
Splitwise
Efficient Generative LLM Inference Using Phase Splitting

Pratyush Patel

Esha Choukse Chaojie Zhang Aashaka Shah Íñigo Goiri
Saeed Maleki Ricardo Bianchini

2

3

1

2

3

4

5

P100
(2016)

V100
(2018)

A100
(2020)

H100
(2022)

N
or

m
al

iz
ed

 V
al

ue

NVIDIA GPU Generation

Cost per GB of memory Max. power

LLM clusters are very expensive and power hungry

https://cloud-gpus.com/
4

https://cloud-gpus.com/

Sustainable AI: Environmental Implications, Challenges and Opportunities, MLSys’22
5

Inference
Training

Inference demand far outweighs that of training

Sustainable AI: Environmental Implications, Challenges and Opportunities, MLSys’22
6

Inference demand far outweighs that of training

Splitwise optimizes LLM serving at scale

Characterize generative LLM inference and
identify distinct prompt and token phases

Split inference onto different servers for
phase-specific resource management

Design clusters using Splitwise, which
improves efficiency across various metrics

7

Anatomy of a generative LLM inference

8

Anatomy of a generative LLM inference

GPT-4 model

9

User submits a prompt to the LLM

User

GPT-4 model

User prompt
10

Which is better,
pizza or burger?

Forward pass 1:
LLM processes the prompt to generate first output token

KV
cache

Pizza

User

GPT-4 model

User prompt
11

Which is better,
pizza or burger?

Forward pass 1:
LLM processes the prompt to generate first output token

KV
cache

Pizza

User

Pizza

Generated output tokens

GPT-4 model

User prompt
12

Which is better,
pizza or burger?

Forward pass 2:
LLM generates next token using KV cache and previous token

KV
cache

Pizza

Pizza

Generated output tokensUser

GPT-4 model

User prompt
13

Which is better,
pizza or burger?

Forward pass 2:
LLM generates next token using KV cache and previous token

KV
cache

is

Pizza

Generated output tokensUser

is

GPT-4 model

User prompt
14

Which is better,
pizza or burger?

Forward pass 3:
LLM generates next token using KV cache and previous token

KV
cache

is

Pizza

Generated output tokensUser

is

GPT-4 model

User prompt
15

Which is better,
pizza or burger?

Forward pass 3:
LLM generates next token using KV cache and previous token

KV
cache

better

Pizza

Generated output tokensUser

is better

GPT-4 model

User prompt
16

Which is better,
pizza or burger?

Forward pass 4:
LLM generates next token using KV cache and previous token

KV
cache

better

Pizza

Generated output tokensUser

is better

GPT-4 model

User prompt
17

Which is better,
pizza or burger?

Forward pass 4:
LLM generates next token using KV cache and previous token

KV
cache

EOS

Pizza

Generated output tokensUser

is better .

GPT-4 model

User prompt
18

Which is better,
pizza or burger?

Latency metrics for LLM inference

Time to first token

End-to-end response time

Pizza

User prompt Generated output tokensUser

is better
TTFT

Time between tokens

TBT TBT
.

TBT

19

Which is better,
pizza or burger?

Prompt computation vs. token generation

Prompt phase Token phase
User input processed in parallel Serialized token generation

Compute intensive Memory intensive (relies on KV cache)

Pizza is better .

User prompt First token Rest of the output tokens

20

Which is better,
pizza or burger?

Prompt phases hit a throughput bottleneck
Prompt phase Token phase

0

200

400

600

800

1000

1200

0 20 40 60

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Batched requests

Profiled for BLOOM-176B on vLLM with 512 input size per request

0

2000

4000

6000

8000

10000

0 20 40 60

Th
ro

ug
hp

ut
 (t

ok
en

s/
s)

Batched requests

21

Token phase batches are memory constrained

Token phases use the KV cache, which can take up hundreds of GBs!

250

350

450

550

1 10 100 1000 10000G
PU

 m
em

or
y

us
ed

 (G
B)

Number of tokens in the batch

Prompt phase Token phase

Model
weights

Profiled for BLOOM-176B on 8 A100 GPUs
22

Prompt phases are power intensive

Prompt phases

Token phases

3x BLOOM-176B inference requests on 8 GPUs
23

Allocated
power

Prompt computation vs. token generation

Prompt phase Token phase
Compute and power intensive Memory intensive

Limited batching benefits Batching improves throughput

Which is better,
 pizza or burger?

Pizza is better .

User prompt First token Rest of the output tokens

24

Inefficient to run both on the same hardware

25

GPUs

Which is better,
 pizza or burger?

Pizza is better .

User prompt First token Rest of the output tokens

Server

Splitwise splits phases onto different servers

26

GPUs

Which is better,
 pizza or burger?

Pizza is better .

User prompt First token Rest of the output tokens

Prompt server

GPUs

Token server

Small batches, maximum power Large batches, power capped

Different trade-offs on different GPUs

Spec H100 : A100 ratio
Cost 2.15x

Max. power 1.75x
TFLOPs 3.43x

27

GPU memory scales slower than compute

Spec H100 : A100 ratio
Cost 2.15x

Max. power 1.75x
TFLOPs 3.43x

HBM capacity 1.00x
HBM bandwidth 1.64x

28

Phase preference for different GPUs

0

0.5

1

1.5

Latency Cost Latency Cost Latency Cost

H
10

0
: A

10
0

ra
tio

For BLOOM-176B on the mean request size in production

Prompt phase Token phase End to end

A100 is
better

H100 is
better

29

Splitwise splits phases onto different servers

30

GPUs

Which is better,
 pizza or burger?

Pizza is better .

User prompt First token Rest of the output tokens

GPUs

Prompt server Token server

Each phase could use preferred hardware

31

Prompt GPUs

Which is better,
 pizza or burger?

Pizza is better .

User prompt First token Rest of the output tokens

Token GPUs

Prompt server Token server

Splitting inference requires fast state transfers

32

Prompt GPUs

Which is better,
 pizza or burger?

Pizza is better .

User prompt First token Rest of the output tokens

Token GPUsKV

Prompt server Token server

Splitwise uses GPU Infiniband to ship state

33

Prompt GPUs

Which is better,
 pizza or burger?

Pizza is better .

User prompt First token Rest of the output tokens

Token GPUsKV
GPU IB

Prompt server Token server

Splitwise uses GPU Infiniband to ship state

34

Prompt GPUs

Which is better,
 pizza or burger?

Pizza is better .

User prompt First token Rest of the output tokens

Token GPUsKV
GPU IB

Prompt server Token server

Parallelize transfers for high bandwidth

35

GPU

Which is better,
 pizza or burger?

Pizza is better .

User prompt First token Rest of the output tokens

Assuming 4-way tensor parallelism

Total bandwidth: 100GB/s: 1/4th of the KV cache

GPU GPU GPU GPU GPU GPU GPU
25GB/s

Prompt server Token server

Transfer overheads may still be large

Prompt phase

Transfer state

Delay

Token phase

KV cache sizes can be hundreds of GBs!

Transfer state

36

Prompt
server

Token
server

Splitwise overlaps transfer with prompt phase

Prompt phase

Delay

Start shipping the KV-cache after the first prompt layer

Transfer state

37

Prompt
server

Token
server Transfer state Token phase

Splitwise adds very little latency overhead

Less than ~0.8% overhead for a typical inference request

Implemented in vLLM

0

5

10

15

20

25

0 512 1024 1536 2048

La
te

nc
y (

m
s)

Key-value tokens

Serialized Overlapped Splitwise

38

Characterize generative LLM inference

Split inference onto different servers

Design clusters using Splitwise

Splitwise: Phase Splitting for Generative LLMs

39

Splitwise partitions servers into three pools

Prompt pool Token poolMixed pool

Details in the paper
40

Servers are fungible across the pools

Global
scheduler

Details in the paper
41

Prompt pool Token poolMixed pool

Scheduler decides how to split LLM requests

Requests

Prompt GPUs
KV cache transfer

Prompt server

Details in the paper
42

Global
scheduler

Prompt pool Token poolMixed pool

Token server

Token GPUs

Servers implement phase-aware batching

Requests

Details in the paper
43

Global
scheduler

Prompt pool Token poolMixed pool

GPUs GPUs
KV cache transfer

Prompt server Token server

Evaluation compares different cluster designs

Code Conversation

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000

Pr
op

or
tio

n

Prompt sizes

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

Pr
op

or
tio

n
Output sizes

Traces available at: https://github.com/Azure/AzurePublicDataset
44

Optimize for different metrics on two production traces

https://github.com/Azure/AzurePublicDataset

Simulated at scale using performance profiles

45

Simulated cluster

Global
scheduler

GPU

Output sizes

Prompt sizes

Service-Level Objectives

LLM performance

KV-cache transfer

App. inputs Hardware profiles

GPU

Request
trace

State transfer

A100 A100 A100

H100 A100

Run requests end-to-end
on same server

Use the same server type for
prompt and token phases

Use H100s for prompt
and A100s for token phases

Prompt Token

Prompt Token

H100 H100 H100

Prompt Token

Splitwise
homogeneous

Splitwise
heterogeneousBaselines

46

A100 A100 A100 H100 A100

Run requests end-to-end
on same server

Use the same server type for
prompt and token phases

Use H100s for prompt
and A100s for token phases

Prompt Token Prompt Token

More results in the paper

Splitwise
homogeneous

Splitwise
heterogeneousBaseline

47

More results in the paper

A100 A100 A100 H100 A100

x70 x45 x25 x25 x26

Baseline Splitwise
homogeneous

Splitwise
heterogeneous

Throughput
optimized
clusters

#Servers

Throughput

Cost

Power

1x

1x

1x

1x

1x

1x

1x

2.4x

0.73x

1.14x

1x

2.6x
48

A100 A100 A100 H100 A100

x88 x25 x16 x11 x19

Baseline Splitwise
homogeneous

Splitwise
heterogeneous

Cost
optimized
clusters

#Servers

Throughput

Cost

Power

1x

1x

1x

1x

0.46x

0.46x

0.46x

1x

0.34x

0.48x

0.43x

1x
49

Splitwise
Phase Splitting for Efficient Generative LLM Inference

LLM inference requests have distinct prompt
and token phases

Splitting inference enables phase-specific
resource management

Splitwise improves inference cluster efficiency
across various metrics

Thanks!
pratyush@cs.uw.edu

aka.ms/splitwise

Paper, code, traces at

	Default Section
	Slide 1: Splitwise Efficient Generative LLM Inference Using Phase Splitting
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Splitwise optimizes LLM serving at scale
	Slide 8: Anatomy of a generative LLM inference
	Slide 9: Anatomy of a generative LLM inference
	Slide 10: User submits a prompt to the LLM
	Slide 11: Forward pass 1: LLM processes the prompt to generate first output token
	Slide 12: Forward pass 1: LLM processes the prompt to generate first output token
	Slide 13: Forward pass 2: LLM generates next token using KV cache and previous token
	Slide 14: Forward pass 2: LLM generates next token using KV cache and previous token
	Slide 15: Forward pass 3: LLM generates next token using KV cache and previous token
	Slide 16: Forward pass 3: LLM generates next token using KV cache and previous token
	Slide 17: Forward pass 4: LLM generates next token using KV cache and previous token
	Slide 18: Forward pass 4: LLM generates next token using KV cache and previous token
	Slide 19: Latency metrics for LLM inference
	Slide 20: Prompt computation vs. token generation
	Slide 21: Prompt phases hit a throughput bottleneck
	Slide 22: Token phase batches are memory constrained
	Slide 23: Prompt phases are power intensive
	Slide 24: Prompt computation vs. token generation
	Slide 25: Inefficient to run both on the same hardware
	Slide 26: Splitwise splits phases onto different servers
	Slide 27: Different trade-offs on different GPUs
	Slide 28: GPU memory scales slower than compute
	Slide 29: Phase preference for different GPUs
	Slide 30: Splitwise splits phases onto different servers
	Slide 31: Each phase could use preferred hardware
	Slide 32: Splitting inference requires fast state transfers
	Slide 33: Splitwise uses GPU Infiniband to ship state
	Slide 34: Splitwise uses GPU Infiniband to ship state
	Slide 35: Parallelize transfers for high bandwidth
	Slide 36: Transfer overheads may still be large
	Slide 37: Splitwise overlaps transfer with prompt phase
	Slide 38: Splitwise adds very little latency overhead
	Slide 39: Splitwise: Phase Splitting for Generative LLMs
	Slide 40: Splitwise partitions servers into three pools
	Slide 41: Servers are fungible across the pools
	Slide 42: Scheduler decides how to split LLM requests
	Slide 43: Servers implement phase-aware batching
	Slide 44: Evaluation compares different cluster designs
	Slide 45: Simulated at scale using performance profiles
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Splitwise Phase Splitting for Efficient Generative LLM Inference
	Slide 51: Backup slides
	Slide 52: Types of batching in LLM inference
	Slide 53: Prompt phases hit a throughput bottleneck
	Slide 54: Prompt phases are sensitive to power capping
	Slide 55: Overlap transfer with partial token generation
	Slide 56: GPU specifications do not scale uniformly
	Slide 57: SLOs relative to A100 without contention
	Slide 58: Splitwise supports fast KV-cache shipping
	Slide 59: Splitwise benefits from phase-aware batching
	Slide 60: Splitwise is resilient to workload variations
	Slide 61: Splitwise is resilient to model variations
	Slide 62: Longer output sizes provide higher benefits
	Slide 63: Iso-power Splitwise clusters have higher throughput (conversation trace)
	Slide 64: Iso-power Splitwise clusters have higher throughput (code trace)

