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GPU clusters for LLMs are incredibly power hungry
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Profile power usage patterns of training and
inference workloads in production clusters

Analyze design implications for power
management in cloud deployments

Build a power oversubscription framework that
safely adds ~30% more servers in inference clouds
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Addressing the power wall for LLMs at scale



Power usage patterns of LLMs in production

Design implications for cloud deployments

Power oversubscription for LLM inference clouds

Characterizing Power Management 
Opportunities for LLMs in the Cloud
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Training power usage patterns

LLM fine-tuning on 8 A100 GPUs

Peak power
often exceeds

allocated power
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Training power usage is periodic

Training iterations

Power
swings

LLM fine-tuning on 8 A100 GPUs 9



Training clusters have little power headroom
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Inference requests have two compute phases

Which is better,
    pizza or burger?

Pizza is better .
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User input query LLM response (output tokens)



Inference requests have two compute phases

Prompt phase Token phase
User input processed in parallel Serialized token generation

Compute intensive Memory intensive

Which is better,
    pizza or burger?

Pizza is better .

12

User input query First token Rest of the output tokens



Each phase has distinct power draw patterns

Prompt phases

Token phases

3x LLM inference requests on 8 A100 GPUs 13



Inference clusters underutilize power
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GPU power management knobs in the cloud

Power capping Prompt phases 
get capped
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GPU power management knobs in the cloud

Power capping Frequency scaling

Power
reduced 
overall
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17LLM inference on 8 A100 GPUs
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Power usage patterns of LLMs in production

Design implications for cloud deployments

Power oversubscription for LLM inference clouds

Characterizing Power Management 
Opportunities for LLMs in the Cloud
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Deploy more servers under a power budget?
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Deploy more servers in inference clusters?

0

25

50

75

100

Inference Cluster
Peak Power

%
 o

f P
ro

vi
si

on
ed

 P
ow

er

21

Rack

Rack

Rack

…

Server

Server

Row



More servers could exceed the power budget
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GPUs

CPU

Fans

Misc

Allocated power

GPU power throttling could help!
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GPUs

CPU

Fans

Misc

Allocated power

Cloud GPU throttling knobs are too slow
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GPUs

CPU

Fans

Misc

Allocated power

Power brake works but is too extreme
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Power usage patterns of LLMs in production

Design implications for cloud deployments

Power oversubscription for LLM inference clouds

Characterizing Power Management 
Opportunities for LLMs in the Cloud
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POLCA helps safely deploy more servers
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Inputs: workload priorities
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POLCA

Diverse workloads & pricing tiers

vs. +
$$$

To capture the latency sensitivity
of different workloads



Inputs: workload priorities and power traces
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POLCA

Diverse workloads & pricing tiers

vs. +
$$$

Cluster power usage traces
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Leverage a proactive power throttling policy
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Configure priority-aware thresholds & actions
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Configure priority-aware thresholds & actions
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Evaluation on six-week long production traces

Workload Prompt size Output size Fraction

Summarize 2k-8k 256-512 25%

Search 512-2k 1k-2k 25%

Chat 2k-4k 128-2k 50%

Replicated production power usage patterns using open-source models 33



Add servers and check performance impact
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POLCA can safely deploy ~30% more servers
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aka.ms/LLMPower

Characterizing Power Management 
Opportunities for LLMs in the Cloud

Thanks!
pratyush@cs.uw.edu

Power usage characterization of training and
inference workloads in production clusters

Design implications for power management
in cloud scale deployments

Power oversubscription framework that safely
adds ~30% more servers in LLM inference clouds
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