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Benefits of GPUs

e High computational demands of recent safety-critical systems
— Long execution times = Hard to meet their deadlines

e General-Purpose Graphics Processing Units (GPUs)
— 4-20x faster than a CPU for data-parallel, compute-intensive workloads”
— Many embedded multi-core processors have on-chip GPUs
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* Govindaraju et al. High Performance Discrete Fourier Transforms on Graphics Processors. ACM/IEEE conference on Supercomputing (SC), 2008.
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GPU Execution Pattern

e Task accessing a GPU

Normal exec. Normal exec.
segment GPU access segment segment
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Need for predictable GPU access control

* To bound and minimize GPU access time
e To achieve better task schedulability
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Many of Today’s COTS GPUs

1. Do not support preemption
— Due to the high overhead expected on GPU context switching”

— Some recent GPU architectures support preemption (e.g., NVIDIA Pascal)

2. Handle GPU requests in a sequential manner

— Concurrent execution of GPU kernels may result in unpredictable delay
0.1s 0.125s 0.15s

_ SHERNE, Four same kernels on NVIDIA GTX 980
AL L N *  97% slowdown on two kernels

Unpredictable who gets the delay

3. Do not respect task priorities and the scheduling policy used
— May result in unbounded priority inversion

*1. Tanasic et al. Enabling preemptive multiprogramming on GPUs. In International Symposium on Computer Architecture (ISCA), 2014,
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Prior Approach

e Synchronization-based approach™'*
— Models each GPU access segment as a critical section
— Uses a real-time synchronization protocol to handle GPU requests

GPU access segment

Lock () \ - Critical section J o ' Unlock

N
GPU 'R R

— Does not require any change in GPU device drivers
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Benefits {

— Existing schedulability analyses can be directly reused

*G. Elliott and J. Anderson. Globally scheduled real-time multiprocessor systems with GPUs. Real-Time Syst., 48(1):34—74, 2012.
*G. Elliott and J. Anderson. An optimal k-exclusion real-time locking protocol motivated by multi-GPU systems. Real-Time Syst., 49(2):140-170, 2013.
*G. Elliott et al. GPUSync: A framework for real-time GPU management. In IEEE Real-Time Systems Symposium (RTSS), 2013.
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Limitations

Common assumptions of most RT synch.
1. Busy waiting protocols, e.g., MPCP*, FMLPt, OMLP%

— Critical sections are executed entirely on the CPU } /
— No suspension during the execution of a critical section

Critical section

>

Lock ¢ J g1 Unlock

l

CPU

GPU N

2. Long priority inversion
— High priority tasks may suffer from unnecessarily long priority inversion

— Due to priority boosting used by some protocols, e.g., MPCP and FMLP

*R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols for multiprocessors. In IEEE Real-Time Systems Symposium (RTSS), 1988.
T A. Block et al. A flexible real-time locking protocol for multiprocessors. In IEEE Embedded and Real-Time Comp. Systems and Apps., (RTCSA), 2007.

* B. Brandenburg and J. Anderson. The OMLP family of optimal multiprocessor real-time locking protocols. Design Automation for Embedded Systems,
17(2):277-342, 2013. 5
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Our Contributions

e Server-based approach for predictable GPU access control

e Addresses the limitations of the synchronization-based approach
— Yields CPU utilization benefits
— Reduces task response time

e Prototype implementation on an NXP i.MX6 running Linux

e Can be used for other types of computational accelerators,
such as a digital signal processor (DSP)
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Outline

e Server-based approach for predictable GPU access control
— System model
— GPU server and analysis
— Comparison with the synchronization-based approach

e Evaluation

e Conclusions



System Model

e Single general-purpose GPU device

— Shared by tasks in a sequential, non-preemptive manner

e Sporadic tasks with constrained deadlines
— Task t; == (C;, T;, Dy, Gi,m;)

e (;: Sum of the WCET of all normal execution segments

T;: Minimum inter-arrival time
D;: Relative deadline | GPU segment Gu|

G;: Max. accum. length of all GPU segments CPU __! !_A__>

n;: Number of GPU access segments : .

_ GPU segment Gy = (G2, GI") cu_ B E

GPU kernel ij

l]'

e Partitioned fixed-priority preemptive task scheduling
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Server-based Approach

e GPU server task
— Handles GPU access requests from other tasks on their behalf
— Allows tasks to suspend whenever no CPU intervention is needed

/ Highest priority
Task t; GPU Server Task

GPU request queue
GPU access || (1) Request to the auesta

_ segment GPU server task

Shared Data - @ Order regs.
memory - Command in task priority

region Code T; suspends
(3) Execute the highest
priority GPU request

GPU server suspends during CPU-inactive time GPU
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Timing Behavior of GPU Server

e GPU server overhead €
— Receiving a request and waking up the GPU server
— Checking the request queue
— Notifying the completion of the request

e Maximum handling time of all GPU requests of 7; by GPU server

Total waiting time GPU segment length ~ Server overhead (twice per segment)

R _ B 4+ G H2n€el :m; >0
L 0 77@:0
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Task Response Time with GPU Server

e Case 1:atask 7; and the GPU server are on the same CPU core

GPU segment handling time _— Self-suspension by
o W W — O higher-priority tasks™
+1 _ gpu i Y h—Yh
Wit =0 BT Y [ (e

Th EP(T; ) AT >T;
Wi +{D;—(G"" + 2nje) }
1

+Z[

leféT?j/\‘Th' >0

(@ 2mje)

N Interference from the GPU server (e.qg., GPU mem copy by server)

e Case 2:atask 7; and the GPU server are on different cores

Z Win + (Wh — Ch)
T

Win—kl :Cz _|_B§)pu 4+

Th EP(Ti )ATH >T;

—‘Ch,

No interference from the GPU server (and misc. GPU operations)

*J.-J. Chen et al. Many suspensions, many problems: A review of self-suspending tasks in real-time systems. Technical Report 854, Department of
Computer Science, TU Dortmund, 2016.
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Example under Synch-based Approach

* MPCP is used

Response time of task t;: 9
A

r \
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- GPU req. Priority boosting
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2 GPU req. Priority boosting
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GPU

0 1 2 3 4 5 6 7 8 9 10 11 12

. Busy waiting

i Normal exec. segment . Misc. GPU operation . GPU computation
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Example under Server-based Approach

Response time of task t;: 6+4¢
A

E
) 3, r \
GPU
server
! A
CPU
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CPU J ]
Core { «
2 GPU req.
T Th T
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0 1 2 3 4 5 6 7 8 9 10 11 12

i Normal exec. segment . Misc. GPU operation . GPU computation . Svr. overhead
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Implementation

e SABRE Lite board (NXP i.MX6 SoC)
— Four ARM Cortex-A9 cores running at 1GHz
— Vivante GC2000 GPU — OpenCL
— NXP Embedded Linux kernel version 3.14.52
— Linux/RK version 1.6 patch”

25
e GPU server overhead €
- 20
— Total of 44.97us delay =
T 15
g 10
o

o

Wake up server Server execution Wake up task
delay

*Linux/RK: http://rtml.ece.cmu.edu/redmine/projects/rk/

M Mean ™ 99.9th percentile
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Case Study

e Motivated by the software system of the CMU’s self-driving car’
— Workzone Recognition Algorithm’
— Two other GPU-using tasks and two CPU-only tasks

*J. Wei et al. Towards a viable autonomous driving research platform. In IEEE Intelligent Vehicles Symposium (1V), 2013.
*J. Lee et al. Kernel-based traffic sign tracking to improve highway workzone recognition for reliable autonomous driving. In IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2013.
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Task Execution Timeline
e Synchronization-based approach (using MPCP)
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e Server-based approach
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peremt ||| Response time of a GPU-using task:

il ‘mk 520.68 ms vs. 219.09 ms in the worst case )
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Schedulability Experiments

e Purpose: To explore the impact of the two approaches on task

schedulability

e 10,000 randomly-generated tasksets

Parameters Values
Number of CPU cores (Np) 4, 8
Number of tasks per core [3, 5]
Percentage of GPU-using tasks [10, 30] %
Task period and deadline (I; = D;) [100, 500] ms
Taskset utilization per core [30, 50] %
Ratio of GPU segment len. to normal WCET (G, /C;) [10, 30] %
Number of GPU segments per task (7;) [1, 3]
Ratio of misc. operations in G; ; (G% /G i) [10, 20] %
GPU server overhead (¢) 50 ps
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Results (1)

e Schedulability w.r.t. the percentage of GPU-using tasks

—+— MPCP (Np=4) —¢—Server (Np=4)
--4#--- MPCP (Np=8) --{z}-- Server (Np=8)

"©
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’ ’\‘ \\,\ \k \\
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0% : : : : B LSSV S @

0 10 20 30 40 50 60 70 80 90 100
Percentage of GPU-using tasks (%)

100% -

Schedulable tasksets (%)
.l-""l"I !

Server-based approach performs better in most cases
(with realistic parameters)
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Resu ItS (2) 44.97us was the overhead

in our platform

e Schedulability w.r.t. the GPU server overhead —
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GPU server overhead (g, msec)

Server-based approach does not dominate
synchronization-based approach
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Conclusions

e Server-based GPU access control

— Motivated by the limitations of the synchronization-based approach
e Busy-waiting and long priority inversion
— Implementation with an acceptable overhead
— Significant improvement over the synch-based approach in most cases

e Future directions
— Improvement of analysis (worst-case waiting time calculation)
— Comparison with other synchronization protocols
e e.g., recent extension of FMLP+ allows self-suspension within critical sections
— GPU server has a central knowledge of all GPU requests

e Efficient co-scheduling of GPU kernels, GPU power management, etc.
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