
TimerShield: Protecting High-Priority Tasks
from Low-Priority Timer Interference

Pratyush Patel Manohar Vanga Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)

Abstract—Timer interference arises when a high-priority real-
time task is delayed by a timer interrupt that is intended for a
lower-priority task. We demonstrate that high-resolution timers,
as exposed for instance by Linux’s hrtimer API, can cause substan-
tial timer interference, which manifests as significantly increased
response times and lowered throughput. To eliminate this source of
unpredictability, we propose TimerShield, a priority-aware high-
resolution timer subsystem that selectively delays the servicing of
lower-priority timer interrupts while a high-priority task is execut-
ing. We present the design and implementation of a fully functional
TimerShield prototype in Linux PREEMPT RT and compare it
against Linux’s stock hrtimer subsystem on two different platforms
(x86 and ARM). Our results show that TimerShield adds only little
overhead, while completely eliminating the timing unpredictability
and throughput degradation caused by unnecessary interrupts.

I. INTRODUCTION

Modern real-time operating systems make use of high-
precision timing within various subsystems; these include the
implementation of various scheduler features (e.g., accurate
budget enforcement), as well as providing high-resolution self-
suspension calls to userspace processes. For example, POSIX’s
clock_nanosleep(), which blocks a process for a specified
number of nanoseconds, finds its use in accurately timing
periodic job releases and time-critical control loops.

These features have grown more precise over the years thanks
to the introduction of dedicated, high-resolution, one-shot timer
hardware into modern CPUs,1 and operating systems such as
Linux provide dedicated subsystems to work with these devices.

An example of this is the hrtimer kernel subsystem in Linux,
which is responsible for providing an API for managing software
timers and multiplexing them on these high-precision, one-shot
hardware timers [13]. The hrtimer subsystem maintains the set
of all pending software timers in the system. When a software
timer expires, it re-programs the timer hardware to raise an
interrupt at the next-earliest timer expiry based on the current
set of pending software timers.

However, due to the way interrupt hardware works, interrupts
generated by these high-resolution timers effectively execute
with the highest priority in the system, regardless of the priority
of the process that created the interrupt-causing timer. As a
consequence, interrupts generated by timers of low-priority
tasks can end up preempting high-priority processes. While the
overhead incurred from a single timer may seem relatively small,
the overhead from a large number of timers can quickly add up.

1For example, both 32-bit and 64-bit Intel machines, and many ARM SoCs
provide such dedicated hardware (via the Local Advanced Programmable
Interrupt Controller or LAPIC [17] and the High Precision Event Timer
(HPET) [16] on x86, and via a core-local, high-resolution timer on ARM).

This is further exacerbated by current POSIX-based operating
systems, which do not impose any strict limits on which task
can create timers and how many they may create.

This is problematic for two reasons: from an analysis point
of view, accounting for such interference results in severe
pessimism as any process in the system can create timers and
cause preemptions in higher-priority tasks. From a systems point
of view, constant preemptions result in increased worst-case
response times and lowered throughput for high-priority tasks,
as well as increased unpredictability and jitter.

However, servicing timer interrupts corresponding to timers
of tasks with lower priority than the currently executing task is
a complete waste of CPU cycles. Even if a low-priority timer
interrupt is serviced immediately, the task that programmed
it cannot react to the timer expiration while runnable higher-
priority tasks exist in the scheduler’s ready-queue. A better
approach would be to defer the servicing of the low-priority timer
until all higher-priority tasks have finished executing, thereby
avoiding the unnecessary preemption of higher-priority tasks.

Based on the above observation, in this paper we present
the design of the TimerShield subsystem, an interference-free,
high-resolution timer subsystem for fixed-priority RTOSes.
TimerShield provides all the same timer management primitives
as Linux’s hrtimer subsystem (creation, deletion, and expiration
of timers). However, TimerShield additionally introduces the
notion of priority to timers set by userspace processes. Thus,
under TimerShield, whenever a process at a particular priority
is scheduled, all timers of lower priority processes are auto-
matically “masked” before determining the earliest time with
which to reprogram the timer hardware, preventing them from
preempting the higher-priority process. As this priority-aware
masking and earliest-timer lookup is on the context-switch
hotpath, TimerShield makes use of specialized data structures to
minimize the added runtime overhead.

Contributions. This paper makes the following contributions.

• We illustrate the problem of interrupt interference in the
current design of the high-resolution timer subsystem in
Linux (Sec. IV).

• We propose TimerShield, a high-resolution timer subsys-
tem design that eliminates lower-priority timer interference
in such kernels with negligible overhead (Sec. III).

• We describe our implementation of TimerShield in Linux
(with the PREEMPT RT real-time patch) (Sec. III).

• We evaluate and compare TimerShield with the stock
hrtimer subsystem in Linux on two hardware platforms

1

(x86 and ARM). Our results show that in relation to the
significant benefit of avoiding interrupt interference, the
tradeoff of using a more specialized data-structure with
moderately higher overheads is justified (Sec. IV).

II. BACKGROUND

We begin by providing some background on how timers work
in Linux. However, we note that the design of TimerShield is not
Linux-specific and that it can be adapted to other OSes easily.

A. Timer Hardware and Interrupt Handling in Linux

In modern Intel x86 CPUs, each core has a high-resolution,
on-die local APIC (LAPIC) timer that is directly connected.
As a result, access to the LAPIC timer is significantly faster
than to previously available timer hardware (e.g., the older
Programmable Interval Timer (PIT) is external to the CPU
and thus has significantly slower access times). Similarly,
recent ARM processors have a per-core, high-resolution timer.
Operating systems typically configure these timers in one-shot
mode, where a specified counter is decremented every cycle and
a timer interrupt is raised when the count reaches zero.

Linux (PREEMPT RT) handles such interrupts via a split-
handler model, where the interrupt handling code is split into
a short, time-critical top half, and a longer bottom half [6, 20].
The top half runs as soon as the interrupt signal is received by
preempting the currently executing task, performs the absolutely
critical work such as acknowledging interrupts to the hardware,
and defers the rest of the interrupt handling to the bottom
half, which is scheduled for a later point in time. Subsystems
may choose to use either of two methods for handling high-
resolution timer interrupts: handle everything within the top half
(used for time-critical “wakeup”-related interrupts such as those
for clock_nanosleep()), or defer a bulk of the work to
the bottom half (used for less critical “signaling”-based timer
interrupts, such as the timerfd interface that allows processes to
be notified of timer events via file descriptors). The downside of
the latter approach is increased interrupt latency as the bottom
half is subject to scheduling and queueing delays. We now
present a broad overview of the Linux timer subsystems before
explaining its hrtimer subsystem in detail.

B. Linux Timer Subsystems

The application of timers in Linux falls broadly into two
categories: (i) high-resolution timers that are used for high-
precision timed events (e.g., clock_nanosleep()), and
(ii) low-resolution timers that are used for timed events that
do not require high precision (e.g., timeouts for I/O requests
that signal error conditions). In Linux, low-resolution timers
are handled via the timer wheel subsystem [41], while high-
resolution timers are handled by the hrtimer subsystem, both
of which are higher-level APIs built on top of the fundamental
timer-handling architecture described in Sec. II-A.

The timer wheel attempts to strike a balance between precision
and efficiency and supports fast O(1) insertion and deletion
of timers, which is useful as low-resolution timers are often
cancelled before they expire; for example I/O timeouts only

fire under relatively rare error conditions. Unfortunately, the
tight integration of the timer wheel design with the tick-based
mechanism in Linux presents many challenges to using it for
high-resolution timers. Supporting high-precision timers with
the same design would require an increase in timer ticks per
second [38] which negatively impacts application performance.

Rather, high-resolution timers are handled in Linux via the
hrtimer2 subsystem, which we describe next.

C. The hrtimer Subsystem

The hrtimer subsystem has two key roles: it provides a flexible
timer-management API (i.e., timer creation, reprogramming, and
deletion operations), and invokes callbacks on timer expiry.

As hrtimers are a part of some of the kernel’s hot paths such as
the scheduler, its data structures are designed for efficiency. Each
hrtimer is represented in the kernel by a structure containing,
among other things, the absolute expiry time and a callback
pointer. These structures are maintained in earliest-expiration-
time order within a self-balancing red-black tree (rb-tree) that
enablesO(log n) insertion and deletion of timers as well asO(1)
access to the earliest-expiring timer (by additionally storing a
pointer to the minimum element in the root node). A single
rb-tree is maintained for each high-resolution timer available in
hardware (typically one per core).3

When inserting or deleting from the rb-tree, the kernel checks
if the underlying hardware requires reprogramming (i.e., if a
timer with an earlier expiration time than the current earliest
timer is inserted, or if the timer with the earliest time is deleted).

When a timer expires, an interrupt is raised by the hardware,
the timer is removed from the rb-tree, and the callback supplied
within the timer is invoked before reprogramming the timer
hardware with the next-earliest time (if any). If multiple timers
expire at once, they are all cleared sequentially.

Recall that the hrtimer subsystem forms the basis for im-
plementing the POSIX clock_nanosleep() system call,
which is used to suspend the currently executing process for a
specified number of nanoseconds or until a specified absolute
point in time is reached. This is particularly relevant in real-time
systems where it is used to accurately time periodic job releases,
self suspensions, and control loops. However, the hrtimer
subsystem does not consider the priorities of the processes
that created the timers when reprogramming the underlying
hardware. Consequently, the top half of high-resolution timers
always cause preemptions in high-priority tasks even if the timer
was created by a lower-priority task. We describe next how
TimerShield efficiently avoids this unnecessary interference.

III. TIMERSHIELD: DESIGN & IMPLEMENTATION

TimerShield extends the hrtimer architecture in three ways.
First, it extends the data structures such that, for every timer,

2The term hrtimer may be misleading because Linux does not guarantee
that the timers managed by this subsystem will have high resolution. It simply
provides a clean interface to deal with such timers and whether they support
nanosecond-level precision depends on the underlying hardware. In this paper,
we assume the availability of high-resolution timer hardware.

3A single rb-tree is actually maintained per “clock base,” and multiple clock
bases may be multiplexed on the same timer hardware, but for simplicity we
assume one rb-tree per hardware timer in this paper.

2

it keeps track of the priority of the process that created it
(Sec. III-A). Second, it introduces a new interface that enables
efficient, priority-aware queries of the earliest-expiring timer
(Sec. III-B). Third, it modifies the timer-expiration logic so that
only those expired timers with a priority greater than or equal to
that of the current process are serviced (Sec. III-C).

With this infrastructure in place, TimerShield intelligently
reprograms the timer hardware (on each core) at the end of each
context switch and timer expiry with the expiration time of the
earliest-expiring timer with a priority greater than or equal to
that of the process about to be scheduled. This eliminates timer
interference without affecting the timing of lower-priority tasks.

In the following, we discuss the design and implementation
of TimerShield, starting with the structural changes that were
needed to make the timer subsystem “priority-aware.”

A. Priority-Aware High-Resolution Timers

Since Linux’s hrtimer structures do not have a notion of
priority, we extended the data type with a priority field and
modified the timer creation logic to store the scheduling priority
of the process that is creating (or reprogramming) it.

Recall that Linux uses a single rb-tree to store all hrtimers of
a single timer (and maintains a direct pointer to the timer with
least expiration time within the root node of this rb-tree). In order
to later implement priority-aware queries efficiently (Sec. III-B),
we modified this single rb-tree to be an array of rb-trees, one
per priority level. This is because, in order to determine the
earliest-expiring timer at a particular priority level, a single
rb-tree would require an O(n) search over all timers enqueued
in the rb-tree. With an array of rb-trees, one per priority level,
this is reduced back to O(1): we simply retrieve the earliest-
expiring timer from the root node of the red black tree at the
array index corresponding to a particular priority level. Note that
the use of an array of rb-trees also maintains Linux’s logarithmic
time complexity for the creation and cancellation of hrtimers.
As Linux supports 140 process priority levels, each hardware
timer module has a corresponding 140-element array of rb-trees
associated with it under TimerShield.

B. Priority-Aware Earliest-Expiration Queries

We now describe a new interface for determining the earliest-
expiring timer with a priority greater than or equal to a given
threshold. The key challenge lies in making such priority-aware
queries fast, as they are invoked frequently in kernel hotpaths
(e.g., as part of each context switch and in interrupt top halves).

We found that this requirement maps directly to the well-
studied range minimum query (RMQ) problem [5, 11]. The
RMQ problem asks to find the minimum element in a sub-
array of an array of comparable objects. Under TimerShield,
this corresponds to the earliest-expiring timer with a prior-
ity in the range [current priority,max priority], where
current priority is the priority of the currently running pro-
cess, and max priority is the highest-possible priority.

We prototyped two candidate RMQ solutions: a segment
tree [34], and two binary-indexed trees [11]. We chose the former

……

140

1

2

.....

Timers Earliest-expiring timer

1401

1-140

1-70 71-140

Segment

Tree

rb-trees

Priority

Levels
Priority Range

NULL

… …

Fig. 1: The data structures used in TimerShield.

for TimerShield as it consumed less memory, updated faster, and
was simpler to implement compared to the latter.

Segment trees. A segment tree is a complete binary tree, where
each node represents a contiguous interval of the total search
space. Each node contains the minimum value in its interval.

TimerShield uses a single segment tree where each node
represents a range of priority values, and stores a pointer to
the earliest-expiring timer in that priority range. As can be
seen in Fig. 1, the root node points to the earliest-expiring
timer in the entire range of priorities; its left child points to
the earliest-expiring timer in the range [1,max priority/2],
and its right child points to the earliest-expiring timer in the
range [max priority/2,max priority]. Subsequent levels of
the tree consist of nodes representing the earliest-expiring timers
from similarly half-split intervals. Finally, the leaf nodes denote
the earliest timer corresponding to a single priority level which
are obtained from the corresponding rb-trees. If no timers exist
for that priority level, then the node pointer contains NULL.

The segment tree supports two basic operations: updates and
queries. An update operation is performed when a leaf node
changes its value (e.g., the earliest-expiring timer at a priority
level changed due to a timer expiration). The value at the leaf
node is modified and the tree is traversed upward to the root node
while re-calculating the earliest-expiring timer at each level.

A range query proceeds a in top-down fashion from the root
in a manner that is most easily described recursively, although
the actual implementation in TimerShield uses a faster iterative
variant. When encountering a node representing a range [a, b],
there are three possibilities: (i) if [a, b] lies completely in the
queried subrange, then the node’s value is returned immediately;
(ii) if [a, b] only partially overlaps the queried subrange, then
the minimum of (recursive) range queries on the left and right
subtrees of the node is returned; and otherwise, (iii) if there is
no overlap, then the node is disregarded.

Both the update and the range-query operations visit
O(log(max priority)) nodes in the worst-case. Since the
number of priority levels in Linux is fixed, and there is one
leaf node in the segment tree per priority level, the size of the
segment tree (which is a full binary tree) is constant and can be
represented by an array of (2×max priority − 1) nodes.

C. Putting It All Together

With the core TimerShield data structures in place, we next
explain how TimerShield operates.

3

Creation and deletion of timers. To create (or reprogram) a
timer, the current process’ priority is retrieved from the process
control block (PCB) and the timer is inserted into the rb-tree
associated with that priority level. Deleting a timer simply
involves removing it from the rb-tree. The segment tree is
initialized to an array of NULL pointers during system startup.
As timers are created and deleted, if the earliest-expiring timer
at a given priority level changed, the segment tree is updated.

The overall insertion operation completes in logarithmic
time as rb-tree insertion requires O(log(N)) operations in the
worst case, where N is the number of timers at the priority
level being inserted into, and the segment-tree update (if any)
requires O(log(max priority)). Similarly, deleting a timer
under TimerShield requires logarithmic time as it too involves
an rb-tree deletion and a potential segment tree update.

Expiration of timers. When a timer expiration interrupt fires,
TimerShield only services expired timers with a priority greater
than or equal to the currently running process. Any expired
lower-priority timers are ignored, avoiding unnecessary delays
in high-priority process execution from the servicing of low-
priority timers (which would anyway not be received until the
high-priority task blocks). Finally, TimerShield reprograms the
timer hardware if an expiration warranted a change.

Timer reprogramming during context switch. During timer
creation, deletion, and expiration, the earliest-expiration timer
is determined based on the priority of the currently executing
process. However, if a context switch occurs, this priority may
change. Thus, TimerShield also reprograms the timer hardware
at the end of each context switch based on the priority of the
process that is about to be scheduled. That is, a range query
is performed on the segment tree to determine the earliest-
expiring timer in the range [next priority,max priority],
where next priority is the priority of the process about to
be scheduled. If the earliest-expiring timer changed, the timer
hardware is reprogrammed accordingly.

Scheduler timers. Not all timers are associated with a process
priority. In particular, schedulers use hrtimers to implement
features such as budget enforcement and rate limiting, and
delaying these interrupts can result in incorrect behavior in
some cases. In order to make sure that these interrupts are never
masked, we modified the scheduler to create critical timers with
the highest system priority to ensure their immediate delivery.

However, note that every scheduler interrupt need not be at the
highest system priority. In Linux, schedulers are organized hier-
archically into scheduler classes and traversed top-down when
picking a process to schedule. Thus, a higher scheduler class can
be safely assigned a higher priority than a lower scheduler class
as the lower-level scheduler would not be invoked while the
higher scheduler has processes to schedule. Timers belonging to
the SCHED FIFO and SCHED RR schedulers (such as real-time
bandwidth-throttling timers) are thus given the highest priority,
while timers belonging to the SCHED NORMAL scheduling
class (i.e., the non-real-time timesharing policy) are given a
priority lower than any real-time task, but still higher than any
priority available to SCHED NORMAL processes.

Dynamic priorities. An assumption in TimerShield is that
the priority of a task that creates a timer remains unchanged
until the timer fires. However, even under a fixed-priority
scheduling policy, the effective scheduling priority of a task
may change dynamically at runtime, either implicitly due to
priority inheritance, or explicitly due to task parameter changes.

With regard to priority inheritance, TimerShield transparently
supports the common case, where timers are used to perform
explicit sleeps outside of critical sections, as then critical sections
(during which priority inheritance might occur) and the use
of timers never coincide. Similarly, TimerShield transparently
supports explicit priority changes for any task (ready or blocked
on I/O) as long as the task does not have pending timers.

Our TimerShield prototype presently does not deal with cases
where sleeps are performed within critical sections (i.e., while
holding a lock); we are unaware of any practical use-case for this.
However, if desired, support for sleeps inside critical sections,
and dynamic priority changes in general, could be added by
keeping track of the timers that a process has programmed within
its PCB, and by then simply restarting all of a process’ pending
timers whenever its priority changes.

To summarize, TimerShield extends the hrtimer subsystem
such that low-priority software timer interrupts never preempt
high-priority tasks. It achieves this by intelligently “masking”
timers of lower priority than the currently executing task, and
maintains low overhead through the combination of per-priority
rb-trees and segment trees for efficient range-minimum queries.

IV. EVALUATION

We conducted an evaluation of TimerShield on two hardware
platforms to answer the following key questions: (i) what
additional overheads does TimerShield introduce? (ii) How does
TimerShield improve the predictability of high-priority real-time
tasks? (iii) How does TimerShield affect lower-priority tasks?

A. Experimental Setup

We evaluated TimerShield on two platforms: x86 and ARM,
and although the machines were quad-core machines, we only
enabled a single core in both setups for simplicity of evaluation.
However, it should be noted that TimerShield extends trivially
to multi-core systems as timer hardware, software, and data
structures (e.g., locks) are all core-local.

Intel machine. We used a 3.2 GHz quad-core Intel Core i5-
3740 CPU with 32 KiB of L1 instruction and data caches, and
unified L2 and L3 caches of 256 KiB and 6 MiB respectively.
Hyperthreading and power-saving features were disabled.

ARM machine. We used a Raspberry Pi 3B board with a
Broadcom BCM2837 SoC comprised of a 1.2 GHz quad-core
ARM Cortex-A53 CPU and 16 KiB L1 instruction and data
caches as well as a unified 512 KiB L2 cache.

In both setups, we performed all experiments on Linux
patched with PREEMPT RT (version 4.6.1-rt2 for x86 64, and
version 4.4.12-rt19 patched on top of the vendor-supplied rpi-
4.4.14 kernel version for ARM). TimerShield was implemented
in both kernels and compared against the baseline kernels.

4

�����

����

��

���

������� ��������� ������� ���������

���

�
�
�
��
�
�
�

�
��
�
�

�����
�����������

Fig. 2: Timer enqueue and dequeue overheads in µs (Intel).

�����

����

��

���

������� ��������� ������� ���������

���

�
�
�
��
�
�
�

�
��
�
�

�����
�����������

Fig. 3: Timer enqueue and dequeue overheads in µs (ARM).

The task sets and task periods used in the subsequent experi-
ments were modeled around automotive benchmarks proposed
by Bosch [22] and use harmonic task periods ranging from 1 ms
to 1000 ms. Measurements were carried out by using per-core
cycle counters on both the Intel and ARM machines.

B. Overhead Evaluation

We measured (i) how much overhead TimerShield adds to
timer operations, and (ii) how much processing occurs during
context switches. We report all overheads in µs (rather than
cycles) due to the disparity between the two architectures.

Timer subsystem overhead. Recall that TimerShield uses more
complex data structures and thus adds overhead into the timer en-
queuing and dequeuing logic. We compared the number of CPU
cycles taken to complete the low-level enqueue_hrtimer()
and __remove_hrtimer() functions under both the base-
line kernel and TimerShield.

We evaluated two scenarios, one with and one without a back-
ground load. Measuring without load evaluated the overhead
of an idle system (i.e., with only scheduler timers present).
Measuring with load was performed with one high-priority
task (with a 1 ms period) and 50 low-priority processes (with
harmonic periods ranging from 1 ms to 1000 ms [22]) all using
clock_nanosleep() to implement periodic activations.
This evaluated the overheads associated with a more loaded
system that needs to maintain larger data structures.

Fig. 2 and Fig. 3 show the results of our experiments on the
Intel and ARM platforms, respectively. Each plot consists of
eight “candlestick graphs”: the top and bottom edges of the box
represent the 5th and 95th percentile overheads, while the top and
bottom points of the vertical line represent the minimum and

 0.01

 0.1

 1

 10

No Load With Load

O
ve

rh
ea

d
(u

s)

(a) Intel

 0.1

 1

 10

 100

No Load With Load

O
ve

rh
ea

d
(u

s)

(b) ARM
Fig. 4: Additional processing during context switches in Timer-
Shield. Note that the maxima under load include the processing
of many deferred timers and do not represent just overhead.

maximum observed overhead. Finally, the horizontal line in the
middle of each box represents the median overhead. Note that
the Y-axis is plotted in log scale for readability.

Consider for now only the scenarios with no load, where only
the scheduler is creating timers that are dequeued on expiry.
It can be seen that under TimerShield, both enqueueing and
dequeuing (on both platforms) is marginally more expensive: the
95th percentile overhead is increased by 180 ns when enqueuing
on ARM under TimerShield compared to Linux, and by 20 ns
on the Intel platform. This increase in the cost of timer opertions
reflects the overhead of the additional segment tree update under
TimerShield, an overhead not incurred under Linux.

However, if we consider the loaded scenario, where many
processes are constantly enqueuing timers that are dequeued on
expiry, the difference in overhead is much lower. For the 95th

percentile, the highest increase in overhead was observed to be
for dequeuing with TimerShield requiring an additional 30 ns on
Intel and 68 ns on ARM compared to Linux. This lower differ-
ence in overheads between Linux and TimerShield overheads
in the loaded scenario (compared with the no-load scenario) is
because they both incur a comparable overhead in dealing with a
single, large rb-tree (since all 50 background processes used the
same priority), and this dominates in comparison to the added
cost of segment tree updates. In a system with a more varied
set of priorities, TimerShield would be dealing with multiple,
smaller rb-trees, and would incur even lower overhead.

Context-switch overheads. Recall that under TimerShield, we
introduce code in the context switch to process expired timers
and to reprogram the timer hardware if it resulted in a change
in the relevant earliest-expiring timer. We measured these
additional costs and results are shown in Fig. 4. Note that, due to
limitations in the placement of the tracepoints, Fig. 4 shows both
the added overhead and the cost of processing deferred timers.

The benchmark setup was similar to the timer subsystem
overhead measurements with 50 low-priority processes in the
loaded-system scenario. As shown in Fig. 4, the added median
cost is under one microsecond on both architectures. Although
this is introduced into the scheduler hotpath, the benefits of
reduced timer interference (Sec. IV-C) outweigh this overhead.

Code bloat. The amount of code changes performed by Timer-

5

Text Data BSS

Baseline 10,758 7,402 14,867
TimerShield 10,760 7,437 14,867

TABLE I: Kernel binary segment sizes under baseline Linux and
TimerShield (in KiB) on the Intel machine.

Shield to the baseline kernel are small enough so that it can
be easily adapted for use in smaller Linux-based embedded
systems. Table I compares the size of the text, data, and reserved
data segments (BSS) in the baseline kernel binary against those
in the TimerShield kernel. As can be seen in Table I, the added
code increases the text segment size by approximately 2 KiB.

Memory overhead. Compared to the baseline, TimerShield
requires additional memory for two new data structures: (i) the
priority-aware rb-tree array, and (ii) the per-core segment tree.

The size of the priority-aware rb-tree array is determined by
the number of priority levels (as there is one rb-tree per priority
level). On 64-bit Linux, with 140 priority levels, this amounts
to 2,240 bytes per rb-tree array. Similarly, each segment tree,
realized as an array of pointers, consists of twice as many nodes
as there are priority levels (as a full binary tree with n leaf
nodes has a total of 2n− 1 nodes). Under 64-bit Linux, this also
amounts to 2,240 bytes per segment tree.

The total memory overhead in our prototype is actually some-
what higher since we modify Linux’s “clock base” abstraction,
of which there are several per core (e.g., CLOCK MONOTONIC,
CLOCK REALTIME, etc.), and thus multiple instances of the
TimerShield data structures are allocated per core. This can be
observed in Table I, which shows a data segment increase of
35 KiB (per core) compared to baseline Linux.

All TimerShield structures are one-time static allocations,
incurred just once on boot. Furthermore, the modest increase
in memory footprint does not imply a significantly enlarged
footprint in the L1 cache, since only a small fraction of each
data structure is accessed during a timer operation.

Thus, while not insignificant, we believe this to be an
acceptable overhead for Linux-class embedded systems, which
typically have multiple megabytes of RAM. Further, as shown
next, the relatively small increases in text and data segment sizes
enable significantly reduced interference for high-priority tasks.

C. High-Priority Tasks and Interrupt Interference

We evaluated whether TimerShield improves the predictability
of high-priority tasks in the presence of lower-priority, timer-
creating tasks by measuring the response time of a high-priority
task while varying the number of lower-priority tasks.

Our high-priority task consisted of an approximately 200µs-
long matrix multiplication operation that was repeated peri-
odically every 1 ms, implemented as a loop with the matrix
multiplication followed by clock_nanosleep(). This task
was set to use the highest SCHED FIFO real-time priority.

We measured the response time from when the timer expires
(and the associated callback is invoked) until the loop completes
and the task sleeps again (in do_nanosleep()). This takes
into account the execution time of a single iteration of the control

loop, as well as the overhead of a context switch (which is
potentially longer under TimerShield because of the overhead of
needing to reprogram the timer to mask lower-priority timers).
Timestamps on each machine were recorded via Linux’s ftrace
tracing facility, and 100,000 samples were collected per run.

We evaluated two scenarios: unsynchronized and synchro-
nized task releases of lower-priority tasks. Under unsynchro-
nized releases, the lower-priority timers end up expiring during
the execution of the high-priority task (as can commonly occur
when tasks have sporadic releases or when task sets have non-
harmonic periods), thus illustrating the effect of preemptions on
the response time of the high-priority task.

In the synchronized case, both low priority and high priority
tasks were assigned harmonic periods (with the highest-priority
task having the shortest period), and all tasks were released
synchronously at a common “time zero”. As a result, multiple
lower-priority timers expired together at context-switch bound-
aries (and not during the execution of the high-priority task).
This results in a cascade of expirations that require immediate
servicing, illustrating the importance of priority-aware timer
expiration processing as done in TimerShield.

In both experiments, we varied the number of lower-priority
tasks (from 1 to 100 on the Intel machine, and from 1 to 80 on the
ARM machine, in increments of 1). For clarity, we show results
for only three configurations each: a single low-priority task, the
maximum number of tasks (100 on Intel and 80 on ARM), and
one intermediate result (50 on Intel and 40 on ARM).

Unsynchronized low-priority tasks. We used the popular
cyclictest [2] program running at a lower SCHED FIFO
real-time priority of 70 for low-priority tasks. We chose
cyclictest as it repeatedly sets and expires timers via the
clock_nanosleep() system call with a configurable period.
Periods were chosen uniformly at random from the set of
real periods reported in [22] to emulate the range of periods
commonly found in practice. Cyclictest instances were launched
using a shell script. Since cyclictest determines its intended
activation times relative to the start time of the process, this
approach results in an unsynchronized workload.

Figs. 5 and 6 show the results of this experiment in the form of
a cumulative distribution graph. The X axis shows the response
time of the high-priority task (in µs) while the Y axis shows
the cumulative probability (i.e., for a given response time, the
ratio of samples that were observed to be less than or equal to it).
In all following graphs, solid lines represent TimerShield while
dashed lines represent the results for baseline Linux.

As can be seen in both figures, while the response-time
distribution of the high-priority task is comparable in both
TimerShield and baseline Linux when only a single low-priority
task creates timers, it degrades significantly under baseline Linux
for a larger number of low-priority tasks. This is particularly
evident on ARM due to the slower CPU speed and smaller cache
size. TimerShield does not experience such an effect on either
architecture, regardless of the number of low-priority tasks.

The response time in baseline Linux increases because, as
the number of low-priority timers increases, the highest-priority

6

210 215 220 225 230 235 240
Response Time (in us)

0.0
0.2
0.4
0.6
0.8
1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

1 LP task, Baseline
50 LP tasks, Baseline
100 LP tasks, Baseline
1 LP task, TimerShield
50 LP tasks, TimerShield
100 LP tasks, TimerShield

Fig. 5: CDF of high-priority task response times with unsynchro-
nized low-priority background tasks (Intel platform).

160 180 200 220 240 260 280 300
Response Time (in us)

0.0
0.2
0.4
0.6
0.8
1.0

Cu
m
ul
at
iv
e
Pr
ob

ab
ilit

y

1 LP task, Baseline
40 LP tasks, Baseline
80 LP tasks, Baseline
1 LP task, TimerShield
40 LP tasks, TimerShield
80 LP tasks, TimerShield

Fig. 6: CDF of high-priority task response times with unsynchro-
nized low-priority background tasks (ARM platform).

task is preempted more often and thus delayed. In the worst
case, this interference is potentially unbounded and restricted
only by the number of background tasks creating timers, which
is highly unfavorable for real-time guarantees. And even if the
number of timers can be bounded a priori, the possibility of
timer interference introduces unnecessary pessimism into the
estimation of worst-case response times.

In contrast, under TimerShield, lower-priority timer inter-
rupts never preempt the high priority task, and are dealt
with only once the high priority task completes (and calls
clock_nanosleep). As a result, we do not see an increase in
the response time of the high-priority task. A negligible shift to
the right is observable between the curves for the single-task and
fifty-task scenarios, and we measured this (using performance
counters [32]) to be caused by more frequent cache misses due
to the higher number of low-priority processes. However, this
affects TimerShield and baseline Linux alike.

Synchronized low-priority tasks. In the synchronized case,
we wrote a pthreads-based lower-priority task similar to
cyclictest but ensured a synchronous release of all tasks by
timing wake-ups using a common “time zero.” Similar to
cyclictest, the task also repeatedly sets and expires timers via the
clock_nanosleep() system call with a configurable period.
Once again, periods were randomly-assigned from between
1 ms and 1000 ms [22]. Figs. 7 and 8 show the CDFs from this
experiment, similar to the unsynchronized case.

The figure shows how priority-unaware expiration logic, as
it is used in baseline Linux, results in increased response times
for high-priority tasks when a cascade of timer expirations

210 215 220 225 230 235
Response Time (in us)

0.0
0.2
0.4
0.6
0.8
1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

1 LP task, Baseline
50 LP tasks, Baseline
100 LP tasks, Baseline
1 LP task, TimerShield
50 LP tasks, TimerShield
100 LP tasks, TimerShield

Fig. 7: CDF of high-priority task response times with synchro-
nized low-priority background tasks (Intel platform).

150 200 250 300 350 400
Response Time (in us)

0.0
0.2
0.4
0.6
0.8
1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

1 LP task, Baseline
30 LP tasks, Baseline
70 LP tasks, Baseline
1 LP task, TimerShield
30 LP tasks, TimerShield
70 LP tasks, TimerShield

Fig. 8: CDF of high-priority task response times with synchro-
nized low-priority background tasks (ARM platform).

occurs. Even though there is no interrupt interference from low-
priority task interrupts while the high-priority task executes, the
baseline kernel shows increased response times with an increase
in background tasks. This occurs because, as there is no notion
of timer priority under baseline Linux, all timers are serviced
sequentially regardless of priority. As a result, the high-priority
task ends up waiting for lower-priority timers to be serviced
even though they cannot be delivered immediately.

This situation does not affect the response time of the high-
priority task under TimerShield as timer interrupts are processed
in a priority-aware manner: the highest-priority timers are picked
and serviced one by one, and if at any point this results in a high-
priority task waking up, then the process is cut short and the
task is scheduled immediately. As a result, there is no wakeup
interference before the execution of the high-priority task and
the response time does not increase. Once again, we see a slight
right-shift in the response-time CDF due to increasing cache
misses from the increasing number of low-priority processes
(this applies to both TimerShield as well as the baseline kernel).

Note that in both the synchronized and unsynchronized cases,
TimerShield performs slightly worse with a small number
of lower-priority tasks due to its use of more complex data
structures. However, this added complexity becomes advan-
tageous quickly: TimerShield begins to outperform baseline
Linux with three LP tasks (synchronized case) and five LP tasks
(unsynchronized case) under Intel, and three LP tasks under
ARM (both synchronized and unsynchronized cases).

Unprivileged low-priority tasks. To further emphasize the
problem, we demonstrate how an unprivileged, potentially

7

210 220 230 240 250 260
Response Time (in us)

0.0
0.2
0.4
0.6
0.8
1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

No LP timers, Baseline
100 LP timers, Baseline
1000 LP timers, Baseline
No LP timers, TimerShield
100 LP timers, TimerShield
1000 LP timers, TimerShield

Fig. 9: CDF of high-priority task response times with user-
priority (SCHED NORMAL) timers (Intel platform).

malfunctioning or hostile userspace task with non-real-time
priority and without root privileges under baseline Linux can
significantly increase the response time of higher-priority tasks
as well as lower their throughput. We also demonstrate how
TimerShield prevents such unprivileged background tasks from
having adverse effects on response times or throughput, a
common assumption in real-time scheduling theory.

We simulated a hostile userspace task using Linux’s
timerfd API to create a large number of timers in
userspace [20]. The timerfd API allows creating timers (with
nanosecond granularity, similar to clock_nanosleep())
whose expiration notifications can be read from a file descriptor.
This allows programs to check for a large number of timer
expirations easily using the familiar select(), poll(), or
epoll() file-descriptor polling mechanisms. Our primary
reasons for using this interface in this example are (i) to
demonstrate the versatility of TimerShield under different timer
interfaces, and (ii) because the timerfd interface allows a sin-
gle unprivileged process to manage multiple concurrent timers,
unlike clock_nanosleep(), with which each process can
create only one kernel timer at a time.

We present results from two variants of the hostile task to
demonstrate the extent of interference that could potentially be
created. The first variant manages 100 periodic timers while the
second manages 1,000 timers (note that creating an even larger
number of timers is trivially possible). Timers are polled via
the epoll() system call and their expiration notifications are
monitored using a blocking read() loop. Timer periods for
the first hostile task varied from 1µs to 100µs (in increments
of 1µs) and that of the second hostile task varied from 1µs to
1000µs (again, in increments of 1µs). We employed the same
high-priority task as in the previous two experiments.

Figs. 9 and 10 show the results for these experiments for
both Intel and ARM platforms. On both platforms, the baseline
kernel shows a drastic degradation in the response time of the
high priority task in the presence of the hostile userspace task.
Thus under a baseline kernel, a high-priority task would need
to account for interference from unprivileged, non-real-time
userspace tasks that use timers. As the response time increase is
proportional to the number of background timers the hostile task
creates, the worst-case interference could potentially be very
large, and is in fact currently only restricted by the maximum

170 180 190 200 210 220 230
Response Time (in us)

0.0
0.2
0.4
0.6
0.8
1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

No LP timers, Vanilla
100 LP timers, Vanilla
1000 LP timers, Vanilla
No LP timers, TimerShield
100 LP timers, TimerShield
1000 LP timers, TimerShield

Fig. 10: CDF of high-priority task response times with user-
priority (SCHED NORMAL) timers (ARM platform).

Intel ARM
Idle Hostile Idle Hostile

Baseline 7,044.4 6,916.8 471.6 450.6
TimerShield 7,048.3 7,047.0 471.5 471.1

TABLE II: High-priority task throughput in req/ms.

possible number of timers allowed in the operating system.4 In
contrast, the response time distribution of the high-priority task
remains entirely unaffected under TimerShield, demonstrating
how our approach limits timer interrupt interference from
unprivileged userspace tasks.

We also measured the throughput of a simple high-priority
real-time task that performs as many 3×3 matrix multiplications
as possible in a loop. We measured the mean matrix multiplica-
tions per millisecond from 10,000 collected samples. Table II
compares the mean throughput (for Linux and TimerShield
under both Intel and ARM platforms) with and without the
1000-timer variant of the hostile task running in background
(denoted “Hostile” and “Idle” in Table II respectively).

As can be seen from Table II, with the introduction of the
hostile task in the background, the baseline kernel sees a
reduction in mean throughput of ~100 matrix-multiplications
per millisecond under Intel, and ~20 matrix-multiplications per
millisecond under ARM (i.e., a throughput reduction of 1.8%
and 4.4% under Intel and ARM respectively). In contrast, under
TimerShield, we observe nearly consistent throughput regardless
of whether the hostile background task is running. (The small
reduction (~1 req/ms) was again due to increased cache misses
within the kernel, from dealing with a large number of timers.)

D. Low-Priority Tasks Under TimerShield

While we have focused on high-priority tasks so far, we
also evaluated the effect that TimerShield has on lower-priority
processes. In particular, under TimerShield, the lowest-priority
task stands to suffer the greatest delay as it incurs the data-
structure and implementation-related overheads from all higher-
priority tasks, as well as the added context-switch overhead.

To evaluate this, we ran tasks of three different priorities. The
highest-priority task was run at the highest SCHED FIFO prior-
ity with a period of 1 ms and performed matrix-multiplications
(as done in the first two experiments in Sec. IV-C). A varying

4In Linux this is only limited by the (configurable) limit on the number of
open file descriptors that a process can have.

8

0 20 40 60 80 100 120 140
Response Time (in us)

0.0
0.2
0.4
0.6
0.8
1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

1 MP task, Baseline
30 MP tasks, Baseline
50 MP tasks, Baseline
1 MP task, TimerShield
30 MP tasks, TimerShield
50 MP tasks, TimerShield

Fig. 11: CDF of response times of lowest-priority task (Intel).

0 50 100 150 200 250 300 350 400
Response Time (in us)

0.0
0.2
0.4
0.6
0.8
1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

1 MP task, Baseline
30 MP tasks, Baseline
50 MP tasks, Baseline
1 MP task, TimerShield
30 MP tasks, TimerShield
50 MP tasks, TimerShield

Fig. 12: CDF of response times of lowest-priority task (ARM).

number of medium priority tasks were run at priority 75 under
the SCHED FIFO policy, which additionally interfere with the
execution of the low-priority task through periodic sleeps via
clock_nanosleep(). Finally, we measured the response
time of a single low-priority task running at priority 70 under the
SCHED FIFO policy priority with a period of 0.9 ms, which runs
a small computation loop per job. We measured the response
time of this low-priority task starting from its job release (i.e.,
when it would have started executing in an idle system) to its
completion (signaled by the programming of its subsequent
wakeup timer). We varied the number of medium priority tasks
from 1 to 50; we only show the results for 1, 30, and 50 medium-
priority tasks for clarity.

Figs. 11 and 12 show the resulting CDFs of the lowest-
priority task on both the Intel and ARM platforms. It can be
seen from the figure that there is a negligible increase in the
response time of the lower-priority task under TimerShield.
This is because the increased overheads of accessing the more-
complex data-structures in TimerShield are compensated for
by the lowered overhead of servicing expired interrupts in
batches rather than one at a time, immediately when they occur.
Further, the response time does not increase significantly with
an increasing number of medium priority tasks. In fact, in all
evaluated configurations, the largest increase in mean response
time we observed was 0.06µs under Intel and 1.79µs under
ARM. We believe this to be an acceptable overhead due to the
significantly better predictability of higher-priority tasks.

V. RELATED WORK

High-resolution timer subsystems have been in use for many
years. In a Linux context, KURT RTOS [38] was one of the first

systems to use one-shot timers to realize high-resolution soft-
ware timers, which inspired further implementations [13, 23, 33]
and related applications [4, 14]. Concerning timer interference,
there has been a considerable amount of prior work seeking to
account for and/or control interrupts in real-time systems.

Interrupt accounting. A lot of prior work has focused on
interrupt accounting for real-time schedulability analysis. A
straightforward approach [28] involves treating interrupts as
sporadic jobs having the highest priority in the system, and
subsequently applying standard fixed-priority response-time
analysis. Jeffay and Stone [18] derived an analysis to account
for interrupts under earliest-deadline first (EDF) scheduling.
Sandstrom et al. proposed accounting for interrupts by looking
at worst-case arrival patterns [37]. More recently, overhead
accounting for interrupts has been extended to global scheduling
on multiprocessors [7, 9]. TimerShield eliminates a lot of the
pessimism involved in accounting for high-resolution timer
interrupt overheads as lower-priority timer interrupts can be
safely ignored when analyzing high-priority tasks.

Avoiding interrupt interference. The Spring RTOS avoids
execution delays due to interrupt handlers entirely by dedicating
a separate processor to handling interrupts [39]. Brandenburg
and Anderson adapted [8] a similar approach for handling all
interrupts under global scheduling, and Cerqueira et al. [10]
applied the same technique in work on scalable global schedul-
ing. Others have proposed FPGA-based approaches that min-
imize interrupt interference by incorporating custom interrupt
controllers [15, 25, 40]. In contrast, TimerShield is easier to
incorporate into existing systems as it is a portable, purely
software-based approach. Sáez and Crespo [36] describe an
event-driven scheduler that reprograms the hardware timer only
when a higher priority task needs to be woken up. This work
closely relates to our handling of sleep-based system calls.
However, our approach modifies the entire high-resolution
subsystem instead of only focusing on scheduler wakeups.
Leyva-del-Foyo et al. [26] present an approach for integrating
the scheduling of IRQs with the kernel scheduler by selectively
disabling lower-priority IRQ lines at runtime. This is in spirit
similar to what TimerShield does for software timers, but applied
at IRQ-level granularity.

Bottom-half scheduling. With split-interrupt handling mech-
anisms [28], top halves execute at effectively the highest
priority (w.r.t. process priorities), but bottom-halves can be
executed at any priority. Elliot and Anderson [12] studied the
problem of prioritizing bottom halves for GPGPU workloads in
PREEMPT RT. L4-family microkernels [27] (e.g., seL4 [21],
Fiasco [1]) integrate bottom halves in an elegant manner: they
deliver interrupts to processes as messages via inter-process
communication (IPC) calls. Jung et al. [19] proposed a technique
to stabilize execution times of user-space processes by budgeting
the CPU time of bottom halves. Scheduling bottom halves by
reservation-based mechanisms has also been considered in recent
years [29, 30]. QNX also supports budget-sharing and priority-
inheritance schemes for interrupt bottom halves [35]. Zhang
and West [42] proposed a scheme where the priority of the

9

target process is predicted and the bottom half scheduled with
that priority (appropriate enforcement techniques accounted
for priority mispredictions). Lee et al. [24] improved upon
this by focusing on UDP network packet interrupts and thus
knowing the priority of the target process a priori. Missimer
et al. [31] proposed the I/O Adaptive Mixed-Criticality model
with budget enforcement of device bottom halves for use in
mixed-criticality systems. However, all of the above approaches
still face interference from interrupt top-halves, which for timer
interrupts is avoided completely by TimerShield.

VI. CONCLUSION

We have demonstrated the negative impact of interrupt
interference on the predictability of high-priority tasks as it
occurs in current designs for high-resolution timer subsystems.

To eliminate such interference, we have proposed Timer-
Shield, a novel high-resolution timer subsystem design that com-
pletely avoids lower-priority timer interference while incurring
only low overhead. We presented the design and implementation
of TimerShield in Linux (TimerShield itself can be adapted
to other OSes easily), and compared our prototype with stock
Linux PREEMPT RT on two platforms. Our evaluation shows
that the benefits of avoiding interrupt interference justify the
minor overhead increase due to the use of more complex data
structures. All relevant source code is available online [3].

In future work, it would be interesting to see if TimerShield
can be extended to EDF schedulers.

REFERENCES

[1] “The Fiasco microkernel,” https://os.inf.tu-dresden.de/fiasco/.
[2] “Real-time Linux wiki. cyclictest - RTwiki,” https://rt.wiki.kernel.

org/index.php/Cyclictest, accessed: 2016-10-13.
[3] “TimerShield implementation,” available at https://www.mpi-sws.

org/∼bbb/papers/details/rtas17p, 2016.
[4] L. Abeni, A. Goel, C. Krasic, J. Snow, and J. Walpole, “A

measurement-based analysis of the real-time performance of
Linux,” in RTAS, 2002.

[5] M. Bender and M. Farach-Colton, “The LCA problem revisited,”
in LATIN, 2000.

[6] D. Bovet and M. Cesati, Understanding The Linux Kernel. Or-
eilly & Associates Inc, 2005.

[7] B. Brandenburg, “Scheduling and locking in multiprocessor real-
time operating systems,” Ph.D. dissertation, The University of
North Carolina at Chapel Hill, 2011.

[8] B. Brandenburg and J. Anderson, “On the implementation of
global real-time schedulers,” in RTSS, 2009.

[9] B. Brandenburg, H. Leontyev, and J. Anderson, “An overview
of interrupt accounting techniques for multiprocessor real-time
systems,” Journal of Systems Architecture: Embedded Software
Design, vol. 57, no. 6, pp. 638–654, 2011.

[10] F. Cerqueira, M. Vanga, and B. B. Brandenburg, “Scaling global
scheduling with message passing,” in RTAS, 2014.

[11] M. Dima and R. Ceterchi, “Efficient range minimum queries
using binary indexed trees,” Olympiads in Informatics, vol. 9, pp.
39–44, 2015.

[12] G. A. Elliott and J. H. Anderson, “The limitations of fixed-priority
interrupt handling in PREEMPT RT and alternative approaches,”
in RTLWS, 2012.

[13] T. Gleixner and D. Niehaus, “Hrtimers and beyond: Transforming
the linux time subsystems,” in OLS, 2006.

[14] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole, “Sup-
porting time-sensitive applications on a commodity OS,” ACM
SIGOPS Operating Systems Review, vol. 36, pp. 165–180, 2002.

[15] T. Gomes, P. Garcia, F. Salgado, J. Monteiro, M. Ekpanyapong,
and A. Tavares, “Task-aware interrupt controller: Priority space
unification in real-time systems,” IEEE Embedded Systems Let-
ters, vol. 7, no. 1, pp. 27–30, 2015.

[16] IA-PC HPET (High Precision Event Timers) Specification, Intel
Corporation, 2004.

[17] MultiProcessor Specification, Intel Corporation, 1997.
[18] K. Jeffay and D. Stone, “Accounting for interrupt handling costs

in dynamic priority task systems,” in RTSS, 1993.
[19] K. J. Jung, S. G. Jung, and C. Park, “Stabilizing execution time

of user processes by bottom half scheduling in Linux,” in ECRTS,
2004.

[20] M. Kerrisk, The Linux Programming Interface: A Linux and UNIX
System Programming Handbook, 1st ed. No Starch Press, 2010.

[21] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish
et al., “seL4: Formal verification of an OS kernel,” in SOSP, 2009.

[22] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automo-
tive benchmark for free,” in WATERS, 2015.

[23] J. Lee and K.-H. Park, “Delayed locking technique for improving
real-time performance of embedded Linux by prediction of timer
interrupt,” in RTAS, 2005.

[24] M. Lee, J. Lee, A. Shyshkalov, J. Seo, I. Hong, and I. Shin, “On
interrupt scheduling based on process priority for predictable real-
time behavior,” ACM SIGBED Review, vol. 7, no. 1, p. 6, 2010.

[25] L. E. Leyva-del Foyo and P. Mejia-Alvarez, “Custom interrupt
management for real-time and embedded system kernels,” in
RTSS, 2004.

[26] L. E. Leyva-del Foyo, P. Mejia-Alvarez, and D. de Niz, “In-
tegrated task and interrupt management for real-time systems,”
ACM TECS, vol. 11, no. 2, p. 32, 2012.

[27] J. Liedtke, “On micro-kernel construction,” in SOSP, 1995.
[28] J. W. S. W. Liu, Real-Time Systems, 1st ed. Prentice Hall PTR,

2000.
[29] N. Manica, L. Abeni, and L. Palopoli, “Reservation-based inter-

rupt scheduling,” in RTAS, 2010.
[30] N. Manica, L. Abeni, L. Palopoli, D. Faggioli, and C. Scordino,

“Schedulable device drivers: Implementation and experimental
results,” OSPERT, 2010.

[31] E. Missimer, K. Missimer, and R. West, “Mixed-criticality
scheduling with I/O,” in ECRTS, 2016.

[32] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A portable
interface to hardware performance counters,” in DoD HPCMP
Users Group Conference, 1999.

[33] S. Oikawa and R. Rajkumar, “Portable RK: A portable resource
kernel for guaranteed and enforced timing behavior,” in RTAS,
1999.

[34] F. P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction. Springer, 1985.

[35] QNX Nutrino RTOS: System Architecture, QNX Software Sys-
tems Limited, 2012.

[36] S. Sáez and A. Crespo, “Integrated schedulers for a predictable in-
terrupt management on real-time kernels,” in Ada-Europe, 2014.

[37] K. Sandstrom, C. Eriksson, and G. Fohler, “Handling interrupts
with static scheduling in an automotive vehicle control system,”
in RTCSA, 1998.

[38] B. Srinivasan, S. Pather, R. Hill, F. Ansari, and D. Niehaus, “A
firm real-time system implementation using commercial off-the-
shelf hardware and free software,” in RTAS, 1998.

[39] J. A. Stankovic and K. Ramamritham, “The Spring kernel: A
new paradigm for real-time operating systems,” ACM SIGOPS
Operating Systems Review, vol. 23, no. 3, pp. 54–71, 1989.

[40] J. Strnadel, “Load-adaptive monitor-driven hardware for prevent-
ing embedded real-time systems from overloads caused by exces-
sive interrupt rates,” in ARCS, 2013.

[41] G. Varghese and T. Lauck, “Hashed and hierarchical timing
wheels: Data structures for the efficient implementation of a timer
facility,” SIGOPS Operating Systems Review, vol. 21, no. 5, 1987.

[42] Y. Zhang and R. West, “Process-aware interrupt scheduling and
accounting,” in RTSS, 2006.

10

https://os.inf.tu-dresden.de/fiasco/
https://rt.wiki.kernel.org/index.php/Cyclictest
https://rt.wiki.kernel.org/index.php/Cyclictest
https://www.mpi-sws.org/~bbb/papers/details/rtas17p
https://www.mpi-sws.org/~bbb/papers/details/rtas17p

