Extreme Memoization Everything in a LUT!

Pratyush PatelLuis Ceze

Extreme Meme-oization Everything in a LUT!

Pratyush PatelLuis Ceze

Extreme Meme-oization Everything in a LUT!

Memory capacity scaling

Memory capacity scaling

iPhone storage scaling

Storage (GB)

iPhone 1 2² GB 0 1 3G 4 5 6 7 8 X 11P iPhone Generation

iPhone 11 Pro 2° GB

iPhone storage scaling

2007 iPhone 1 2² GB

2019 iPhone 11 Pro 2° GB

iPhone storage scaling

At this rate, the 2055 iPhone 47 will store ~2⁷⁵ bytes: the total data ever generated thus far

*assumes future iPhone generations are sequential natural numbers

2007 iPhone 1 2² GB

2° GB

Datacenter and mobile networks scaling

Datacenter and mobile networks scaling

Datacenter and mobile networks scaling

When storage + access energy is lower than computation energy

We compute by memorization!!

Source: Harvard University Youtube Channel

We compute by memorization!!

Source: Harvard University Youtube Channel

Memoize function, inputs, and outputs

Memoize function, inputs, and outputs

f() implemented in any PL

Hash a language-agnostic IR!

Many ways to write the same function

Maybe use equivalence graphs?

Maybe use equivalence graphs?

Store key-value pair in the global LUT

Too big a (lookup) table?

Too big a (lookup) table?

We might need a helluva lot of Hellabytes

1 Hellabyte = 10^{27} bytes

There's prior work on this!

Fuzzy memoization for floating-point multimedia applications [TC '05] Temporal approximate function memoization [IEEE Micro '18]

There's prior work on this!

Fuzzy memoization for floating-point multimedia applications [TC '05] Temporal approximate function memoization [IEEE Micro '18]

Cloud-scale DNA storage to the rescue!

Cloud-scale DNA storage to the rescue!

Storing a Hellabyte would require 3 trillion kg of SSDs, but only 2500 kg of DNA!

Source: Max Willsey and Luis Ceze, Mega-Microfluidics, WACI 2019

Cloud-scale DNA storage to the rescue!

Storing a Hellabyte would require 3 trillion kg of SSDs, but only 2500 kg of DNA!

Source: Max Willsey and Luis Ceze, Mega-Microfluidics, WACI 2019

Sharing is caring

Sharing is caring

Security and privacy implications

Attacker could brute force inputs to perform timing attacks on sensitive data What happens to open-source code and cryptography?

A sampling of new research challenges

Your idea here!

Extreme Memoization Everything in a LUT!

Thanks!

Pratyush Patel — patelp1@cs.uw.edu