Characterizing Power Management Opportunities for LLMs in the Cloud

Pratyush Patel

Esha Choukse Chaojie Zhang Íñigo Goiri Brijesh Warrier Nithish Mahalingam Ricardo Bianchini

Microsoft places huge cap-ex bets on datacenters for cloud and AI

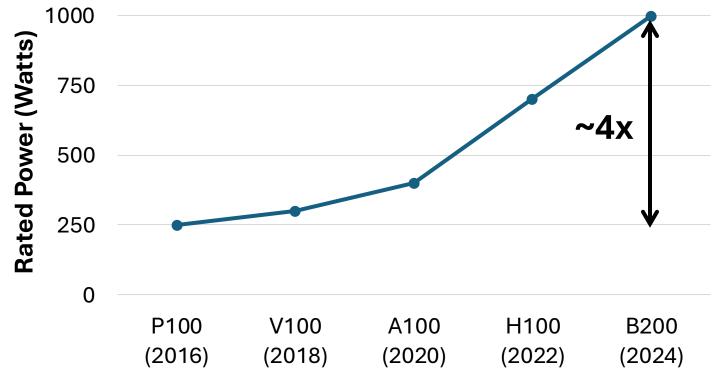
Google Cloud braces for AI compute costs, ramps up data center

inves Zuckerberg's Meta Is Spending Billions to Buy 350,000 Nvidia H100 GPUs

In ta deve Amazon Aims for Al Supremacy With \$88 Data Surge in Ohio

Amazon Web Services also is building \$35B in new data center capacity in Virginia.

GPU clusters for LLMs are incredibly power hungry



NVIDIA GPU Generation

Big Tech's Latest Obsession Is Finding Enough Energy

The AI boom is fueling an insatiable appetite for electricity, which is

Data Centers in Demand Despite Global Power Limitations

U.S. Power Grid Struggles to Keep Up with Data Center Growth

Power output will need to double to keep pace with voracious demand for electricity.

Addressing the power wall for LLMs at scale

Profile power usage patterns of training and inference workloads in production clusters

Analyze design implications for power management in cloud deployments

Build a power oversubscription framework that safely adds ~30% more servers in inference clouds

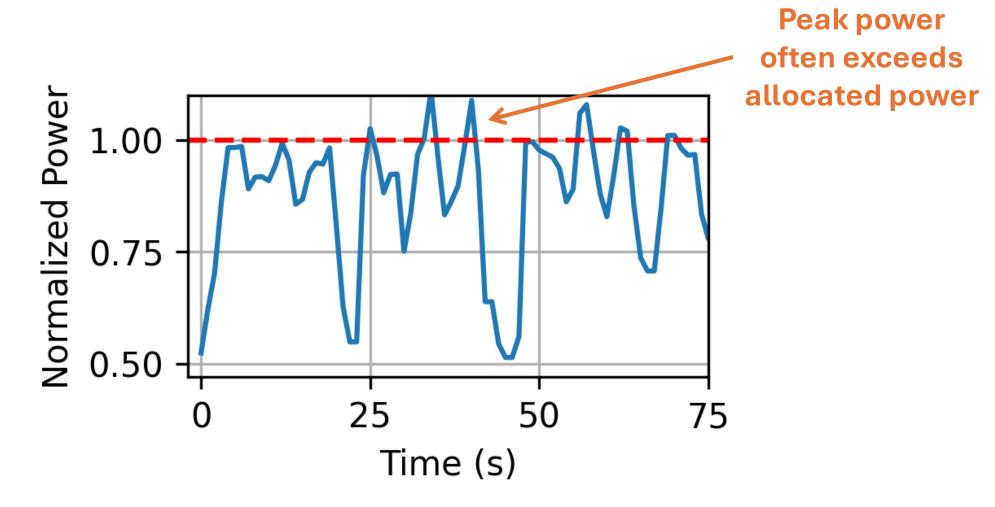
Characterizing Power Management Opportunities for LLMs in the Cloud

Power usage patterns of LLMs in production

Design implications for cloud deployments

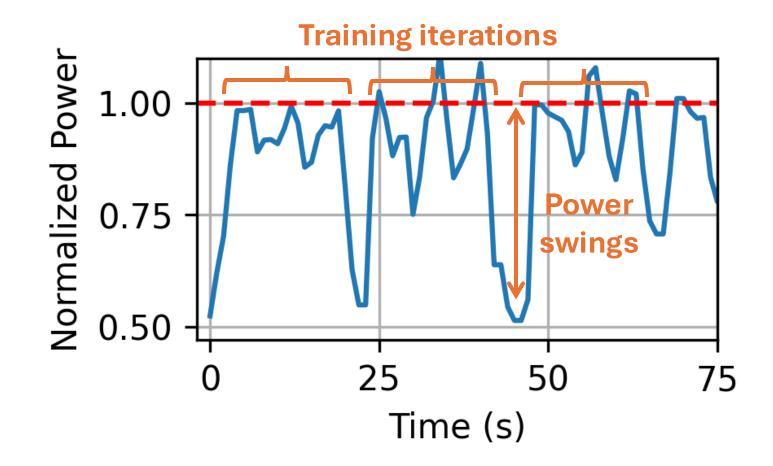
Power oversubscription for LLM inference clouds

Training power usage patterns



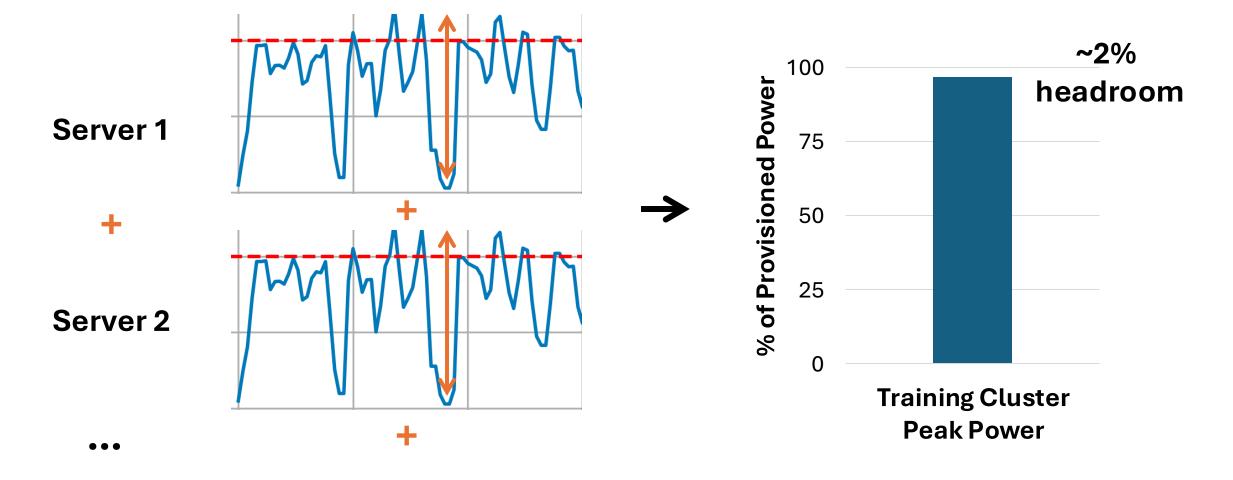
LLM fine-tuning on 8 A100 GPUs

Training power usage is periodic



LLM fine-tuning on 8 A100 GPUs

Training clusters have little power headroom



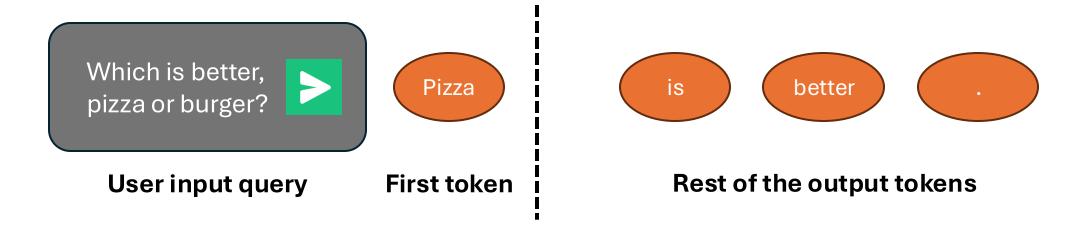
Due to synchronized computation and communication across thousands of GPUs 10

Inference requests have two compute phases

User input query

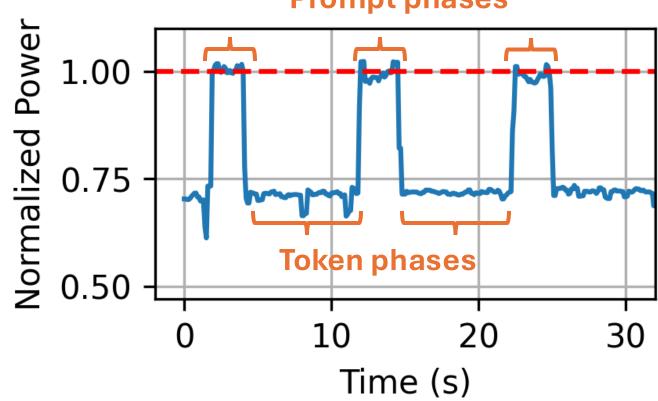
LLM response (output tokens)

Inference requests have two compute phases



Prompt phase	Token phase	
User input processed in parallel	Serialized token generation	
Compute intensive	Memory intensive	

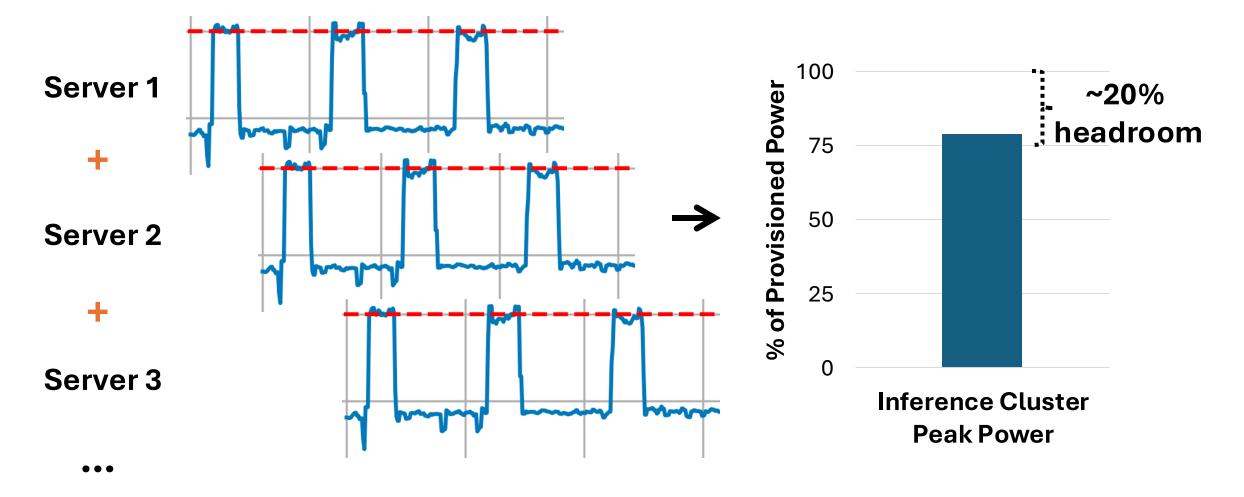
Each phase has distinct power draw patterns



Prompt phases

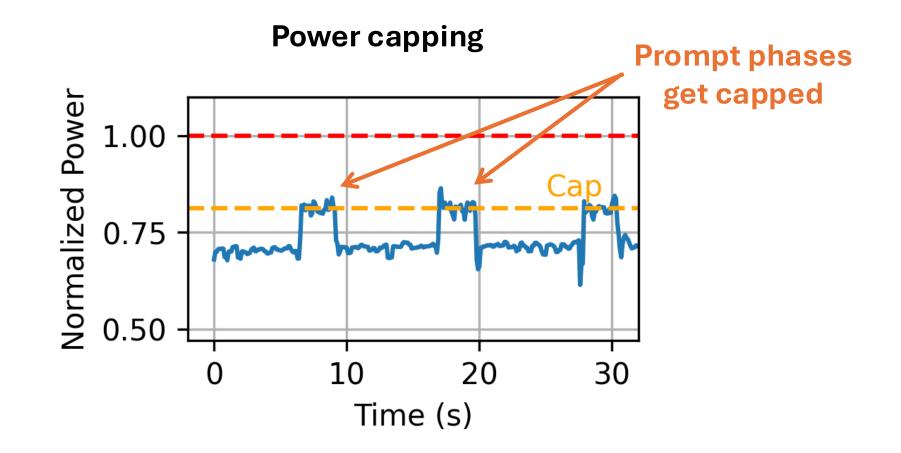
3x LLM inference requests on 8 A100 GPUs

Inference clusters underutilize power

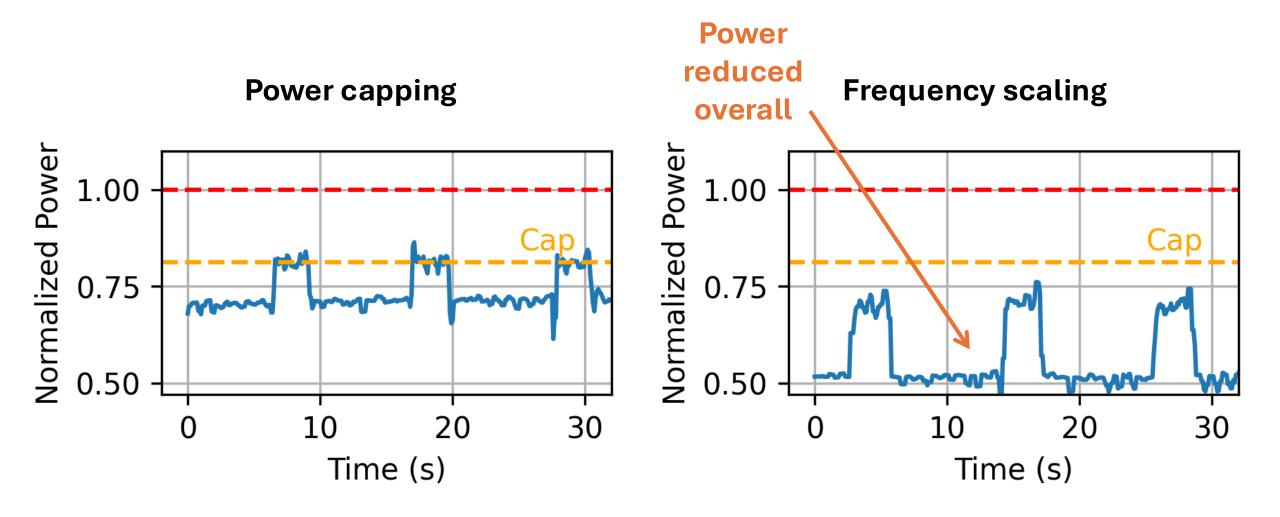


Due to the statistical multiplexing of many prompt and token phases

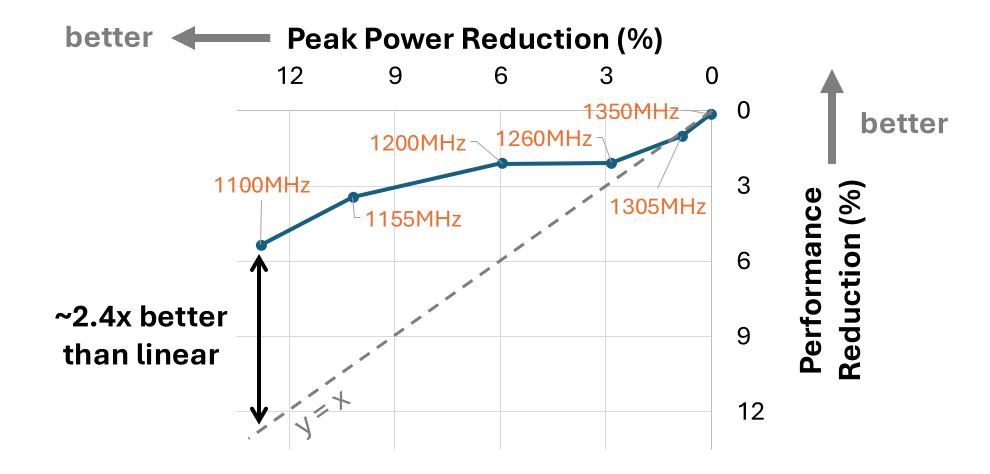
GPU power management knobs in the cloud



GPU power management knobs in the cloud

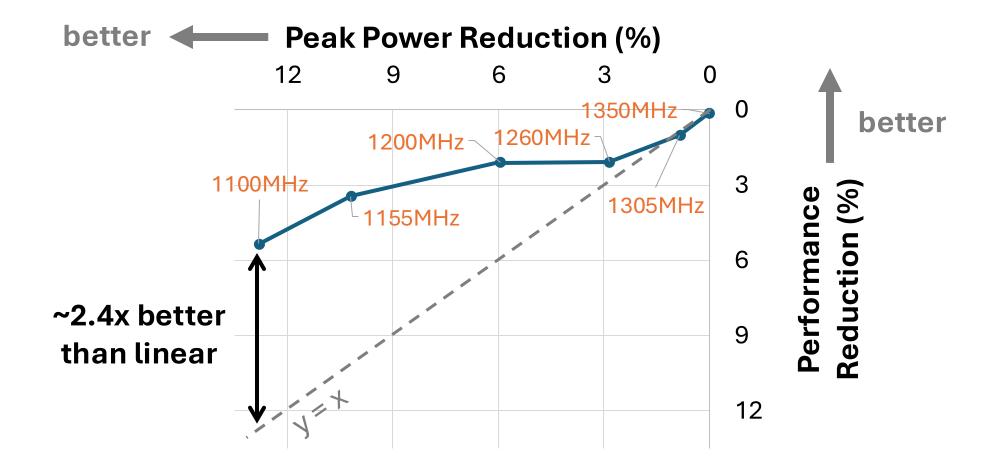


Performance impact of frequency scaling



LLM inference on 8 A100 GPUs

Frequency scaling is effective for inference



Can reclaim substantial power with low performance loss

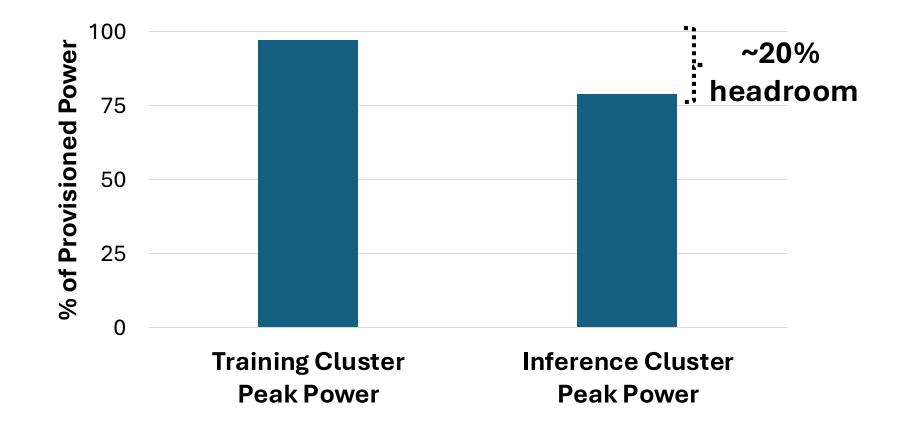
Characterizing Power Management Opportunities for LLMs in the Cloud

Power usage patterns of LLMs in production

Design implications for cloud deployments

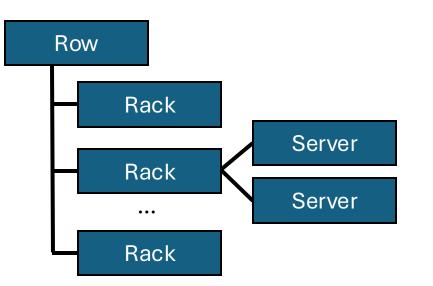
Power oversubscription for LLM inference clouds

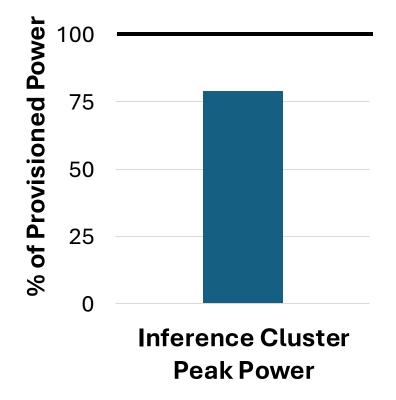
Deploy more servers under a power budget?



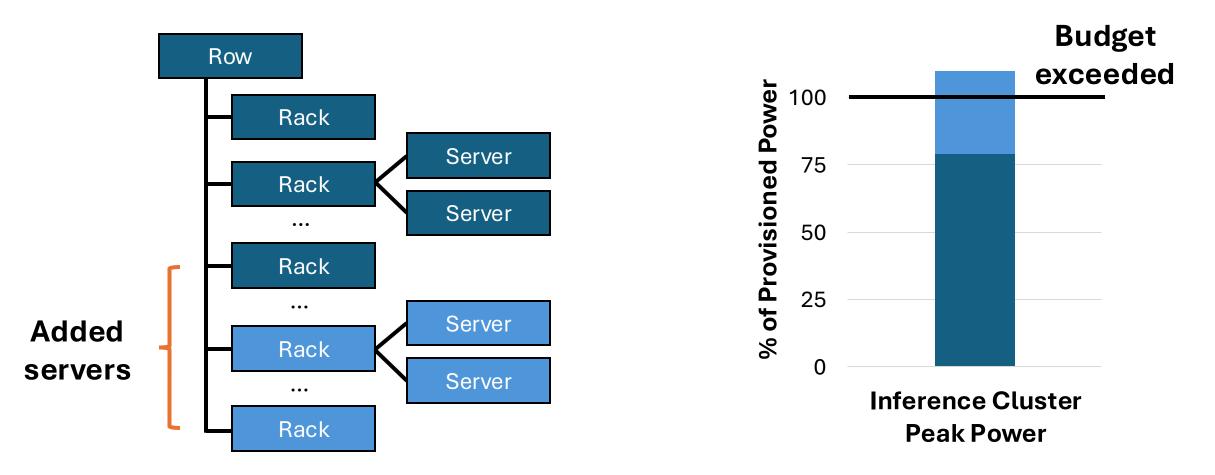
Inference makes up most of the LLM compute demand

Deploy more servers in inference clusters?



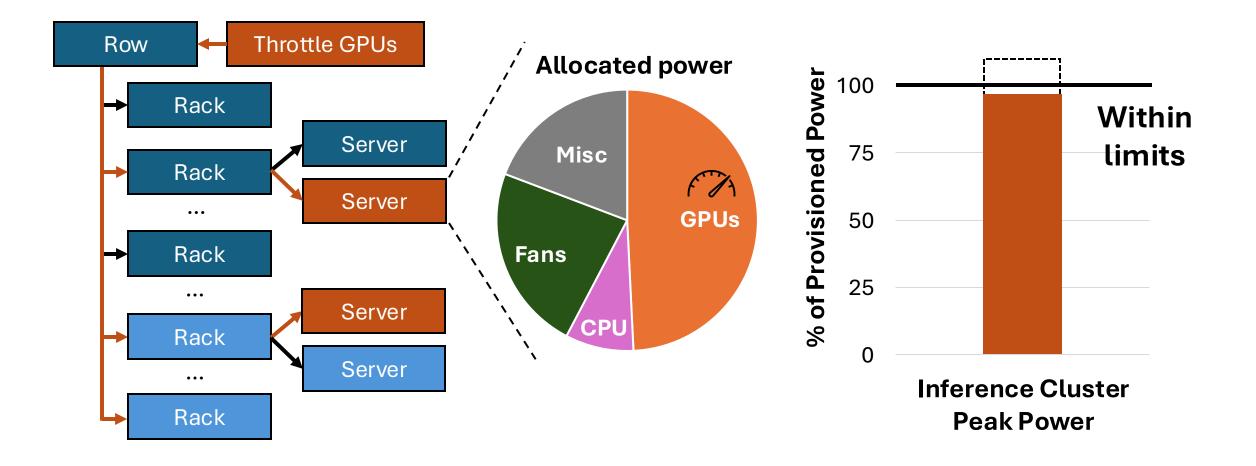


More servers could exceed the power budget

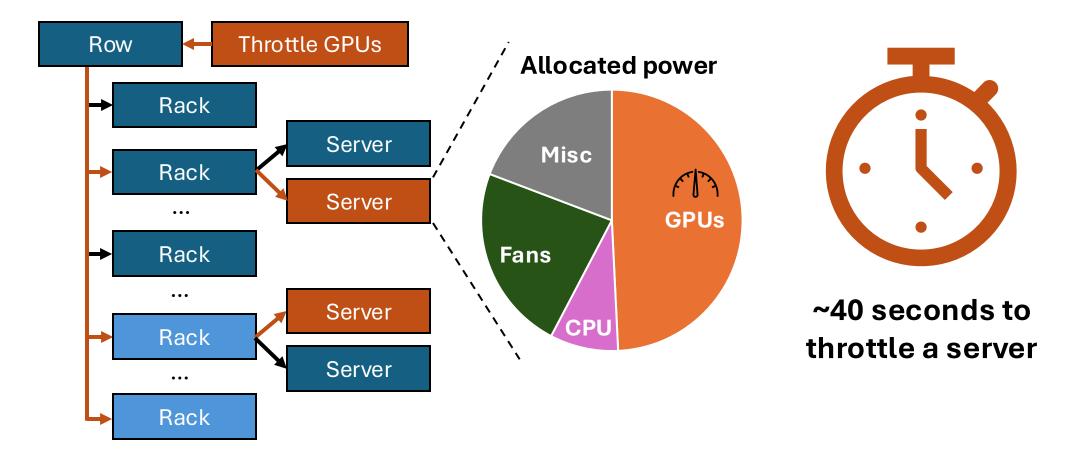


Need to quickly reduce cluster power usage to prevent power failures

GPU power throttling could help!

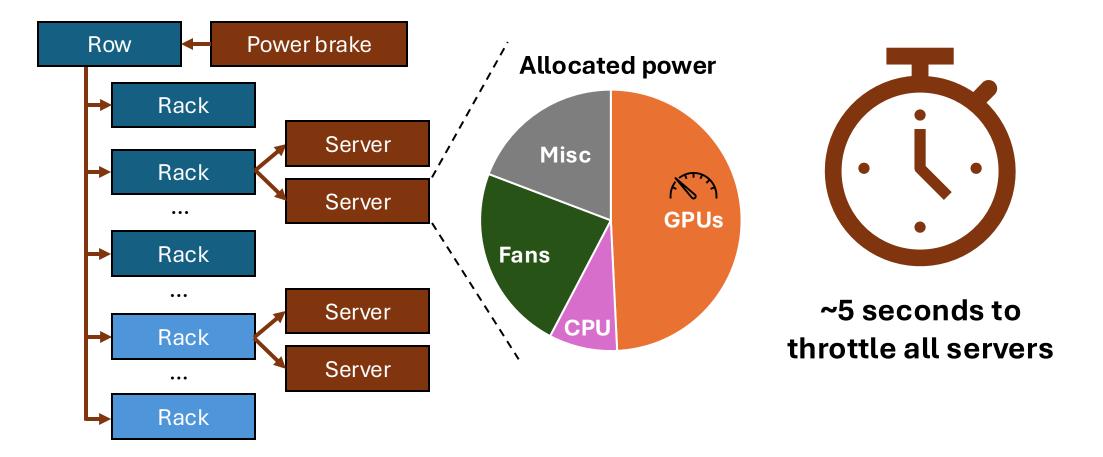


Cloud GPU throttling knobs are too slow



Much slower than the ~10 seconds deadline to reduce power usage

Power brake works but is too extreme



Quickly throttles all GPUs to a very low power and performance

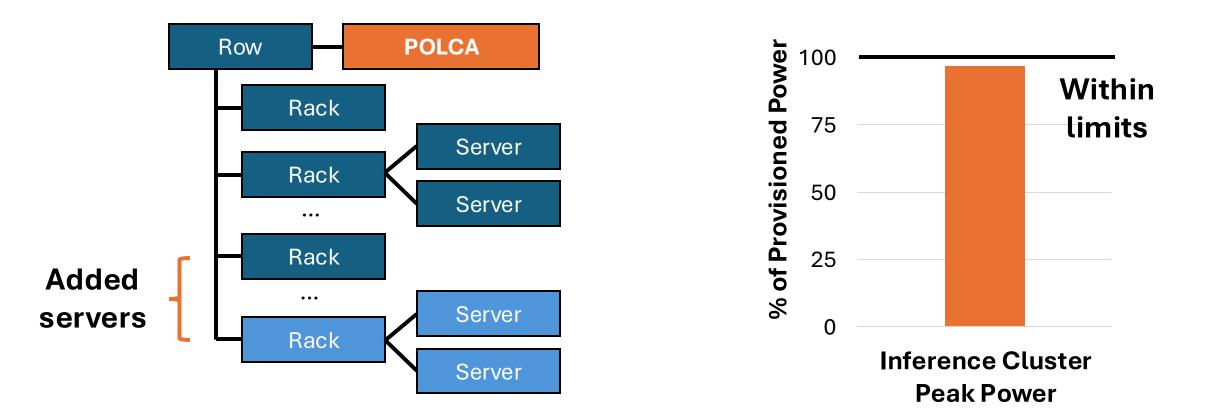
Characterizing Power Management Opportunities for LLMs in the Cloud

Power usage patterns of LLMs in production

Design implications for cloud deployments

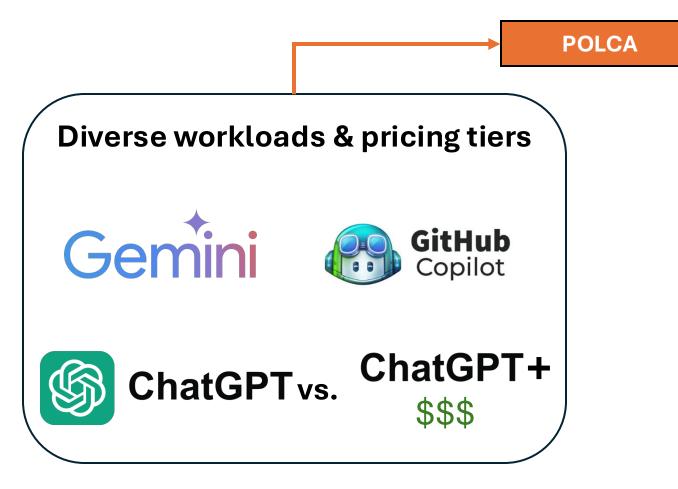
Power oversubscription for LLM inference clouds

POLCA helps safely deploy more servers



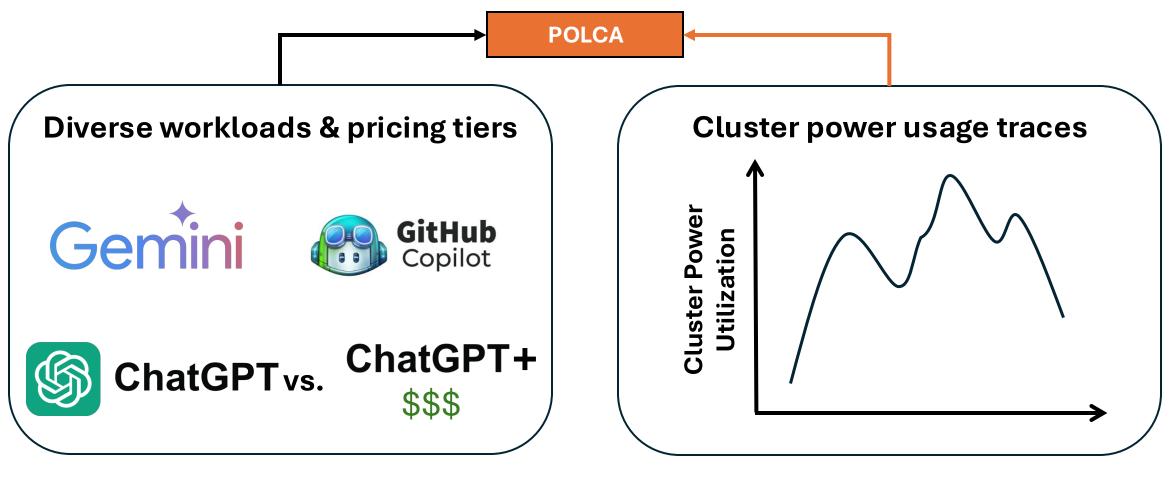
With minimal performance impact on latency-critical LLM inference workloads

Inputs: workload priorities



To capture the latency sensitivity of different workloads

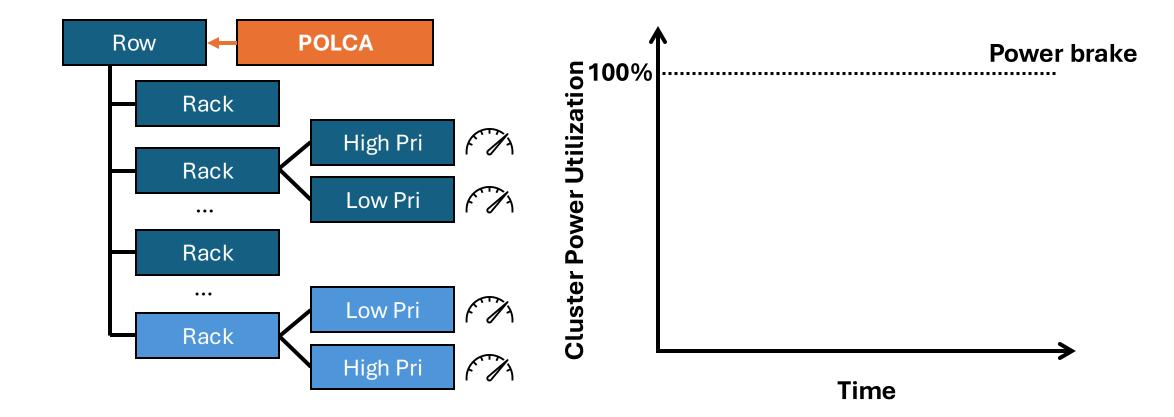
Inputs: workload priorities and power traces



To capture the latency sensitivity of different workloads

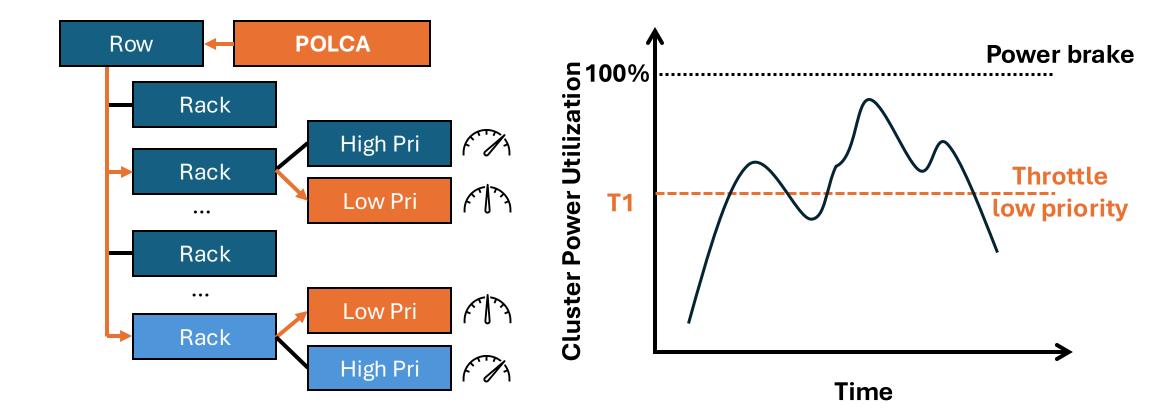
To infer workload variability and power usage patterns

Leverage a proactive power throttling policy



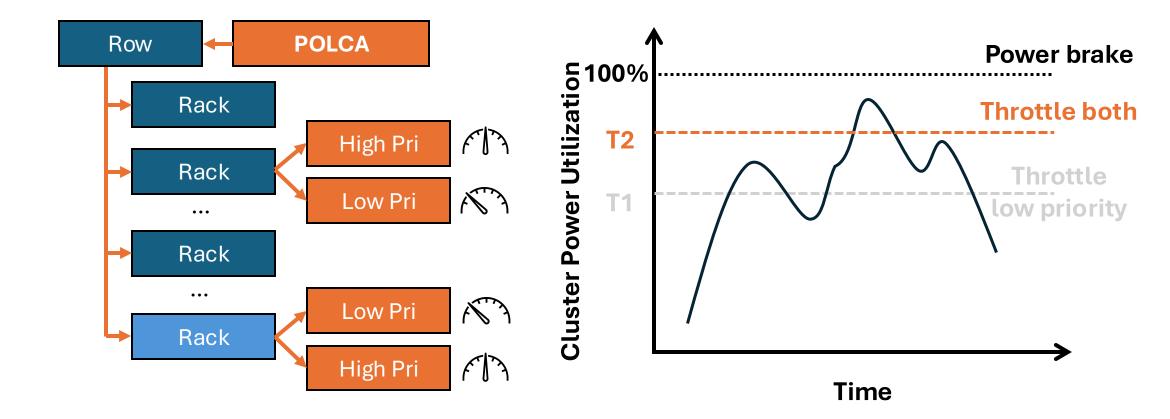
To ensure safety with slow GPU power throttling interfaces in the cloud

Configure priority-aware thresholds & actions



Preserve higher priority performance by aggressively throttling lower priority

Configure priority-aware thresholds & actions



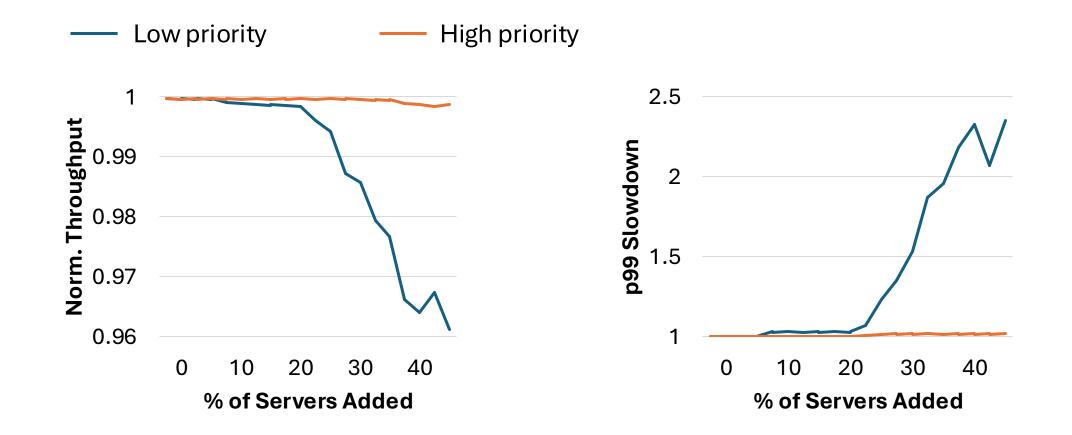
Preserve higher priority performance by aggressively throttling lower priority

Evaluation on six-week long production traces

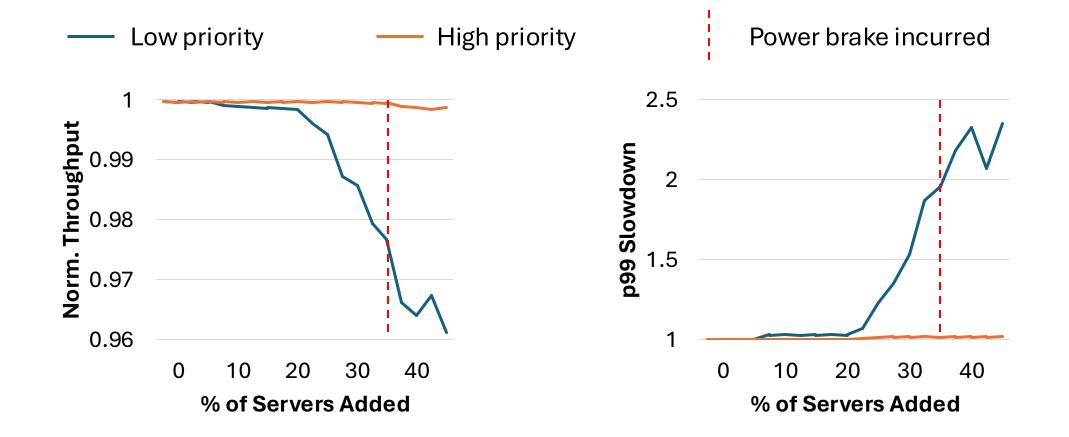
Workload	Prompt size	Output size	Fraction
Summarize	2k-8k	256-512	25%
Search	512-2k	1k-2k	25%
Chat	2k-4k	128-2k	50%

Replicated production power usage patterns using open-source models

Add servers and check performance impact



POLCA can safely deploy ~30% more servers



With less than 1.5% tail latency impact for high-priority workloads

Characterizing Power Management Opportunities for LLMs in the Cloud

Power usage characterization of training and inference workloads in production clusters

Design implications for power management in cloud scale deployments

Power oversubscription framework that safely adds ~30% more servers in LLM inference clouds

aka.ms/LLMPower

Thanks! pratyush@cs.uw.edu

