RTCSA 2017

A Server-based Approach for
Predictable GPU Access Control

Hyoseung Kim™ Pratyush Patel’ Shige Wang* Raj Rajkumar?’

* University of California, Riverside

" Carnegie Mellon University
*General Motors R&D

Benefits of GPUs

e High computational demands of recent safety-critical systems
— Long execution times = Hard to meet their deadlines

e General-Purpose Graphics Processing Units (GPUs)
— 4-20x faster than a CPU for data-parallel, compute-intensive workloads”
— Many embedded multi-core processors have on-chip GPUs

SAMSUNG

E

NVIDIA TK1/TK2 NXP i.MX6 Samsung Exynos 9

* Govindaraju et al. High Performance Discrete Fourier Transforms on Graphics Processors. ACM/IEEE conference on Supercomputing (SC), 2008.

2

RTCSA 2017

GPU Execution Pattern

e Task accessing a GPU

Normal exec. Normal exec.
segment GPU access segment segment

P »
< »

»la [
l L »

CPU - .

| @ Trigger GPU computation

| (@ Copy results
to CPU

@ Copy data
(3 Notify completion

eru 7 [W

‘ GPU kernel execution]

\

Need for predictable GPU access control

* To bound and minimize GPU access time
e To achieve better task schedulability

RTCSA 2017

Many of Today’s COTS GPUs

1. Do not support preemption
— Due to the high overhead expected on GPU context switching”

— Some recent GPU architectures support preemption (e.g., NVIDIA Pascal)

2. Handle GPU requests in a sequential manner

— Concurrent execution of GPU kernels may result in unpredictable delay
0.1s 0.125s 0.15s

_ SHERNE, Four same kernels on NVIDIA GTX 980
AL L N * 97% slowdown on two kernels

Unpredictable who gets the delay

3. Do not respect task priorities and the scheduling policy used
— May result in unbounded priority inversion

*1. Tanasic et al. Enabling preemptive multiprogramming on GPUs. In International Symposium on Computer Architecture (ISCA), 2014,

4

RTCSA 2017

Prior Approach

e Synchronization-based approach™'*
— Models each GPU access segment as a critical section
— Uses a real-time synchronization protocol to handle GPU requests

GPU access segment

Lock () \ - Critical section J o ' Unlock

N
GPU 'R R

— Does not require any change in GPU device drivers

>
l

CPU_IH

I

<4----

v

Benefits {

— Existing schedulability analyses can be directly reused

*G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems with GPUs. Real-Time Syst., 48(1):34—74, 2012.
*G. Elliott and J. Anderson. An optimal k-exclusion real-time locking protocol motivated by multi-GPU systems. Real-Time Syst., 49(2):140-170, 2013.
*G. Elliott et al. GPUSync: A framework for real-time GPU management. In IEEE Real-Time Systems Symposium (RTSS), 2013.

5

RTCSA 2017

Limitations

Common assumptions of most RT synch.
1. Busy waiting protocols, e.g., MPCP*, FMLPt, OMLP%

— Critical sections are executed entirely on the CPU } /
— No suspension during the execution of a critical section

Critical section

>

Lock ¢ J g1 Unlock

l

CPU

GPU N

2. Long priority inversion
— High priority tasks may suffer from unnecessarily long priority inversion

— Due to priority boosting used by some protocols, e.g., MPCP and FMLP

*R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for multiprocessors. In IEEE Real-Time Systems Symposium (RTSS), 1988.
T A. Block et al. A flexible real-time locking protocol for multiprocessors. In IEEE Embedded and Real-Time Comp. Systems and Apps., (RTCSA), 2007.

* B. Brandenburg and J. Anderson. The OMLP family of optimal multiprocessor real-time locking protocols. Design Automation for Embedded Systems,
17(2):277-342, 2013. 5

RTCSA 2017

Our Contributions

e Server-based approach for predictable GPU access control

e Addresses the limitations of the synchronization-based approach
— Yields CPU utilization benefits
— Reduces task response time

e Prototype implementation on an NXP i.MX6 running Linux

e Can be used for other types of computational accelerators,
such as a digital signal processor (DSP)

RTCSA 2017

Outline

e Server-based approach for predictable GPU access control
— System model
— GPU server and analysis
— Comparison with the synchronization-based approach

e Evaluation

e Conclusions

System Model

e Single general-purpose GPU device

— Shared by tasks in a sequential, non-preemptive manner

e Sporadic tasks with constrained deadlines
— Task t; == (C;, T;, Dy, Gi,m;)

e (;: Sum of the WCET of all normal execution segments

T;: Minimum inter-arrival time
D;: Relative deadline | GPU segment Gu|

G;: Max. accum. length of all GPU segments CPU __! !_A__>

n;: Number of GPU access segments : .

_ GPU segment Gy = (G2, GI") cu_ B E

GPU kernel ij

l]'

e Partitioned fixed-priority preemptive task scheduling

RTCSA 2017

Server-based Approach

e GPU server task
— Handles GPU access requests from other tasks on their behalf
— Allows tasks to suspend whenever no CPU intervention is needed

/ Highest priority
Task t; GPU Server Task

GPU request queue
GPU access || (1) Request to the auesta

_ segment GPU server task

Shared Data - @ Order regs.
memory - Command in task priority

region Code T; suspends
(3) Execute the highest
priority GPU request

GPU server suspends during CPU-inactive time GPU

10

RTCSA 2017

Timing Behavior of GPU Server

e GPU server overhead €
— Receiving a request and waking up the GPU server
— Checking the request queue
— Notifying the completion of the request

e Maximum handling time of all GPU requests of 7; by GPU server

Total waiting time GPU segment length ~ Server overhead (twice per segment)

R _ B 4+ G H2n€el :m; >0
L 0 77@:0

11

RTCSA 2017

Task Response Time with GPU Server

e Case 1:atask 7; and the GPU server are on the same CPU core

GPU segment handling time _— Self-suspension by
o W W — O higher-priority tasks™
+1 _ gpu i Y h—Yh
Wit =0 BT Y [(e

Th EP(T;) AT >T;
Wi +{D;—(G"" + 2nje) }
1

+Z[

leféT?j/\‘Th' >0

(@ 2mje)

N Interference from the GPU server (e.qg., GPU mem copy by server)

e Case 2:atask 7; and the GPU server are on different cores

Z Win + (Wh — Ch)
T

Win—kl :Cz _|_B§)pu 4+

Th EP(Ti)ATH >T;

—‘Ch,

No interference from the GPU server (and misc. GPU operations)

*J.-J. Chen et al. Many suspensions, many problems: A review of self-suspending tasks in real-time systems. Technical Report 854, Department of
Computer Science, TU Dortmund, 2016.

12

RTCSA 2017

Example under Synch-based Approach

* MPCP is used

Response time of task t;: 9
A

r \
) I s o |
CPU | | | GPU req. Priority boosting | | 1
Core - o o
1 -
Tm : : : : 'y
- GPU req. Priority boosting
CPU] @ d'
Core { T
2 GPU req. Priority boosting
G,
GPU

0 1 2 3 4 5 6 7 8 9 10 11 12

. Busy waiting

i Normal exec. segment . Misc. GPU operation . GPU computation

13

RTCSA 2017

Example under Server-based Approach

Response time of task t;: 6+4¢
A

E
) 3, r \
GPU
server
! A
CPU
Core { ‘h
1
Tm
CPU J]
Core { «
2 GPU req.
T Th T
{ A \ 'f A \| I Am \
v

0 1 2 3 4 5 6 7 8 9 10 11 12

i Normal exec. segment . Misc. GPU operation . GPU computation . Svr. overhead

14

RTCSA 2017

Implementation

e SABRE Lite board (NXP i.MX6 SoC)
— Four ARM Cortex-A9 cores running at 1GHz
— Vivante GC2000 GPU — OpenCL
— NXP Embedded Linux kernel version 3.14.52
— Linux/RK version 1.6 patch”

25
e GPU server overhead €
- 20
— Total of 44.97us delay =
T 15
g 10
o

o

Wake up server Server execution Wake up task
delay

*Linux/RK: http://rtml.ece.cmu.edu/redmine/projects/rk/

M Mean ™ 99.9th percentile
15

http://rtml.ece.cmu.edu/redmine/projects/rk/

RTCSA 2017

Case Study

e Motivated by the software system of the CMU’s self-driving car’
— Workzone Recognition Algorithm’
— Two other GPU-using tasks and two CPU-only tasks

*J. Wei et al. Towards a viable autonomous driving research platform. In IEEE Intelligent Vehicles Symposium (1V), 2013.
*J. Lee et al. Kernel-based traffic sign tracking to improve highway workzone recognition for reliable autonomous driving. In IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2013.

16

RTCSA 2017

Task Execution Timeline
e Synchronization-based approach (using MPCP)

°°°°°° il---l-I-l\---l-
hJ v
v v v
prrsni | B I I] I
v
gpu_matmul
2
o BT3B B A

e Server-based approach

el WL 10 TN T TR O A O IR O I O A O A A Y
| [T i [T

eeeee NN NI i -
" R R R R R
peremt ||| Response time of a GPU-using task:

il ‘mk 520.68 ms vs. 219.09 ms in the worst case)

17

RTCSA 2017

Schedulability Experiments

e Purpose: To explore the impact of the two approaches on task

schedulability

e 10,000 randomly-generated tasksets

Parameters Values
Number of CPU cores (Np) 4, 8
Number of tasks per core [3, 5]
Percentage of GPU-using tasks [10, 30] %
Task period and deadline (I; = D;) [100, 500] ms
Taskset utilization per core [30, 50] %
Ratio of GPU segment len. to normal WCET (G, /C;) [10, 30] %
Number of GPU segments per task (7;) [1, 3]
Ratio of misc. operations in G; ; (G% /G i) [10, 20] %
GPU server overhead (¢) 50 ps

18

RTCSA 2017

Results (1)

e Schedulability w.r.t. the percentage of GPU-using tasks

—+— MPCP (Np=4) —¢—Server (Np=4)
--4#--- MPCP (Np=8) --{z}-- Server (Np=8)

"©
80% o
’ ’\‘ \\,\ \k \\
60%

40% .
.\ \
20%
’h‘"-._- \Eh“. \‘____.;
0% : : : : B LSSV S @

0 10 20 30 40 50 60 70 80 90 100
Percentage of GPU-using tasks (%)

100% -

Schedulable tasksets (%)
.l-""l"I !

Server-based approach performs better in most cases
(with realistic parameters)

19

RTCSA 2017

Resu ItS (2) 44.97us was the overhead

in our platform

e Schedulability w.r.t. the GPU server overhead —

I L e S
80% +— It

X

&

g oU% T g g

> . 4 D it et -9
fSe0% +—-— — —— = o I
D

T 40%

3 509 —+— MPCP (Np=4) —<— Server (Np=4)

£ % T|--#--MPCP (Np=8) --E--Server (Np=8)

2 0% : : : : : :

0 01 02 03 04 05 06 07 08 09 1
GPU server overhead (g, msec)

Server-based approach does not dominate
synchronization-based approach

20

RTCSA 2017

Conclusions

e Server-based GPU access control

— Motivated by the limitations of the synchronization-based approach
e Busy-waiting and long priority inversion
— Implementation with an acceptable overhead
— Significant improvement over the synch-based approach in most cases

e Future directions
— Improvement of analysis (worst-case waiting time calculation)
— Comparison with other synchronization protocols
e e.g., recent extension of FMLP+ allows self-suspension within critical sections
— GPU server has a central knowledge of all GPU requests

e Efficient co-scheduling of GPU kernels, GPU power management, etc.

21

RTCSA 2017

Thank You

A Server-based Approach for Predictable GPU
Access Control

Hyoseung Kim™ Pratyush Patel’ Shige Wang* Raj Rajkumar’

* University of California, Riverside
" Carnegie Mellon University
*General Motors R&D

	A Server-based Approach for Predictable GPU Access Control
	Benefits of GPUs
	GPU Execution Pattern
	Many of Today’s COTS GPUs
	Prior Approach
	Limitations
	Our Contributions
	Outline
	System Model
	Server-based Approach
	Timing Behavior of GPU Server
	Task Response Time with GPU Server
	Example under Synch-based Approach
	Example under Server-based Approach
	Implementation
	Case Study
	Task Execution Timeline
	Schedulability Experiments
	Results (1)
	Results (2)
	Conclusions
	A Server-based Approach for Predictable GPU Access Control

