the prior GPU command
has finished. However, many GPU programming interfaces,
such as CUDA and OpenCL, also provide asynchronous mode,
which allows a task to overlap CPU and GPU computations.
For example, if a task sends all GPU commands in asyn-
chronous mode at the beginning of the GPU access segment,
then it can either perform other CPU operations within the
same GPU access segment or simply wait until all the GPU
commands complete. Hence, while the sequence of GPU
access remains the same, the use of asynchronous mode can
affect the amount of active CPU time in a GPU segment.

Task Model. A task τi is characterized as follows:

τi := (Ci, Ti, Di, Gi, ηi)

• Ci: the sum of the worst-case execution time (WCET) of
all normal execution segments of task τi.

• Ti: the minimum inter-arrival time of each job of τi.
• Di: the relative deadline of each job of τi (Di ≤ Ti).
• Gi: the maximum accumulated length of all GPU segments

of τi, when there is no other task competing for a GPU.
• ηi: the number of GPU access segments in each job of τi.
The utilization of a task τi is defined as Ui = (Ci +Gi)/Ti.
Parameters Ci and Gi can be obtained by either measurement-
based or static-analysis tools. When a measurement-based ap-
proach is used, Ci and Gi need to be conservatively estimated.
A task using a GPU has one or more GPU access segments.
We use Gi,j to denote the maximum length of the j-th GPU
access segment of τi, i.e., Gi =

∑ηi
j=1Gi,j . Parameter Gi,j

can be decomposed as follows:

Gi,j := (Gei,j , G
m
i,j)

• Gei,j : the WCET of pure GPU operations that do not require
CPU intervention in the j-th GPU access segment of τi.

• Gmi,j : the WCET of miscellaneous operations that require
CPU intervention in the j-th GPU access segment of τi.

Gei,j includes the time for GPU kernel execution, and Gmi,j
includes the time for copying data, launching the kernel,
notifying the completion of GPU commands, and executing
other CPU operations. The cost of self-suspension during
CPU-inactive time in a GPU segment is assumed to be taken
into account by Gmi,j . If data are copied to or from the GPU
using DMA, only the time for issuing the copy command
is included in Gmi,j ; the time for actual data transmission by
DMA is modeled as part of Gei,j , as it does not require CPU
intervention. Note that Gi,j ≤ Gei,j + Gmi,j because Gei,j and
Gmi,j are not necessarily observed on the same control path and
they may overlap in asynchronous mode.

CPU Scheduling. In this work, we focus on partitioned
fixed-priority preemptive task scheduling due to the following
reasons: (i) it is widely supported in many commercial real-
time embedded OSs such as OKL4 [15] and QNX RTOS [5],
and (ii) it does not introduce task migration costs. Thus, each
task is statically assigned to a single CPU core. Any fixed-
priority assignment, such as Rate-Monotonic [24] can be used

for tasks. Each task τi is assumed to have a unique priority
πi. An arbitrary tie-breaking rule can be used to achieve this
assumption under fixed-priority scheduling.

IV. LIMITATIONS OF SYNCHRONIZATION-BASED
GPU ACCESS CONTROL

In this section, we characterize the limitations of using a
real-time synchronization protocol for tasks accessing a GPU
on a multi-core platform.

A. Overview

The synchronization-based approach models the GPU as a
mutually-exclusive resource and the GPU access segments of
tasks as critical sections. A single mutex is used for protecting
such GPU critical sections. Hence, under the synchronization-
based approach, a task should hold the GPU mutex to enter
its GPU access segment. If the mutex is already held by
another task, the task is inserted into the waiting list of the
mutex and waits until the mutex can be held by that task.
Some implementations like GPUSync [14] use separate locks
for internal resources of the GPU, e.g., copy and execution
engines, to achieve parallelism in GPU access, but we focus
on a single lock for the entire GPU for simplicity.

Among a variety of real-time synchronization protocols,
we consider the Multiprocessor Priority Ceiling Protocol
(MPCP) [28, 29] as a representative, because it works for
partitioned fixed-priority scheduling that we use in our work
and it has been widely referenced in the literature. We shall
briefly review the definition of MPCP below. More details on
MPCP can be found in [22, 28, 29].
1) When a task τi requests an access to a resource Rk, it can

be granted to τi if it is not held by another task.
2) While a task τi is holding a resource that is shared among

tasks assigned to different cores, the priority of τi is raised to
πB+πi, where πB is a base task-priority level greater than
that of any task in the system, and πi is the normal priority
of τi. This “priority boosting” under MPCP is referred to
as the global priority ceiling of τi.

3) When a task τi requests access to a resource Rk that is
already held by another task, τi is inserted to the waiting
list of the mutex for Rk.

4) When a resource Rk is released and the waiting list of the
mutex for Rk is not empty, the highest-priority task in the
waiting list is dequeued and granted Rk.

B. Limitations

As described in Section III, each GPU access segment
contains various operations, including data copies, notifica-
tions, and GPU computation. Specifically, a task may suspend
when CPU intervention is not required, e.g., during GPU
kernel execution, to save CPU cycles. However, under the
synchronization-based approach, any task in its GPU access
segment should “busy-wait” for any operation conducted on
the GPU in order to ensure timing predictability. This is
because most real-time synchronization protocols and their
analyses, such as MPCP [29], FMLP [8], and OMLP [10],
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Fig. 2: Example schedule of GPU-using tasks under the
synchronization-based approach with MPCP

assume that (i) a critical section is executed entirely on the
CPU, and (ii) there is no suspension during the execution of
the critical section. Hence, during its GPU kernel execution,
the task is not allowed to suspend even when no CPU
intervention is required.2 For example, while the GPUSync
implementation [14] can be configured to suspend instead of
busy-wait during GPU kernel execution at runtime, its analysis
uses an suspension-oblivious approach that does not capture
CPU time saving from self-suspension. As the time for GPU
kernel execution and data transmission by DMA increases, the
CPU time loss under the synchronization-based approach is
therefore expected to increase. The analyses of those protocols
could possibly be modified to allow suspension within critical
sections, at the potential expense of increased pessimism.3

Some synchronization protocols, such as MPCP [29],
FMLP [8] and FMLP+ [9], use priority boosting (either
restricted or unrestricted) as a progress mechanism to prevent
unbounded priority inversion. However, the use of priority
boosting could cause another problem we call “long priority
inversion”. We describe this problem with the example in
Figure 2. There are three tasks, τh, τm, and τl, that have
high, medium, and low priorities, respectively. Each task has
one GPU access segment that is protected by MPCP and
executed between two normal execution segments. τh and τm
are allocated to Core 1, and τl is allocated to Core 2.

Task τl is released at time 0 and makes a GPU request at
time 1. Since there is no other task using the GPU at that point,
τl acquires the mutex for the GPU and enters its GPU access
segment. τl then executes with the global priority ceiling
associated with the mutex (priority boosting). Note that while
the GPU kernel of τl is executed, τl also consumes CPU cycles
due to the busy-waiting requirement of the synchronization-
based approach. Tasks τm and τh are released at time 2 and
3, respectively. They make GPU requests at time 3 and 4, but

2These protocols allow suspension while waiting for lock acquisition.
3In case of MPCP, whenever a task resumes from self-suspension, it may

experience priority inversion from tasks with higher boosted priorities [21].
However, the recent generalized FMLP+ paper [9] shows that the restricted
priority boosting of FMLP+ allows self-suspension within critical sections
with no detrimental effect on the analysis. We limit our focus to MPCP and
leave a detailed comparison with FMLP+ as future work.
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the GPU cannot be granted to either of them because it is
already held by τl. At time 5, τl releases the GPU mutex, and
τh acquires the mutex next because it has higher priority than
τm. At time 8, τh finishes its GPU segment, releases the mutex,
and restores its normal priority. Next, τm acquires the mutex,
and preempts the normal execution segment of τh because the
global priority ceiling of the mutex is higher than τh’s normal
priority. Hence, although the majority of τm’s GPU segment
merely performs busy-waiting, the execution of the normal
segment of τh is delayed until the GPU access segment of τm
finishes. Finally, τh completes its normal execution segment
at time 12, making the response time of τh 9 in this example.

V. SERVER-BASED GPU ACCESS CONTROL

We present our server-based approach for predictable GPU
access control. This approach addresses the two main limi-
tations of the synchronization-based approach, namely, busy
waiting and long priority inversion.

A. GPU Server Task

Our server-based approach creates a GPU server task that
handles GPU access requests from other tasks on their behalf.
The GPU server is assigned the highest priority in the system,
which is to prevent preemptions by other tasks. Figure 3 shows
the sequence of GPU request handling under our server-based
approach. First, when a task τi enters its GPU access segment,
it makes a GPU access request to the GPU server, not to
the GPU device driver. The request is made by sending the
memory region information for the GPU access segment, in-
cluding input/output data, commands and code for GPU kernel
execution to the server task. This requires the memory regions
to be configured as shared regions so that the GPU server can
access them with their identifiers, e.g., shmid. After sending
the request to the server, τi suspends, allowing other tasks to
execute. Secondly, the server enqueues the received request
into the GPU request queue, if the GPU is being used by
another request. The GPU request queue is a priority queue,
where elements are ordered in their task priorities. Thirdly,
once the GPU becomes free, the server dequeues a request
from the head of the queue and executes the corresponding
GPU segment. During CPU-inactive time, e.g., data copy
with DMA and GPU kernel execution, the server suspends
to save CPU cycles. Of course, in asynchronous mode, the
server suspends after finishing remaining miscellaneous CPU
operations of the request being handled. When the request
finishes, the server notifies the completion of the request and
wakes up the task τi. Finally, τi resumes its execution.
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The use of the GPU server task inevitably introduces
the following additional computational costs: (i) sending a
GPU request to the server and waking up the server task,
(ii) enqueueing the request and checking the request queue
to find the highest-priority GPU request, and (iii) notifying
the completion of the request to the corresponding task. We
use the term ε to characterize the GPU server overhead that
upper-bounds these computational costs.

Figure 4 shows an example of task scheduling under our
server-based approach. This example has the same configu-
ration as the one in Figure 2 and uses synchronous mode
for GPU access.4 The GPU server, which the server-based
approach creates, is allocated to Core 1. Each GPU access
segment has two sub-segments of miscellaneous operations,
each of which is assumed to amount to ε.

At time 1, the task τl makes a GPU access request to the
server task. The server receives the request and executes the
corresponding GPU access segment at time 1 + ε. Since the
server-based approach does not require tasks to busy-wait, τl
suspends until the completion of its GPU request. The GPU
request of τm at time 3 is enqueued into the request queue of
the server. As the server executes with the highest priority in
the system, it delays the execution of τh released at time 3 by
ε. Hence, τh starts execution at time 3 + ε and makes a GPU
request at time 4 + ε. When the GPU access segment of τl
completes, the server task is notified. The server then notifies
the completion of the GPU request to τl and wakes it up, and
subsequently executes the GPU access segment of τh at time
5 + 2ε. The task τh suspends until its GPU request finishes.
The GPU access segment of τh finishes at time 8 + 2ε and
that of τm starts at time 8 + 3ε. Unlike the case under the
synchronization-based approach, τh can continue to execute
its normal execution segment from time 8 + 3ε, because τm
suspends and the priority of τm is not boosted. The task τh
finishes its normal execution segment at time 9+4ε, and hence,
the response time of τh is 6+4ε. Recall that the response time
of τh is 9 for the same taskset under the synchronization-based
approach, as shown in Figure 2. Therefore, we can conclude

4The GPU server supports both synchronous and asynchronous GPU access.

that the server-based approach provides a shorter response
time than the synchronization-based approach for this example
taskset, if the value of ε is under 3/4 time units, which, as
measured in Section VI-B, is a very pessimistic value for ε.

B. Schedulability Analysis

We analyze task schedulability under our server-based ap-
proach. Since all the GPU requests of tasks are handled by the
GPU server, we first identify the GPU request handling time
for the server. The following properties hold for the server-
based approach:

Lemma 1. The GPU server task imposes up to 2ε of extra
CPU time on each GPU request.

Proof. As the GPU server intervenes before and after the
execution of each GPU segment, each GPU request can cause
at most 2ε of overhead in the worst-case. Note that the cost of
issuing the GPU request as well as self-suspension is already
taken into account by Gmi,j , as described in Section III. �

Lemma 2. The maximum waiting time for the j-th GPU
segment of a task τi under the server-based approach is
bounded by the following recurrence:

Bw,n+1
i,j = max

πl<πi∧1≤u≤ηl
(Gl,u + ε)

+
∑

πh>πi∧1≤u≤ηh

(⌈
Bw,ni,j

Th

⌉
+ 1

)
(Gh,u + ε)

(1)

where Bw,0i,j = maxπl<πi∧1≤u≤ηl(Gl,u + ε) (the first term of
the equation).

Proof. When τi, the task under analysis, makes a GPU request,
the GPU may already be handling a request from a lower-
priority task. As the GPU executes in a non-preemptive
manner, τi must wait for the completion of the lower-priority
GPU request, and as a result, the longest GPU access segment
from all lower-priority tasks needs to be considered as the
waiting time in the worst case. Here, only one ε of overhead is
caused by the GPU server because other GPU requests will be
immediately followed and the GPU server needs to be invoked
only once between two consecutive GPU requests, as depicted
in Figure 4. This is captured by the first term of the equation.

During the waiting time of Bwi,j , higher-priority tasks can
make GPU requests to the server. As there can be at most one
carry-in request from each higher-priority task τh during Bwi,j ,
the maximum number of GPU requests made by τh is bounded
by
∑ηh
u=1(dBwi,j/The + 1). Multiplying each element of this

summation by Gh,u+ ε therefore gives the maximum waiting
time caused by the GPU requests of τh, which is exactly used
as the second term of the equation. �

Lemma 3. The maximum handling time of all GPU requests
of a task τi by the GPU server is given by:

Bgpui =

{
Bwi +Gi + 2ηiε : ηi > 0
0 : ηi = 0

(2)



where Bwi is the sum of the maximum waiting time for each
GPU access segment of τi, i.e., Bwi =

∑
1≤j≤ηi B

w
i,j .

Proof. If ηi > 0, the j-th GPU request of τi is handled after
Bwi,j of waiting time, and takes Gi,j + 2ε to complete (by
Lemma 1). Hence, the maximum handling time of all GPU
requests of τi is

∑ηi
j=1(B

w
i,j +Gi,j + 2ε) = Bwi +Gi + 2ηiε.

If ηi = 0, Bgpui is obviously zero. �

The response time of a task τi is affected by the presence
of the GPU server on τi’s core. If τi is allocated on a different
core than the GPU server, the worst-case response time of τi
under the server-based approach is given by:

Wn+1
i =Ci +Bgpui +

∑
τh∈P(τi)∧πh>πi

⌈Wn
i +(Wh−Ch)

Th

⌉
Ch (3)

where P(τi) is the CPU core on which τi is allocated. The
recurrence computation terminates when Wn+1

i =Wn
i , and τi

is schedulable if Wn
i ≤ Di. It is worth noting that, as captured

in the third term, the GPU segments of higher-priority tasks
do not cause any direct interference to τi because they are
executed by the GPU server that runs on a different core.

If τi is allocated on the same core as the GPU server, the
worst-case response time of τi is given by:

Wn+1
i =Ci +Bgpui +

∑
τh∈P(τi)∧πh>πi

⌈Wn
i +(Wh−Ch)

Th

⌉
Ch

+
∑

τj 6=τi∧ηj>0

⌈Wn
i +{Dj−(Gmj + 2ηjε)}

Tj

⌉
(Gmj + 2ηjε)

(4)

where Gmj is the sum of the WCETs of miscellaneous opera-
tions in τi’s GPU access segments, i.e., Gmj =

∑ηj
k=1G

m
j,k.

Under the server-based approach, both, the GPU-using
tasks, as well as the GPU server task, can self-suspend. Hence,
we use the following lemma given by Bletsas et al. [7] to prove
Eqs. (3) and (4):

Lemma 4 (from [7]). The worst-case response time of a self-
suspending task τi is upper bounded by:

Wn+1
i = Ci +

∑
τh∈P(τi)∧πh>πi

⌈Wn
i + (Wh − Ch)

Th

⌉
Ch (5)

Note that Dh can be used instead of Wh in the summation
term of Eq. (5) [11].

Theorem 1. The worst-case response time of a task τi under
the server-based approach is given by Eqs. (3) and (4).

Proof. To account for the maximum GPU request handling
time of τi, B

gpu
i is added in both Eqs. (3) and (4). In the

ceiling function of the third term of both equations, (Wh−Ch)
accounts for the self-suspending effect of higher-priority GPU-
using tasks (by Lemma 4). With these, Eq.(3) upper bounds
the worst-case response time of τi when it is allocated on a
different core than the GPU server.

The main difference between Eq. (4) and Eq. (3) is the
last term, which captures the worst-case interference from the
GPU server task. The execution time of the GPU server task is

bounded by summing up the worst-case miscellaneous opera-
tions and the server overhead caused by GPU requests from all
other tasks (Gmj + 2ηjε). Since the GPU server self-suspends
during CPU-inactive time intervals, adding {Dj−(Gmj +2ηjε)}
to Wn

i in the ceiling function captures the worst-case self-
suspending effect (by Lemma 4). These factors are exactly
captured by the last term of Eq. (4). Hence, it upper bounds
task response time in the presence of the GPU server. �

VI. EVALUATION

This section provides our experimental evaluation of the
two different approaches for GPU access control. We first
present details about our implementation and describe case
study results on a real embedded platform. Next, we explore
the impact of these approaches on task schedulability with
randomly-generated tasksets, by using parameters based on
the practical overheads measured from our implementation.

A. Implementation

We implemented prototypes of the synchronization-based
and the server-based approaches on a SABRE Lite board [1].
The board is equipped with an NXP i.MX6 Quad SoC that
has four ARM Cortex-A9 cores and one Vivante GC2000
GPU. We ran an NXP Embedded Linux kernel version 3.14.52
patched with Linux/RK [26] version 1.65, and used the Vivante
v5.0.11p7.4 GPU driver along with OpenCL 1.1 (Embedded
Profile) for general-purpose GPU programming. We also con-
figured each core to run at its maximum frequency, 1 GHz.

Linux/RK provides a kernel-level implementation of MPCP
which we used to implement the synchronization-based ap-
proach. Under our implementation, each GPU-using task first
acquires an MPCP-based lock, issues memory copy and GPU
kernel execution requests in an asynchronous manner, and
uses OpenCL events to busy-wait on the CPU till the GPU
operation completes, before finally releasing the lock.

To implement the server-based approach, we set up shared
memory regions between the server task and each GPU-using
task, which are used to share GPU input/output data. POSIX
signals are used by the GPU-using tasks and the server to
notify GPU requests and completions, respectively. The server
has an initialization phase, during which, it initializes shared
memory regions and obtains GPU kernels from the GPU
binaries (or source code) of each task. Subsequently, the server
uses these GPU kernels whenever the corresponding task
issues a GPU request. As the GPU driver allows suspensions
during GPU requests, the server task issues memory copy and
GPU kernel execution requests in an asynchronous manner,
and suspends by calling the clFinish() API function
provided by OpenCL.

GPU Driver and Task-Specific Threads. The OpenCL im-
plementation on the i.MX6 platform spawns user-level threads
in order to handle GPU requests and to notify completions.
Under the synchronization-based approach, OpenCL spawns
multiple such threads for each GPU-using task, whereas under

5Linux/RK is available at http://rtml.ece.cmu.edu/redmine/projects/rk/.

http://rtml.ece.cmu.edu/redmine/projects/rk/
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the server-based approach, such threads are spawned only for
the server task. To eliminate possible scheduling interference,
the GPU driver process, as well as the spawned OpenCL
threads, are configured to run at the highest real-time priority
in all our experiments.

B. Practical Evaluation

Overheads. We measured the practical worst-case overheads
for both the approaches in order to perform schedulability
analysis. Each worst-case overhead measurement involved
examining 100,000 readings of the respective operations mea-
sured on the i.MX6 platform. Figure 5 shows the mean and
99.9th percentile of the MPCP lock operations and Figure 6
shows the same for server related overheads.

Under the synchronization-based approach with MPCP,
overhead occurs while acquiring and releasing the GPU lock.
Under the server-based approach, overheads involve waking
up the server task, performing priority queue operations (i.e.,
server execution delay), and notifying completion to wake up
the GPU-using task after finishing GPU computation.

To safely take into consideration the worst-case overheads,
we use the 99.9th percentile measurements for each source of
delay in our experiments. This amounts to a total of 14.0 µs
lock-related delay under the synchronization-based approach,
and a total of 44.97 µs delay for the server task under the
server-based approach.

Case Study. We present a case study motivated by the
software system of the self-driving car developed at CMU [31].
Among various algorithmic tasks of the car, we chose a GPU
accelerated version of the workzone recognition algorithm [23]
(workzone) that periodically processes images collected
from a camera. Two GPU-based matrix multiplication tasks
(gpu_matmul1 and gpu_matmul2), and two CPU-bound

tasks (cpu_matmul1 and cpu_matmul2) are also used to
represent a subset of other tasks of the car. Unique task priori-
ties are assigned based on the Rate-Monotonic policy [24] and
each task is pinned to a specific core as described in Table I.
Of these, the workzone task has two GPU segments per job
whereas both the GPU-based matrix multiplication tasks have
a single GPU segment. Under the server-based approach, the
server task is pinned to CPU Core 1 and is run with real-
time priority 80. In order to avoid unnecessary interference
while recording traces, the task-specific OpenCL threads are
pinned on a separate CPU core for both approaches. All tasks
are released at the same time using Linux/RK APIs. CPU
scheduling is performed using the SCHED_FIFO policy, and
CPU execution traces are collected for one hyperperiod (3,000
ms) as shown in Figure 7.

The CPU-execution traces for the synchronization and
server-based approaches are shown in Figure 7(a) and Fig-
ure 7(b), respectively. Tasks executing on Core 0 are shown
in blue whereas tasks executing on Core 1 are shown in
red. It is immediately clear that the server-based approach
allows suspension of tasks while they are waiting for the GPU
request to complete. In particular, we make the following key
observations from the case study:
1) Under the synchronization-based approach, tasks suspend

when they wait for the GPU lock to be released, but they
do not suspend while using the GPU. On the contrary,
under the server-based approach, tasks suspend even when
their GPU segments are being executed. The results show
that our proposed server-based approach can be successfully
implemented and used on a real platform.

2) The response time of cpu_matmul1 under the
synchronization-based approach is significantly larger
than that under the server-based approach, i.e., 520.68 ms
vs. 219.09 ms in the worst case, because of the busy-waiting
problem discussed in Section IV-B.

C. Schedulability Experiments

Taskset Generation. We used 10,000 randomly-generated
tasksets with the parameters given in Table II for each
experimental setting. The parameters are inspired from the
observations from our case study and the GPU workloads
used in prior work [17, 18]. Systems with four and eight CPU
cores (NP = {4, 8}) are considered. To generate each taskset,
the number of CPU cores in the system and the number of
tasks for each core are first created based on the parameters
in Table II. Next, a subset of the generated tasks is chosen at
random, corresponding to the specified percentage of GPU-
using tasks, to include GPU segments. Task period Ti is
randomly selected within the defined minimum and maximum
task period range. Task deadline Di is set equal to Ti. On
each core, the taskset utilization is split into k random-sized
pieces, where k is the number of tasks per core. The size of
each piece represents the utilization Ui of the corresponding
task τi, i.e., Ui = (Ci+Gi)/Ti. If τi is a CPU-only task, Ci is
set to (Ui ·Ti) and Gi is set to zero. If τi is a GPU-using task,
the given ratio of the accumulated GPU segment length to the



TABLE I: Tasks used in the case study
Task τi Task name Ci (in ms) ηi Gi (in ms) Ti = Di (in ms) CPU Core Priority
τ1 workzone 20 2 G1,1 = 95, G1,2 = 47 300 0 70
τ2 cpu_matmul1 215 0 0 750 0 67
τ3 cpu_matmul2 102 0 0 300 1 69
τ4 gpu_matmul1 0.15 1 G4,1 = 19 600 1 68
τ5 gpu_matmul2 0.15 1 G5,1 = 38 1000 1 66

(a) Synchronization-based Approach (MPCP)

(b) Server-based Approach

Fig. 7: Task execution timeline during one hyperperiod (3,000 ms)

TABLE II: Base parameters for taskset generation
Parameters Values
Number of CPU cores (NP ) 4, 8
Number of tasks per core [3, 5]
Percentage of GPU-using tasks [10, 30] %
Task period and deadline (Ti = Di) [100, 500] ms
Taskset utilization per core [30, 50] %
Ratio of GPU segment len. to normal WCET (Gi/Ci) [10, 30] %
Number of GPU segments per task (ηi) [1, 3]
Ratio of misc. operations in Gi,j (Gm

i,j/Gi,j ) [10, 20] %
GPU server overhead (ε) 50 µs

WCET of normal segments is used to determine the values of
Ci and Gi. Gi is then split into ηi random-sized pieces, where
ηi is the number of τi’s GPU segments chosen randomly from
the specified range. For each GPU segment Gi,j , the values
of Gei,j and Gmi,j are determined by the ratio of miscellaneous
operations given in Table II, assuming Gi,j = Gei,j + Gmi,j .
Finally, task priorities are assigned by the Rate-Monotonic
policy [24], with arbitrary tie-breaking.

Results. We capture the percentage of schedulable tasksets
where all tasks meet their deadlines. For the synchronization-
based approach, MPCP [29] is used with the task schedu-
lability test developed by Lakshmanan et al. [21] and the
correction given by Chen et al. [11]. We considered both zero
and non-zero locking overhead under MPCP, but there was no
noticeable difference between them. Hence, only the results
with zero overhead are presented in the paper. Under the
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Fig. 8: Schedulability w.r.t. the GPU segment length

server-based approach, the GPU server is randomly allocated
to one of the cores in the system. Eqs. (3) and (4) are used for
task schedulability tests. We set the GPU server overhead ε to
50 µs, which is slightly larger than the measured overheads
from our implementation presented in Section VI-B.

Figure 8 shows the percentage of schedulable tasksets as the
ratio of the accumulated GPU segment length (Gi) increases.
The solid lines denote the results with NP = 4 and the dotted
lines denote results with NP = 8. In general, the percentage
of schedulable tasksets is higher when NP = 4, compared to
when NP = 8. This is because the GPU is contended for by
more tasks as the number of cores increases. The server-based
approach outperforms the synchronization-based approach in
all cases of this figure. This is mainly due to the fact that the
server-based approach allows other tasks to use the CPU while
the GPU is being used.
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Figure 9 shows the percentage of schedulable tasksets as the
percentage of GPU-using tasks increases. The left-most point
on the x-axis represents that all tasks are CPU-only tasks, and
the right-most point represents that all tasks access the GPU.
Under both approaches, the percentage of schedulable tasksets
reduces as the percentage of GPU-using tasks increases.
However, the server-based approach significantly outperforms
MPCP, with as much as 34% more tasksets being schedulable
when the percentage of GPU-using tasks is 60% and NP = 4.

The benefit of the server-based approach is also observed
with changes in other task parameters. In Figure 10, the
percentage of schedulable tasksets is illustrated as the number
of tasks per core increases. The server-based approach is
affected less by the increase in task counts, compared to the
synchronization-based approach. The difference in schedula-
bility between the two approaches grows larger as the number
of tasks per core increases. This is because as more tasks
exist, the total amount of the CPU-inactive time in GPU
segments also increases. Figure 11 shows the experimental
results as the number of GPU segments per task increases.
While the server-based approach has higher schedulability for
fewer GPU segments per task, it gets closer and then coincides
with the synchronization-based approach eventually, because it
faces excess server overhead (of 2ε per request, by Lemma 1)
with an increasing number of GPU segments. Figure 12
shows the results as taskset utilization per core increases.
The server-based approach provides higher schedulability than
the synchronization-based approach, but as the total taskset
utilization gets closer to 90%, the gap diminishes and the
percentage of schedulable tasksets under both approaches goes
down to zero.

We next investigate the factors that negatively impact the
performance of the server-based approach. The GPU server
overhead ε is obviously one such factor. Although an ε of 50 µs
that we used in prior experiments is sufficient enough to upper-
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bound the GPU server overhead in most practical systems,
we further investigate with larger ε values. Figure 13 shows
the percentage of schedulable tasksets as the GPU server
overhead ε increases. Since ε exists only under the server-
based approach, the performance of MPCP is unaffected by
this factor. On the other hand, the performance of the server-
based approach deteriorates as the overhead increases.

The length of miscellaneous operations in GPU access
segments is another factor degrading the performance of the
server-based approach, because miscellaneous operations re-
quire the GPU server to consume a longer CPU time. Figure 14
shows the percentage of schedulable tasksets as the ratio of
miscellaneous operations in GPU access segments increases.
As MPCP makes tasks busy-wait during their entire GPU
access, the performance of the synchronization-based approach
remains unaffected. On the other hand, as expected, the
performance of the server-based approach degrades as the ratio
of miscellaneous operations increases. When the ratio reaches
90%, the server-based approach begins to underperform com-
pared to the synchronization-based approach. However, such
a high ratio of miscellaneous operations in GPU segments
is hardly observable in practical GPU applications because
memory copy is typically done by DMA and GPU kernel
execution takes the majority time of GPU segments.

In summary, the server-based approach outperforms the
synchronization-based approach in most cases where realistic
parameters are used. Specifically, the benefit of the server-
based approach is significant when the percentage of GPU-
using tasks is high or the number of tasks is large. However, we
do find that the server-based approach does not dominate the
synchronization-based approach. The synchronization-based
approach may result in better schedulability than the server-
based approach when the GPU server overhead or the ratio
of miscellaneous operations in GPU segments is beyond the
range of practical values.
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VII. CONCLUSIONS

In this paper, we have presented a server-based approach
for predictable CPU access control in real-time embedded
and cyber-physical systems. It is motivated by the limitations
of the synchronization-based approach, namely busy-waiting
and long priority inversion. By introducing a dedicated server
task for GPU request handling, the server-based approach
addresses those limitations, while ensuring the predictability
and analyzability of tasks. The implementation and case study
results on an NXP i.MX6 embedded platform indicate that the
server-based approach can be implemented with acceptable
overhead and performs as expected with a combination of
CPU-only and GPU-using tasks. Experimental results show
that the server-based approach yields significant improvements
in task schedulability over the synchronization-based approach
in most cases. Other types of accelerators such as DSP and
FPGA can also benefit from our approach.

Our proposed server-based approach offers several interest-
ing directions for future work. First, while we focus on a single
GPU in this work, the server-based approach can be extended
to multi-GPU systems. One possible way is to create a GPU
server for each of the GPUs and allocating a subset of GPU-
using tasks to each server. Secondly, the server-based approach
can facilitate an efficient co-scheduling of GPU kernels. For
instance, the latest NVIDIA GPU architectures can schedule
multiple GPU kernels concurrently only if they belong to the
same address space [2], and the use of the GPU server satisfies
this requirement, just as MPS [25] does. Lastly, as the GPU
server has a central knowledge of all GPU requests, other
features like GPU fault tolerance and power management can
be developed. We plan to explore these topics in the future.
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