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Abstract

Bachelor of Engineering (Hons.) Computer Science

Predictable GPU Arbitration for Fixed-Priority Real-Time Systems

by Pratyush Patel

Modern cyber-physical systems, such as autonomous vehicles, are growing increasingly complex

and highly computation-intensive. This is because they must process sensor data from multiple

sources in addition to performing several computation algorithms on such data. While multi-core

platforms have satisfied this increasing need for computation capability to some extent, they

are proving to be insufficient for several modern applications. These challenges have motivated

hardware manufacturers to design accelerators such as GPUs and DSPs that can significantly

address the heavy computation requirements of specific types of tasks.

Another dimension to cyber-physical systems is the guarantee of safety, as they are closely

involved with human life and infrastructure. Often, safety is manifested as temporal correctness,

which involves performing actuation in a timely manner. While this topic has already been

explored to great detail in the context of uni-core processors, hardware accelerators have not

received much attention as their demand has only risen recently.

Motivated by the aforementioned requirements, that is, maintaining temporal correctness while

ensuring good performance, in this work, we explore how to make GPUs work in a predictable

manner to ensure safety in real-time cyber-physical systems. To this end, we investigate

the existing approaches to do so, identify their shortcomings, and propose a new, server-based

approach that offers predictable CPU-GPU execution, while still maintaining efficiency. Although

we focus solely on GPUs in this work, the same techniques can be also applied to other types of

hardware accelerators.

http://www.bits-pilani.ac.in/
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Chapter 1

Introduction

Real-time systems are characterized by logical and temporal correctness [41]. While logical

correctness is essential to most systems, temporal correctness is typical to systems that interact

with the physical world, i.e., cyber-physical systems, where computation is tightly integrated

with sensing and actuation at various levels. Common examples include safety-critical embedded

applications such as in autonomous vehicles, health care, air traffic control and military defense.

A violation of temporal correctness in these domains may therefore lead to compromising safety,

which may imply the loss of life and infrastructure. As a result, it is imperative that such systems

be designed and engineered for high timing predictability.

To ensure predictability, real-time systems are modeled using mathematical analysis to prove that

temporal correctness is maintained. While this may make the system predictable to some degree,

based how well the hardware and software components adhere to the analytical model, it is

restrictive because these models often over-estimate computation requirements and over-provision

resources significantly in order to guarantee timing requirements, which leads to lower system

utilization. As numerous real-time systems involve resource-constrained embedded devices,

insufficient utilization of available resources is a significant disadvantage.

To further complicate matters, modern cyber-physical systems often collect sensor data from

multiple sources and they may have to process each data source in order to perform proper

actuation. For instance, a self-driving car [22, 45] executes perception and motion planning

algorithms in addition to running tasks for data fusion from multiple sensors. Since these tasks

are computationally intensive, it becomes exceedingly difficult to satisfy their timing requirements

on CPU-only hardware platforms.

1



Chapter 1. Introduction 2

This problem of increasing processor demand has motivated hardware manufacturers to develop

computing devices with hardware accelerators such as Graphics Processing Units (GPUs), Digital

Signal Processors (DSPs), etc., for faster computation of specific types of tasks (such as perception

algorithms). Recent examples include embedded multi-core systems, such as the NXP i.MX6 [34]

and the NVIDIA TX1 and TX2 [33], which have an on-chip, general-purpose GPU that can

greatly help in addressing the timing challenges of computation intensive tasks by accelerating

their execution.

While new technologies in hardware acceleration can reduce CPU computation requirements,

using them in a predictable manner poses new challenges. Existing real-time system literature

primarily deals with single-core, and to some extent, multi-core CPU systems [28, 40, 29, 6],

which often assume complete control over the processor, including preemptive execution of

processes with specified priorities. However, operating systems, including real-time operating

systems [35, 27], typically treat hardware accelerators as I/O resources which introduces issues

such as resource contention from multiple processes, inflexible execution control (such as non-

preemptive execution and CPU busy-waiting during resource access), data-transfer delays, etc.,

which must all be considered while modeling such systems theoretically. Further, accelerators

such as GPUs are often arbitrated using closed-source vendor-provided drivers (e.g., by NVIDIA),

making it extremely difficult to support predictable behaviour.

Taking into consideration the aforementioned challenges, in this work, we explore and elaborate

the advantages and disadvantages of some of the existing techniques to support hardware

accelerators such as GPUs. To overcome the identified shortcomings, we then describe new

techniques to make GPU-based computing systems more predictable, yet efficient. Our techniques

provide a provable theoretical model to ensure predictability (under certain assumptions) and we

provide a proof-of-concept implementation backed with numerous experiments to demonstrate

improvements in efficiency over previous approaches. While we focus on a GPU throughout this

work, similar methods can also be applied to other accelerators such as DSPs and FPGAs.

1.1 Thesis Statement

Modern cyber-physical systems that use hardware accelerator resources such as GPUs can be

managed in an analytically predictable, and demonstrably efficient manner, by real-time scheduling
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using a server-based approach, which arbitrates resource requests by relinquishing the CPU during

resource access.

1.2 Contributions and Organization

In the following, we briefly describe our contributions and the organization of the subsequent

chapters of this document.

• In Chapter 2, we provide a brief overview of the existing work concerning real-time

systems, multi-processor scheduling, GPU mechanics, and the challenges faced in using

hardware accelerators such as GPUs in a time-predictable manner. We also review existing

methodologies to achieve predictable GPU access, and briefly describe their scope and

limitations.

• In Chapter 3, we begin by describing the system model on which our work is applicable, and

illustrate (with examples) the limitations of the existing state-of-the-art synchronization-

based scheme for GPU access. To overcome these limitations, we then propose our

server-based approach and provide a theoretical analysis to guarantee its predictability.

• In Chapter 4, we present an evaluation comparing the synchronization-based and the

server-based GPU arbitration mechanisms described in Chapter 3. In particular, we

present a practical implementation of both approaches and use it to evaluate a vision-based

embedded platform. We also measure practical overheads under both approaches. Finally,

we use parameters from our measurements to perform extensive schedulability experiments

to demonstrate the effectiveness of our server-based approach.

• In Chapter 5, we summarize our results and present directions for future work in this

domain.



Chapter 2

Background and Prior Work

In this chapter, we present the essential background to real-time scheduling that we build upon in

our work. Further, we provide an overview of the GPU execution model, programming interfaces,

and the challenges faced in using GPUs predictably on real-time systems. Finally, we describe

some existing approaches to make GPU access predictable.

2.1 Real-Time Scheduling

We begin by providing details as to how real-time systems can be modeled theoretically, and

define the metric to verify their temporal correctness, i.e. schedulability. Additionally, we

describe existing and relevant procedures to formally verify the schedulability of specific task

models.

2.1.1 Task Model

A real-time system reacts to repetitive internal or external events, whose occurrence is serviced

by a corresponding task denoted by τi. A collection of tasks executing on a system are grouped

into a task set: Γ = {τ1, τ2, · · · τn}. Each of these tasks release a job on the processor at run

time to handle each occurrence of their corresponding events. The characteristics of tasks

are captured theoretically using task models. While many task models have been studied in

real-time literature, we specifically consider the sporadic task model [30] throughout this work

as it is well-studied and provides as reasonably accurate view of practical tasks. This section

4
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describes the essentials of the standard sporadic task model which we later extend to incorporate

GPU-related task execution.

Under the sporadic task model, a task τi is characterized by the following parameters:

τi := (Ci, Ti, Di)

• Ci: the worst-case CPU execution time (WCET)1 of each job of task τi.

• Ti: the minimum inter-arrival time of each job of τi.

• Di: the relative deadline of each job of τi.

Further, tasks are also characterized by a derived parameter, utilization, given by Ui = Ci/Ti,

which indicates the extent to which a task utilizes the computing resources (we assume the

maximum possible utilization for a single computing unit is 1). The time constraint for each

task is specified by the deadline, Di. In order to satisfy its temporal requirements, a job of a

real-time task τi, released at time t, must complete before its absolute deadline, given by t+Di.

Next, we describe the schemes using which tasks are scheduled on computing resources in order

to meet deadline requirements.

2.1.2 Priority Assignment for Scheduling

In order to execute a task set on computing resources (such as uni-core or multi-core CPUs), we

assume that its component tasks are arbitrated using a scheduler. Similar to general-purpose

operating systems such as Linux, real-time operating systems also associate a notion of priority

to tasks to determine the order in which they should be scheduled. We denote the priority of

task τi by πi.

The nature of priority assignment has led to the creation of two broad categories [28] of real-time

scheduling, (i) Fixed-priority and (ii) Dynamic-priority scheduling. As the names suggest, task

and job priorities do not change under fixed-priority scheduling (except when locks are involved

1A challenging component of real-time modeling and analysis is the estimation of the worst-case execution
times of tasks, which is not trivial because tasks could potentially incur delays during their execution due to
various sources (such as hardware interrupts). One popular method used to estimate WCET is to repeatedly
execute the task on an otherwise idle platform and to then measure their response time for each iteration to
obtain the observed worst-case execution time. This is then pessimistically multiplied by an inflation factor to
account for unobserved delays. For most cases in practice, such a method provides sufficient WCET bounds, and
we use the same method in order to estimate WCET of tasks in this work.
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as discussed in Section 3.2.1), whereas dynamic-priority scheduling allows task and job priorities

to change based on the policy used. We limit ourselves to fixed-priority scheduling throughout

this document due to its ease of implementation and application in practical systems.

One method of priority assignment under fixed-priority scheduling is the Rate Monotonic (RM)

scheme [28], where task priorities are assigned inverse to their periods. That is, tasks with

shorter periods have a higher priority. This scheme is intuitive in the sense that a task with

a shorter period would be released more frequently, and hence expect to be processed sooner

(i.e., with a higher priority) than a task with a longer period. While other priority assignment

schemes are also possible under fixed-priority scheduling, it has been proved that RM is an

optimal prioritization scheme [28], making it lucrative for use in real-time systems.

Real-time scheduling was originally developed with uni-processors in mind [42, 16], and further

considerations had to be taken into account for a multi-processor setting [40, 1, 17]. As our focus

is on working with modern cyber-physical systems, which typically involve multi-core CPUs and

hardware accelerators, in the next section, we provide background for multi-processor scheduling

on real-time systems, and subsequently define schedulability, the metric which characterizes

temporal constraints in real-time systems.

2.1.3 Preemptive Multi-Processor Fixed-Priority Task Scheduling

On a multi-processor2, which we deal with throughout this work, fixed-priority scheduling

can be further classified into two categories3: (i) Global and (ii) Partitioned. Under global

scheduling, tasks may migrate across processors if they have a higher priority by preempting

already executing lower-priority tasks or if there is an idle processor available. Under partitioned

scheduling, tasks are pinned to specific processor cores and may not migrate even if other cores

are idle.

While it may seem intuitive to always prefer global scheduling due to higher utilization benefits,

previous work has shown that partitioned scheduling is much easier to analyze and can be used

for most practical cases instead [9] because it effectively boils down to the uni-processor case

for each core, allowing a large body of existing analyses to be applicable. On the contrary,

2Most modern processors and operating systems provide preemption support on CPUs, that is, higher-priority
tasks can preempt lower-priority tasks during their execution. Throughout this work, we assume a preemptive
execution model for CPUs.

3A third, hybrid category, known as clustered scheduling is also possible, which partitions processors into
smaller clusters of processors that internally perform global scheduling.
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while global scheduling offers fast average-case response times, it is relatively harder to analyze,

has high overheads in practice [8, 3], and the worst-case performance remains comparable to

partitioned scheduling, which makes it less lucrative for real-time systems. As a result, we

primarily focus on partitioned fixed-priority task scheduling in our work.

An important consideration under partitioned scheduling is the manner in which tasks are

partitioned across multiple computing resources. As this is proved to be a NP-hard problem,

existing real-time literature suggests the use of heuristics such as first-fit decreasing, best-fit

decreasing and worst-fit decreasing [1, 17] to allocate tasks on processor cores. Details of the

effectiveness of various partitioning schemes with hardware accelerators is beyond the scope

of this work, and we assume that the partitioning decisions are already made by the system

designer, and we evaluate the resulting configuration for resource-aware scheduling, which is our

primary focus.

2.1.4 Schedulability

A task set is considered schedulable under a scheduling scheme if all its component tasks

meet their timing constraints using that scheme. This is typically determined by performing

a schedulability test. Various methods such as utilization-based tests, integer linear programs

(ILPs), etc., may be used to determine schedulability, but in this work we focus on schedulability

tests based on response time analysis. Under response time analysis, the worst-case response

time Wi, which is the amount of time that any job of a task takes to complete among all possible

task activations (within the given task set), is computed analytically for each task and compared

with the corresponding task deadline. If the worst-case response time of any task in the task

set is greater than its deadline, then the task set is said to be unschedulable. If the worst-case

response times of all tasks are lower than their corresponding deadlines, then the task set is

considered schedulable.

For fixed-priority scheduling on uni-processors, Liu and Layland [28] proposed the first version of

the response time analysis. We build upon this in our work to further incorporate GPU related

execution. Based on the analysis proposed in [28], the worst-case response time of a task τi is

given by the following fixed-point iteration4.

4Note that the computing system is assumed to solely execute the tasks in the task set and the analysis does
not explicitly take into account any additional interference sources such as interrupts, OS processing, etc. In
our discussion throughout this work, we assume that such interference sources are either not accounted for, or
included in the estimated WCET of each task.
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Wn+1
i = Ci +

∑
πh>πi

⌈
Wn
i

Th

⌉
Ch (2.1)

where W 0
i = Ci. The fixed-point iteration terminates when Wn+1

i = Wn
i , or when the deadline

is missed with Wn
i > Di. The first term in the equation represents the time it takes for the task

to execute on its own, and the second term captures the worst-case interference possible from all

higher-priority tasks preempting the execution of the currently analyzed task. The task is said

to meet its temporal requirements if Wi ≤ Di. If this condition holds for all tasks in the task set

(i.e., for i ∈ [1, n]), then the task set is considered schedulable.

As multi-processor scheduling analysis is reduced to uni-processor scheduling (of each core) when

dealing with partitioned scheduling (assuming no inter-task dependencies such as locks), the

same analysis as Eq.( (2.1)) can be applied, and the worst-case response time of a task τi under

partitioned multi-processor fixed-priority scheduling is given by

Wn+1
i = Ci +

∑
τh∈P(τi)∧πh>πi

⌈
Wn
i

Th

⌉
Ch (2.2)

where P(τi) indicates the processor on which τi is scheduled. The same termination and

schedulability conditions as the uni-processor case apply here as well.

2.2 GPU Fundamentals

GPUs are specialized, programmable processors that are typically used for graphics processing,

and more recently, have been used for general-purpose computing5. The key advantage of GPUs

as opposed to CPUs is their ability to efficiently perform parallel operations on multiple sets of

data, which is highly relevant for image processing, neural networks and several other domains.

However, for execution, GPUs are dependent on CPUs in the sense that they must be activated

by the CPUs in order to perform useful operations. In this section, we cover the basics about

the functioning of GPUs in order to analytically model them for our work.
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GPU

CPU

Normal exec.
segment

Normal exec.
segment

GPU access segment

� Copy data

to GPU

� Trigger GPU computation � Copy results  

to CPU

GPU kernel execution

� Notify completion

Figure 2.1: Execution pattern of a task accessing a GPU

2.2.1 GPU Execution Model

Tasks using the GPU are required to copy the input data and code to the GPU to initiate GPU

execution, and are later expected to copy output data after GPU completion. The execution

time of a task using a GPU is decomposed into normal execution segments and GPU access

segments. Normal execution segments run entirely on CPU cores and GPU access segments

involve GPU operations. Figure 2.1 depicts an example of a task having a single GPU access

segment. In the GPU access segment, the task first copies data needed for GPU computation,

from CPU memory to GPU memory (Step 1© in Figure 2.1). This is typically done using Direct

Memory Access (DMA), which requires no (or minimal) CPU intervention. Then, the task

triggers the actual GPU computation, also referred to as GPU kernel execution, and waits for the

GPU computation to finish (Step 2©). The task is notified when the GPU computation finishes

(Step 3©), and it copies the results back from the GPU to the CPU (Step 4©). Finally, the task

continues its normal execution segment. Note that during the time when CPU intervention

is not required, e.g., during data copies with DMA and GPU kernel execution, the task may

suspend or busy-wait on the CPU, depending on the implementation of the GPU device driver

and the configuration used.

2.2.2 Synchronous and Asynchronous GPU Access.

The example in Figure 2.1 uses synchronous mode for GPU access, where each GPU command,

such as memory copy and GPU kernel execution, can be issued only after the prior GPU

command has finished. However, many GPU programming interfaces, such as CUDA [31] and

5GPUs being used for general-purpose computing are specifically called GP-GPUs, but we refer to them as
GPUs as well.
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OpenCL [36], also provide asynchronous mode, which allows a task to overlap CPU and GPU

computations. For example, if a task sends all GPU commands in asynchronous mode at the

beginning of the GPU access segment, then it can either perform other CPU operations during

the execution of the same GPU access segment or simply wait until all the GPU commands

complete. Hence, while the sequence of GPU access remains the same, the use of asynchronous

mode can affect the amount of active CPU time in a GPU access segment. Our work is applicable

to both, synchronous and asynchronous modes of GPU execution.

2.3 Challenges in Real-Time GPU Computing

As described in the previous section, GPUs can be extremely useful to perform specific types of

operations that require a high degree of parallelism. However, using them in predictable manner

brings up some key challenges, which we describe below.

• Lack of Preemption Support: Many of the commercial-off-the-shelf (COTS) GPUs do

not support a preemption mechanism, which is usually (although not always) assumed in

real-time literature [28]. This means GPU access requests from application tasks can only

be handled in a sequential, non-preemptive manner. Although recent research [43, 10] has

explored the possibility of preemption on GPUs, these methods typically offer significantly

higher preemption latency compared to CPUs, making it impractical for use in practice.

New architectures such as NVIDIA Pascal [32] also claim to offer GPU preemption, but

we have found no documentation available regarding its explicit behaviour6.

• Closed-Source GPU Drivers: COTS GPU device drivers do not respect task priorities

and the scheduling policies used in the system. Hence, in the worst case, the GPU access

request of the highest-priority task may be delayed by requests of all lower-priority tasks

in the system, which could be detrimental to real-time performance and cause the problem

of unbounded priority inversion [39, 38]. While using open-source device drivers may be a

solution, these drivers are inferior compared to their proprietary/closed-source counterparts,

making them less lucrative to be used in actual systems.

• Resource Contention During Co-Scheduling: GPUs are usually shared among mul-

tiple tasks, all of which may access the GPU arbitrarily. When a task issues and executes a

6At the time of writing this document.
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GPU request while another task is already using the GPU, these GPU executions are called

co-scheduled. Co-scheduling of GPU requests may be problematic again as the manner in

which tasks are executed by the device driver is unknown due to it being closed source.

Often, the GPU hardware also has its own policy by which it arbitrates GPU requests and

this is not disclosed by the hardware manufacturers.

2.4 Prior Work on Predictable GPU Access

The aforementioned issues have motivated the development of predictable GPU management

techniques to ensure task timing constraints are met, while achieving a reasonable performance

improvement [13, 15, 12, 20, 21, 23, 46]. We briefly describe the methodologies employed by

prior work and their scope in this section.

2.4.1 Schedulability-Unaware Approaches

TimeGraph [21] is a real-time GPU scheduler that schedules GPU access requests from tasks

with respect to task priorities. This is done by modifying an open-source GPU device driver and

monitoring GPU commands at the driver level. TimeGraph also provides a resource reservation

mechanism that accounts for and enforces the GPU usage of each task, with posterior and

apriori budget enforcement techniques. RGEM [20] allows splitting a long data-copy operation

(to or from the GPU) into smaller chunks, reducing blocking time on data-copy operations.

Gdev [19] provides common APIs to both, user-level tasks and the OS kernel, to use a GPU as a

standard computing resource similar to a CPU. GPES [46] is a software technique to break a

long GPU execution segment into smaller sub-segments, allowing preemptions at the boundaries

of sub-segments.

While all these techniques can mitigate some limitations of todays GPU hardware and device

drivers, they do not consider the analytical schedulability of tasks using the GPU. In other

words, they handle GPU requests from tasks in a priority-aware and predictable manner, but do

not formally analyze the worst-case timing behavior of tasks on the CPU, which is addressed in

our work.
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2.4.2 Schedulability-Aware Approaches

Elliott et al. [13, 15, 12] modeled GPUs as mutually-exclusive resources and proposed the

use of real-time synchronization protocols such as FMLP [5] and R2DGLP [44] for accessing

GPUs in an isolated manner, while still using efficient, closed-source device drivers. Isolated

execution can mitigate the aforementioned issues with regard to unpredictable behaviour during

co-scheduling. Based on these ideas, Elliott et al. developed GPUSync [15], a software framework

for multi-GPU management in multi-core real-time systems. GPUSync supports both fixed- and

dynamic-priority scheduling policies, and provides various features such as budget enforcement

(similar to TimeGraph), multi-GPU support, and clustered scheduling. It uses separate locks

for copy and execution engines of GPUs to enable overlapping of GPU data transmission and

computation. An important distinction is that GPUSync is a highly complicated software

solution (about 20,000 lines of code), as it modifies the operating system to include various

synchronization protocols. We instead develop a simpler mechanism that can be effectively

used even in resource-constrained embedded cyber-physical systems. Further advantages and

disadvantages of the synchronization-based approach in general will be thoroughly discussed in

Section 3.2.

2.5 Prior Work on Self-Suspension Analysis

A task performing GPU computation need not necessarily continue to execute on the CPU (i.e.,

it can self-suspend during GPU execution), and as a result, we also explore existing literature

to incorporate self-suspensions [2, 4, 11, 23]. Kim et al. [23] proposed segment-fixed priority

scheduling, which assigns different priorities and phase offsets to each segment of tasks. They

developed several heuristics for priority and offset assignment because finding the optimal

solution for a given assignment is NP-hard in the strong sense. Chen et al. [11] reported errors

in existing self-suspension analyses and presented corrections for these errors. In our work, build

upon results from [4, 11] to incorporate the effect of self-suspension during GPU execution in

task schedulability. These analytical approaches are integrated into a server-based resource

arbitration mechanism, similar to the alternate synchronization implementation proposed in [39],

which we describe in detail in Section 3.3.



Chapter 3

A Server-Based Approach for

Predictable GPU Arbitration

In this chapter, we review the existing synchronization-based approach [13, 15, 12] and charac-

terize the limitations of using a real-time synchronization protocol for tasks accessing a GPU

on a multi-core platform. Next, to overcome these problems, we describe a new, server-based

approach that permits efficient and predictable GPU access.

3.1 System Model and Scheduling Assumptions

We first describe the hardware configuration and task model based on which our solution is built,

and followed by the assumptions that we make, which are applicable throughout this work.

3.1.1 Hardware Model

The hardware platform we consider is a multi-core system equipped with a single general-purpose

GPU device.1 This GPU is shared among multiple tasks, and GPU requests from tasks are

Note: This work is largely based on our conference paper which is under peer review at the 23rd IEEE
International Conference on Embedded and Real-Time Computing Systems and Applications, 2017.

1This assumption reflects today’s GPU-enabled embedded processors, e.g., NXP i.MX6 [34] and NVIDIA
TX1/TX2 [33]. A multi-GPU platform would be used for future real-time embedded and cyber-physical systems,
but extending our work to handle multiple GPUs remains as future work.

13
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handled in a sequential, non-preemptive manner. The GPU has its own memory region, which

is assumed to be sufficient enough for the tasks under consideration. We do not assume the

concurrent execution of GPU requests from different tasks, called GPU co-scheduling, because

recent work [37] reports that “co-scheduled GPU programs from different programs are not truly

concurrent, but are multiprogrammed instead” and “this (co-scheduling) may lead to slower or

less predictable total times in individual programs”.

3.1.2 Task Model

We consider sporadic tasks with constrained deadlines (Di ≤ Ti), and extend the sporadic task

model described in Section 2.1.1 to incorporate GPU execution. Under our GPU-aware sporadic

model, a task τi is characterized by

• Ci: the sum of the worst-case execution time (WCET) of all normal execution segments of

task τi.

• Ti: the minimum inter-arrival time of each job of τi.

• Di: the relative deadline of each job of τi (Di ≤ Ti).

• Gi: the maximum accumulated length of the GPU access segments of τi.

• ηi: the number of GPU access segments in each job of τi.

The total utilization of a task τi is defined as Ui = (Ci +Gi)/Ti. The CPU and GPU utilizations

of are given by U cpui = Ci/Ti and Ugpui = Gi/Ti, respectively.

As the task model indicates, a task using a GPU can have one or more GPU access segments. We

use Gi,j to denote the maximum length of the j-th GPU access segment of τi, i.e., Gi =
∑ηi

j=1Gi,j .

Parameter Gi,j can be decomposed as follows:

Gi,j := (Gei,j , G
m
i,j)

• Gei,j : the WCET of pure GPU operations that do not require CPU intervention in the j-th

GPU access segment of τi.

• Gmi,j : the WCET of miscellaneous operations that require CPU intervention in the j-th

GPU access segment of τi.
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Gei,j includes the time for GPU kernel execution, and Gmi,j includes the time for copying data,

issuing the kernel execution, notifying the completion of GPU commands, and executing other

CPU operations. The cost of self-suspension during CPU-inactive time in a GPU segment

is assumed to be taken into account by Gmi,j . If data is copied to or from the GPU by using

DMA, only the time for issuing the copy command is included in Gmi,j ; the time for actual data

transmission by DMA can be modeled as part of Gei,j as it does not require CPU intervention.

3.1.3 Scheduling Scheme

We focus on partitioned, fixed-priority, preemptive task scheduling. Thus, each task is statically

assigned to a single CPU core. Any fixed-priority assignment, such as Rate-Monotonic [28], can

be used for tasks, but we assume that all tasks priorities are unique (ties are broken arbitrarily).

3.2 Limitations of Synchronization-Based GPU Arbitration

In this section, we provide details regarding the synchronization-based GPU arbitration mecha-

nism mentioned in section 2.4.2, and explain two important shortcomings of using this approach,

namely, busy-waiting and long priority-inversions.

3.2.1 Overview

The synchronization-based approach models the GPU as a mutually-exclusive resource and

the GPU access segments of tasks as critical sections. A single mutex is used for protecting

such GPU critical sections. Hence, under the synchronization-based approach, a task holds the

mutex to enter its GPU access segment and it releases the mutex when it leaves the GPU access

segment. A task can only enter its GPU access segment when the mutex is not held by any other

task. If it is indeed already held by another task, the task is inserted into the waiting list of tasks

associated with that mutex till it can be granted access to the resource. Some implementations

like GPUSync [15] use separate locks for internal resources of the GPU, e.g., copy and execution

engines, to achieve parallelism in GPU access, but we make use of a single lock for the entire

GPU for simplicity.

Locks under the real-time domain must be governed by real-time locking protocols to prevent

the problem of unbounded priority inversions [39], because conventional operating system locks
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may cause higher-priority tasks to wait on the completion of lock-holding lower-priority tasks

for an unbounded amount of time [38], which is highly undesirable for scheduling. Among a

variety of real-time synchronization protocols, we consider the Multiprocessor Priority Ceiling

Protocol (MPCP) [38, 39] as a representative2, because it can be implemented with relative ease

for partitioned fixed-priority schedulers and has been widely understood in the literature. We

shall briefly review the definition of MPCP below. More details on MPCP can be found in [25,

38, 39].

1. When a task τi requests access to a resource Rk, it can be granted to τi if it is not held by

another task.

2. While a task τi is holding a resource that is shared among tasks assigned to different cores,

the priority of τi is raised to πB + πi, where πB is a base task-priority level greater than

that of any task in the system, and πi is the normal priority of τi. This priority boosting

under MPCP is referred to as the global priority ceiling of τi.

3. When a task τi requests access to a resource Rk that is already held by another task, the

task τi is inserted to the waiting list of the mutex for Rk.

4. When a resource Rk is released and the waiting list of the mutex for Rk is not empty, the

highest-priority task in the waiting list is dequeued and granted Rk.

3.2.2 Schedulability Analysis

In this subsection, we review the existing task schedulability analysis under the synchronization-

based approach with MPCP tailored to the GPU scenario. The analysis described here was

originally developed by Lakshmanan et al. [24], with some corrections by Chen et al. [11].

The worst-case response time of a task τi under the synchronization-based approach with MPCP

is given by the following recurrence equation:

Wn+1
i =Ci +Gi +Br

i +
∑

τh∈P(τi)∧πh>πi

⌈
Wn
i +{Wh−(Ch +Gh)}

Th

⌉
(Ch +Gh)

+ (ηi + 1)

( ∑
τl∈P(τi)∧πl<πi∧ηl>0

max
1≤u≤ηl

Gl,u

) (3.1)

2GPUSync uses a combination of the R2DGLP and FMLP protocols, as mentioned in Section 2.4.2, but these
use Integer Linear Programs (ILPs) for analysis which make them complicated for discussion.
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where Br
i is the remote blocking time for τi, P(τi) is the CPU core where τi is allocated and πi is

the priority of τi. It terminates when Wn+1
i = Wn

i , and the task τi is schedulable if its response

time does not exceed its deadline, i.e., Wn
i ≤ Di. Since the task τi has to busy-wait during its

GPU access, the entire GPU access segment, Gi, is captured as the CPU usage of τi, along with

its WCET Ci.

In the above equation, the blocking term (Br
i ) indicates the maximum amount of time a request-

issuing task has to wait for the GPU to be released by other tasks accessing the GPU. The fourth

(ceiling) term captures the execution interference due to higher-priority tasks similar to Eq. (2.2),

but this has an additional (Wh− (Ch + Gh)) term to take into account the self-suspension

behaviour of these tasks [11]. The last term indicates the preemptions caused due to priority

boosting of critical sections of lower-priority, GPU-using tasks, on the same core as the analyzed

task.

The remote blocking time Br
i is given by Br

i =
∑

1≤j≤ηi B
r
i,j , where Br

i,j is the remote blocking

time for the j-th GPU access segment of τi to acquire the GPU. The term Br
i,j is bounded by

the following recurrence:

Br,n+1
i,j = max

πl<πi∧1≤u≤ηl
W gpu
l,u +

∑
πh>πi∧1≤u≤ηh

(⌈
Br,n
i,j

Th

⌉
+ 1

)
W gpu
h,u (3.2)

where Br,0
i,j = maxπl<πi∧1≤u≤ηl W

gpu
l,u (the first term of the equation), and W gpu

l,u represents the

worst-case response time of a GPU access segment Gl,u. The first term of Eq. (3.2) captures the

time for a lower-priority task to finish its GPU access segment. The second term represents the

time taken to process the GPU access segments of higher-priority tasks.

The worst-case response time of a GPU access segment Gl,u, namely W gpu
l,u , is given by:

W gpu
l,u = Gl,u +

∑
τx∈P(τl)

max
1≤y≤ηx∧πx>πl

Gx,y (3.3)

This equation captures the length of Gl,u and the lengths of GPU access segments of higher-

priority tasks on the same core. It considers only one GPU access segment from each task,

because every GPU access segment is associated with a global priority ceiling and Gl,u will never

be preempted by normal execution segments.
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Figure 3.1: Example schedule of GPU-using tasks under the synchronization-based approach
with MPCP

3.2.3 Limitations

As described in Section 2.2.1, each GPU access segment contains various operations, including

data copies, notifications, and GPU computation. Specifically, a task may suspend when CPU

intervention is not required, e.g., GPU kernel execution, to save CPU cycles. However, under the

synchronization-based MPCP approach, any task in its GPU access segment should “busy-wait”

for any operation conducted on the GPU in order to ensure timing predictability. This is because

real-time synchronization protocols and their analyses, such as MPCP [39], FMLP [5], and

OMLP [7], commonly assume that (i) a critical section is executed entirely on the CPU, and

(ii) there is no suspension during the execution of the critical section. Hence, during its GPU

kernel execution, the task is not allowed to suspend even when no CPU intervention is required.3

As the time for GPU kernel execution and data transmission by DMA increases, the CPU time

loss under the synchronization-based approach is therefore expected to increase. The analyses of

those protocols could possibly be modified to allow suspension within critical sections at the

expense of increased pessimism.

3The GPUSync implementation [15] can be configured to suspend instead of busy-wait during the GPU kernel
execution, but it uses suspension oblivious analysis, and this does not take into account the effect of self-suspension
within critical sections.
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Some synchronization protocols, such as MPCP [39] and FMLP [5], use priority boosting as

a progress mechanism to prevent unbounded priority inversion. However, the use of priority

boosting could cause another problem we call “long priority inversion”. We describe this problem

with the example illustrated in Figure 3.1. There are three tasks, τh, τm, and τl, that have

high, medium, and low priorities, respectively. Each task has one GPU access segment that is

executed between two normal execution segments. Tasks τh and τm are allocated to Core 1, and

τl is allocated to Core 2.

Task τl is released at time 0 and makes a GPU request at time 1. Since there is no other task

using the GPU at that point, τl acquires the mutex for the GPU and enters its GPU access

segment. τl then executes with the global priority ceiling associated with the mutex. Note that

while the GPU kernel of τl is executed, τl also consumes CPU cycles due to the busy-waiting

requirement of the synchronization-based approach. Tasks τm and τh are released at time 2 and

3, respectively. They make GPU requests at time 3 and 4, but the GPU cannot be granted to

either of them because it is already held by τl. At time 5, τl releases the GPU mutex and τh

acquires the GPU mutex next because it has higher priority than τm. At time 8, τh finishes

its GPU access segment and releases the mutex. Next, the task τm acquires the GPU mutex

and enters its GPU access segment with its global priority ceiling. This makes τm preempt the

normal execution segment of τh. Hence, although the majority of τm’s GPU access segment

merely performs busy-waiting, the execution of the normal segment of τh is delayed until the

GPU access segment of τm finishes. Finally, τh completes its normal execution segment at time

12, making the response time of τh 9 in this example.

3.3 Server-based GPU Arbitration

In order to overcome the aforementioned limitations of the synchronization-based approach, we

present our server-based mechanism for predictable GPU access control in this section.

3.3.1 GPU Server Execution Model

Our server-based approach creates a GPU server task that handles GPU access requests from

other tasks on their behalf. The GPU server is assigned the highest priority in the system, which

is to prevent preemptions by other tasks. Figure 3.2 shows the sequence of GPU request handling

under our server-based approach. First, when a task τi enters its GPU access segment, it makes
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Figure 3.2: GPU access procedure under our server-based approach

a GPU access request to the GPU server, not to the GPU device driver. The request is made by

sending the memory region information for the GPU access segment, including input/output

data, commands and code for GPU kernel execution to the server task. This requires the memory

regions to be configured as shared regions so that the GPU server can access them with their

identifiers, e.g., shmid. After sending the request to the server, the task τi suspends, allowing

other tasks to execute. Second, the server enqueues the received request into the GPU request

queue, if the GPU is being used by another request. The GPU request queue is a priority queue,

where elements are ordered in their task priorities. Third, once the GPU becomes free, the

server dequeues a request from the head of the queue and executes the corresponding GPU

access segment. During CPU-inactive time intervals, e.g., data copy with DMA and GPU kernel

execution, the server also suspends to save CPU cycles. Finally, when the request finishes, the

server notifies the completion of the request and wakes up the task τi. Finally, τi resumes its

execution.

The use of the GPU server task inevitably introduces the following additional computational

costs: (i) sending a GPU request to the server and waking up the server task, (ii) enqueueing

the request and checking the request queue to find the highest-priority GPU request, and

(iii) notifying the completion of the request to the corresponding task. We use the term ε to

characterize the GPU server overhead that upper-bounds these computational costs.

Figure 3.3 shows an example of task scheduling under our server-based approach. This example

has the same configuration as the one in Figure 3.1. The GPU server, which the server-based

approach creates, is allocated to Core 1. The GPU server overhead ε is assumed to be 1/6 time
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Figure 3.3: Example schedule under our server-based approach

units. Each GPU access segment has two sub-segments of miscellaneous operations, each of

which is assumed to amount to ε.

At time 1, the task τl makes a GPU access request to the server task. The server receives the

request and executes the corresponding GPU access segment at time 1+ ε. Since the server-based

approach does not require tasks to busy-wait, τl suspends until the completion of its GPU

request. The GPU request of τm at time 3 is enqueued into the request queue of the server.

As the server executes with the highest priority in the system, it delays the execution of τh

released at time 3 by ε. Hence, τh starts execution at time 3 + ε and makes a GPU request

at time 4 + ε. When the GPU access segment of τl completes, the server task is notified. The

server then notifies the completion of the GPU request to τl and wakes it up, and subsequently

executes the GPU access segment of τh at time 5 + 2ε. The task τh suspends until its GPU

request finishes. The GPU access segment of τh finishes at time 8 + 2ε and that of τm starts

at time 8 + 3ε. Unlike the case under the synchronization-based approach, τh can continue to

execute its normal execution segment from time 8 + 3ε, because τm suspends and the priority of

τm is not boosted. The task τh finishes its normal execution segment at time 9 + 4ε, and hence,
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the response time of τh is 6 + 4ε. Recall that the response time of τh is 9 for the same task set

under the synchronization-based approach, as shown in Figure 3.1. Therefore, we can conclude

that the server-based approach provides a shorter response time than the synchronization-based

approach for this example task set, if the value of ε is under 3/4 time units, which, as measured

in Section 4.1, is a very pessimistic value for ε.

3.3.2 Schedulability Analysis

We formally analyze task schedulability under our server-based approach. Since all the GPU

requests of tasks are handled by the GPU server, we first identify the GPU request handling

time for the server. The following properties hold for the server-based approach:

Lemma 3.1. The GPU server task imposes up to 2ε of extra CPU time on each GPU request.

Proof. As the GPU server task intervenes before and after the execution of each GPU access

segment, each GPU request is expected to cause at most 2ε of overhead in the worst case. Note

that the cost of issuing the GPU request as well as self-suspension is already taken into account

by Gmi,j , as described in Section 3.1. �

Lemma 3.2. The maximum waiting time for the j-th GPU segment of a task τi under the

server-based approach is bounded by the following recurrence relation:

Bw,n+1
i,j = max

πl<πi∧1≤u≤ηl
(Gl,u + ε) +

∑
πh>πi∧1≤u≤ηh

(⌈
Bw,n
i,j

Th

⌉
+ 1

)
(Gh,u + ε) (3.4)

where Bw,0
i,j = maxπl<πi∧1≤u≤ηl(Gl,u + ε) (the first term of the equation).

Proof. When τi, the task under analysis, makes a GPU request, the GPU may already be

handling a request from a lower-priority task. As the GPU executes in a non-preemptive manner,

τi must wait for the completion of the lower-priority GPU request, and as a result, the longest

GPU access segment from all lower-priority tasks needs to be considered as the waiting time in

the worst case. Here, only one ε of overhead is caused by the GPU server because other GPU

requests will be immediately followed and the GPU server needs to be invoked only once between

two consecutive GPU requests, as depicted in Figure 3.3. This is captured by the first term of

the equation.
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During the waiting time of Bw
i,j , higher-priority tasks can make GPU requests to the server. As

there can be at most one carry-in request from each higher-priority task τh during Bw
i,j , the

maximum number of GPU requests made by τh is bounded by
∑ηh

u=1(dBw
i,j/The+ 1). Multiplying

each element of this summation by Gh,u + ε gives the maximum waiting time caused by the

GPU requests of τh, which is exactly used as the second term of the equation. �

Lemma 3.3. The maximum handling time of all GPU requests of a task τi by the GPU server

is given by:

Bgpu
i =

 Bw
i +Gi + 2ηiε : ηi > 0

0 : ηi = 0
(3.5)

where Bw
i is the sum of the maximum waiting time for each GPU access segment of τi, i.e.,

Bw
i =

∑
1≤j≤ηi B

w
i,j.

Proof. If ηi > 0, the j-th GPU request of τi is handled after Bw
i,j of waiting time, and takes

Gi,j + 2ε to complete (by Lemma 3.1). Hence, the maximum handling time of all GPU requests

of τi is
∑ηi

j=1(B
w
i,j +Gi,j + 2ε) = Bw

i +Gi + 2ηiε. If ηi = 0, Bgpu
i is obviously zero. �

The response time of a task τi is affected by the presence of the GPU server on τi’s core. If τi is

allocated on a different core than the GPU server, the worst-case response time of τi under the

server-based approach is given by:

Wn+1
i =Ci +Bgpu

i +
∑

τh∈P(τi)∧πh>πi

⌈Wn
i +(Wh−Ch)

Th

⌉
Ch (3.6)

where P(τi) is the CPU core on which τi is allocated. The recurrence computation terminates

when Wn+1
i = Wn

i , and τi is schedulable if Wn
i ≤ Di. It is worth noting that, as captured in

the third term, the GPU access segments of higher-priority tasks do not cause interference to τi

because they are executed by the GPU server that runs on a different core.

If τi is allocated on the same core as the GPU server, the worst-case response time of τi is given

by:

Wn+1
i =Ci +Bgpu

i +
∑

τh∈P(τi)∧πh>πi

⌈Wn
i +(Wh−Ch)

Th

⌉
Ch

+
∑

τj 6=τi∧ηj>0

⌈Wn
i +{Dj−(Gmj + 2ηjε)}

Tj

⌉
(Gmj + 2ηjε)

(3.7)
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where Gmj is the sum of the WCETs of miscellaneous operations in τi’s GPU access segments,

i.e., Gmj =
∑ηj

k=1G
m
j,k.

Under the server-based approach, both, the GPU-using tasks, as well as the GPU server task,

can self-suspend. Hence, we use the following lemma to prove Eqs. (3.6) and (3.7):

Lemma 3.4 (from [4]). The worst-case response time of a self-suspending task τi is upper-bounded

by:

Wn+1
i = Ci +

∑
τh∈P(τi)∧πh>πi

⌈Wn
i + (Wh − Ch)

Th

⌉
Ch (3.8)

Note that Dh can be used instead of Wh in the summation term of Eq. (3.8) [11].

Theorem 3.5. The worst-case response time of a task τi under the server-based approach is

given by Eqs. (3.6) and (3.7).

Proof. To account for the maximum GPU request handling time of τi, B
gpu
i is added in both

Eqs. (3.6) and (3.7). In the ceiling function of the third term of both equations, (Wh − Ch)

accounts for the self-suspending effect of higher-priority GPU-using tasks (by Lemma 3.4). With

these, Eq.(3.6) upper bounds the worst-case response time of τi when it is allocated on a different

core than the GPU server.

The main difference between Eq. (3.7) and Eq. (3.6) is the last term, which captures the worst-

case interference from the GPU server task. The execution time of the GPU server task is

bounded by summing up the worst-case miscellaneous operations and the server overhead caused

by GPU requests from all other tasks (Gmj + 2ηjε). Since the GPU server self-suspends during

CPU-inactive time intervals, adding {Dj−(Gmj + 2ηjε)} to Wn
i in the ceiling function captures

the worst-case self-suspending effect (by Lemma 3.4). These factors are exactly captured by the

last term of Eq. (3.7), and hence, it upper bounds task response time in the presence of the

GPU server. �



Chapter 4

Evaluation

In this section, we provide our experimental evaluation of the two different approaches for

GPU access control. We first present details about our implementation and describe case study

results on a real embedded platform. Next, we explore the impact of these approaches on

task schedulability with randomly-generated task sets, by using parameters based on practical

overheads measured from our implementation.

4.1 Implementation

We implemented prototypes of the synchronization-based and the server-based approaches on a

SABRE Lite board [18]. The board is equipped with an NXP i.MX6 Quad SoC that has four

ARM Cortex-A9 cores and one Vivante GC2000 GPU. We ran an NXP Embedded Linux kernel

version 3.14.52 patched with Linux/RK [35] version 1.61, and used the Vivante v5.0.11p7.4 GPU

driver along with OpenCL 1.1 (Embedded Profile) for general-purpose GPU programming. We

also configured each core to run at its maximum frequency of 1 GHz.

Linux/RK provides a kernel-level implementation of MPCP which we used to implement the

synchronization-based approach. Under our implementation, each GPU-using task first acquires

an MPCP-based lock, issues memory copy and GPU kernel execution requests in an asynchronous

manner, and uses OpenCL events to busy-wait on the CPU till the GPU operation completes,

before finally releasing the lock.

1Linux/RK is available at http://rtml.ece.cmu.edu/redmine/projects/rk/.

25
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To implement the server-based approach, we set up shared memory regions between the server task

and each GPU-using task, which are used to share GPU input/output data. POSIX signals are

used by the GPU-using tasks and the server to notify GPU requests and completions, respectively.

The server has an initialization phase, during which, it initializes shared memory regions and

obtains GPU kernels from the GPU binaries (or source code) of each task. Subsequently, the

server uses these GPU kernels whenever the corresponding task issues a GPU request. As

the GPU driver allows suspensions during GPU requests, the server task issues memory copy

and GPU kernel execution requests in an asynchronous manner, and suspends by calling the

clFinish() API function provided by OpenCL.

4.1.1 GPU Driver and Task-Specific Threads

The OpenCL implementation on the i.MX6 platform spawns user-level threads in order to handle

GPU requests and to notify completions. Under the synchronization-based approach, OpenCL

spawns multiple such threads for each GPU-using task, whereas under the server-based approach,

such threads are spawned only for the server task. To eliminate possible scheduling interference,

the GPU driver process, as well as the spawned OpenCL threads, are configured to run at the

highest real-time priority in all our experiments.

4.2 Practical Evaluation

4.2.1 Overheads

We measured the practical worst-case overheads for both the approaches in order to perform

realistic schedulability analysis. Each worst-case overhead measurement involved examining

100,000 readings of the respective operations measured on the i.MX6 platform. Figure 4.1 shows

the mean and 99.9th percentile of the MPCP lock operations and Figure 4.2 shows the same for

server related overheads.

Under the synchronization-based approach with MPCP, overhead occurs while acquiring and

releasing the GPU lock. Under the server-based approach, overheads involve waking up the

server task, performing priority queue operations (i.e., server execution delay), and notifying

completion to wake up the GPU-using task after finishing GPU computation.
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Figure 4.1: MPCP lock overhead
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Figure 4.2: Server task overheads

Task τi Task name Ci (in ms) ηi Gi (in ms) Ti = Di (in ms) CPU Core Priority

τ1 workzone 20 2 G1,1 = 95, G1,2 = 47 300 0 70

τ2 cpu matmul1 215 0 0 750 0 67

τ3 cpu matmul2 102 0 0 300 1 69

τ4 gpu matmul1 0.15 1 G4,1 = 19 600 1 68

τ5 gpu matmul2 0.15 1 G5,1 = 38 1000 1 66

Table 4.1: Tasks used in the case study

To safely take into consideration the worst-case overheads, we use the 99.9th percentile measure-

ments for each source of delay in our experiments. This amounts to a total of 14.0 µs lock-related

delay under the synchronization-based approach, and a total of 44.97 µs delay for the server

task under the server-based approach.
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(a) Synchronization-based Approach with Busy-Waiting (MPCP)

(b) Server-based Approach

Figure 4.3: Task execution timeline during one hyperperiod (3,000 ms)

4.2.2 Case Study: Vision Application

We present a case study motivated by the software system of the self-driving car developed

at Carnegie Mellon University [45]. Among various algorithmic tasks of the car, we chose a

GPU accelerated version of the workzone recognition algorithm [26] (workzone) that periodi-

cally processes images collected from a camera. Two GPU-based matrix multiplication tasks

(gpu matmul1 and gpu matmul2), and two CPU-bound tasks (cpu matmul1 and cpu matmul2)

are also used to represent a subset of other tasks of the car. Unique task priorities are assigned

based on the Rate-Monotonic policy [28] and each task is pinned to a specific core as described

in Table 4.1. Of these, the workzone task has two GPU segments per job whereas both the

GPU-based matrix multiplication tasks have a single GPU segment. Under the server-based

approach, the server task is pinned to CPU Core 1 and is run with real-time priority 80. In

order to avoid unnecessary interference while recording traces, the task-specific OpenCL threads

are pinned on a separate CPU core for both approaches. All tasks are released at the same time

using Linux/RK APIs. CPU scheduling is performed using the SCHED FIFO policy, and CPU

execution traces are collected for one hyperperiod (3,000 ms) as shown in Figure 4.3.

The CPU-execution traces for the synchronization and server-based approaches are shown in

Figure a and Figure b, respectively. Tasks executing on Core 0 are shown in blue whereas tasks

executing on Core 1 are shown in red. It is immediately clear that the server-based approach
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Parameters Values

Number of CPU cores (NP ) 4, 8
Number of tasks per core [3, 5]
Percentage of GPU-using tasks [10, 30] %
Task period and deadline (Ti = Di) [100, 500] ms
Task set utilization per core [30, 50] %
Ratio of GPU segment len. to normal WCET (Gi/Ci) [10, 30] %
Number of GPU segments per task (ηi) [1, 3]
Ratio of misc. operations in Gi,j (Gm

i,j) [10, 20] %
GPU server overhead (ε) 50 µs

Table 4.2: Base parameters for task set generation

allows suspension of tasks while they are waiting for the GPU request to complete. In particular,

we make the following key observations from the case study:

1. Under the synchronization-based approach, tasks suspend when they wait for the GPU lock

to be released, but they do not suspend while using the GPU. On the contrary, under the

server-based approach, tasks suspend even when their GPU segments are being executed.

The results show that our proposed server-based approach can be successfully implemented

and used on a real platform.

2. The response time of cpu matmul1 under the synchronization-based approach is significantly

larger than that under the server-based approach, i.e., 520.68 ms vs. 219.09 ms in the

worst case, because of the busy-waiting problem discussed in Section 3.2.3.

4.3 Schedulability Experiments

4.3.1 Task Set Generation

We used 10,000 randomly-generated task sets based on the parameters given in Table 4.2 for

each experimental setting. The parameters are inspired from the observations from our case

study and the GPU workloads used in prior work [21, 19]. Systems with four and eight CPU

cores (NP = {4, 8}) are considered. To generate each task set, the number of CPU cores in

the system and the number of tasks for each core are first created based on the parameters

in Table 4.2. Next, a subset of the generated tasks is chosen at random, corresponding to the

specified percentage of GPU-using tasks, to include GPU segments. Task period Ti is randomly

selected within the defined minimum and maximum task period range. Task deadline Di is set

equal to Ti. On each core, the task set utilization is split into k random-sized pieces, where
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Figure 4.4: Schedulability results w.r.t. the accumulated GPU segment length

k is the number of tasks per core. The size of each piece represents the utilization Ui of the

corresponding task τi, i.e., Ui = (Ci +Gi)/Ti. If τi is a CPU-only task, Ci is set to (Ui · Ti) and

Gi is set to zero. If τi is a GPU-using task, the given ratio of the accumulated GPU segment

length to the WCET of normal segments is used to determine the values of Ci and Gi. Gi is then

split into ηi random-sized pieces, where ηi is the number of τi’s GPU segments chosen randomly

from the specified range. For each GPU segment Gi,j , the values of Gei,j and Gmi,j are determined

by the ratio of miscellaneous operations given in Table 4.2, assuming Gi,j = Gei,j +Gmi,j . Finally,

task priorities are assigned by the Rate-Monotonic policy [28], with arbitrary tie-breaking.

4.3.2 Schedulability Comparisons

We capture the percentage of schedulable task sets where all tasks meet their deadlines. For the

synchronization-based approach, MPCP [39] is used with the task schedulability test developed

by Lakshmanan et al. [24] and the correction given by Chen et al. [11]. We considered both zero

and non-zero locking overhead under MPCP, but there was no noticeable difference between

them. Hence, we only present the results with zero overhead. Under the server-based approach,

the GPU server is randomly allocated on one of the cores in the system. Eqs. (3.6) and (3.7) are

used for task schedulability tests. We set the GPU server overhead (ε) to 50 µs, which is slightly

larger than the measured overheads from our implementation presented in Section 4.1.

Figure 4.4 shows the percentage of schedulable task sets as the ratio of the accumulated GPU

segment length (Gi) increases. The solid lines denote the results with NP = 4 and the dotted lines

denote results with NP = 8. In general, the percentage of schedulable task sets is higher when

NP = 4, compared to when NP = 8. This is because the GPU is contended for by more tasks as
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Figure 4.5: Schedulability results w.r.t. the percentage of GPU-using tasks
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Figure 4.6: Schedulability results w.r.t. the number of tasks per core

the number of cores increases. The server-based approach outperforms the synchronization-based

approach in all cases of this figure. This is mainly due to the fact that the server-based approach

allows other tasks to use the CPU while the GPU is being used.

Figure 4.5 shows the percentage of schedulable task sets as the percentage of GPU-using tasks

increases. The left-most point on the x-axis represents that all tasks are CPU-only tasks, and

the right-most point represents that all tasks access the GPU. Under both approaches, the

percentage of schedulable task sets reduces as the percentage of GPU-using tasks increases.

However, the server-based approach significantly outperforms MPCP, with as much as 34% more

task sets being schedulable when the percentage of GPU-using tasks is 60% and NP = 4.

The benefit of the server-based approach is also observed with changes in other task parameters.

In Figure 4.6, the percentage of schedulable task sets is illustrated as the number of tasks

per core increases. The server-based approach is affected less by the increase in task counts,
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Figure 4.7: Schedulability results w.r.t. the number of GPU segments per task
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Figure 4.8: Schedulability results w.r.t. the task set utilization per core

compared to the synchronization-based approach. The difference in schedulability between the

two approaches grows larger as the number of tasks per core increases. This is because as

more tasks exist, the total amount of the CPU-inactive time in GPU segments also increases.

Figure 4.7 shows the experimental results as the number of GPU segments per task increases.

While the server-based approach has higher schedulability for fewer GPU segments per task,

it gets closer and then coincides with the synchronization-based approach eventually, because

it faces excess server overhead (of 2ε per request, by Lemma 3.1) with an increasing number

of GPU segments. Figure 4.8 shows the results as task set utilization per core increases. The

server-based approach provides higher schedulability than the synchronization-based approach,

but as the total task set utilization gets closer to 90%, the gap diminishes and the percentage of

schedulable task sets under both approaches goes down to zero.

Next, we investigate the factors that negatively impact the performance of the server-based
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Figure 4.9: Schedulability results w.r.t. the overhead of the GPU server (ε)
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approach. The GPU server overhead ε is obviously one such factor. Although an ε of 50 µs

that we used in prior experiments is sufficient enough to upper-bound the GPU server overhead

in most practical systems, we further investigate with larger ε values. Figure 4.9 shows the

percentage of schedulable task sets as the GPU server overhead ε increases. Since ε exists only

under the server-based approach, the performance of MPCP is unaffected by this factor. On the

other hand, the performance of the server-based approach deteriorates as the overhead increases.

The amount of miscellaneous operations in GPU access segments is another factor degrading the

performance of the server-based approach, because miscellaneous operations require the GPU

server to consume a longer CPU time. Figure 4.10 shows the percentage of schedulable task sets

as the ratio of miscellaneous operations in GPU access segments increases. As MPCP makes

tasks busy-wait during their entire GPU access, the performance of the synchronization-based

approach remains unaffected. On the other hand, as expected, the performance of the server-

based approach degrades as the ratio of miscellaneous operations increases. When the ratio



Chapter 4. Evaluation 34

reaches 90%, the server-based approach begins to underperform compared to the synchronization-

based approach. However, such a high ratio of miscellaneous operations in GPU segments is

hardly observable in practical GPU applications because memory copy is typically done by DMA

and GPU kernel execution takes the majority time of GPU segments.

In summary, the server-based approach outperforms the synchronization-based approach in most

of the cases where realistic parameters are used. Specifically, the benefit of the server-based

approach is significant when the percentage of GPU-using tasks is high or the number of tasks is

large. However, we find that the server-based approach does not dominate the synchronization-

based approach. The synchronization-based approach may result in better schedulability than

the server-based approach when the GPU server overhead or the ratio of miscellaneous operations

in GPU segments is rather high.
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Conclusion

5.1 Summary of Contributions

In this work, we presented a new, server-based approach for predictable CPU access control in

real-time embedded and cyber-physical systems. Our server-based approach is motivated by

the limitations of the synchronization-based approach, namely busy-waiting and long priority

inversion, that we identified in our work. By introducing a dedicated server task for GPU request

handling, the server-based approach addresses these limitations, while ensuring predictability of

tasks. The implementation and case study results on an NXP i.MX6 embedded platform indicate

that the server-based approach can be implemented with acceptable overhead and performs

as expected with a combination of CPU-only and GPU-using tasks. Experimental results also

indicate that the server-based approach yields significant improvements in task schedulability

compared to the synchronization-based approach in most practical cases.

5.2 Future Work

Our proposed server-based approach offers several interesting directions for future work, and we

propose some of them below.

• Multi-GPU and Dynamic Priorities: While we focus on a single GPU in this work,

we believe that the server-based approach can be extended to multi-GPU systems including

dynamic-priority scheduling schemes, similar to GPUSync [14, 15, 13]. One possible way

35
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to support multi-GPU platforms would be to create a GPU server for each GPU and

allocating a subset of GPU-using tasks to each server.

• GPU Co-Scheduling: The server-based approach can facilitate an efficient co-scheduling

of GPU kernels. For instance, the latest NVIDIA GPU architectures can schedule multiple

GPU kernels concurrently only if they belong to the same address space [32], and the use

of the GPU server inherently satisfies this requirement.

• Exploiting Centrally-Aware Design: As the GPU server has central knowledge of all

GPU-using tasks and their requests, we expect that it can help develop various additional

features such as GPU fault tolerance and power management.
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