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LLM clusters are very expensive and power hungry

https://cloud-gpus.com/
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Inference demand far outweighs that of training



Splitwise optimizes LLM serving at scale

Characterize generative LLM inference and 
identify distinct prompt and token phases

Split inference onto different servers for
phase-specific resource management

Design clusters using Splitwise, which
improves efficiency across various metrics
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Anatomy of a generative LLM inference
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Anatomy of a generative LLM inference

GPT-4 model
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User submits a prompt to the LLM
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User prompt
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Which is better,
pizza or burger?



Forward pass 1: 
LLM processes the prompt to generate first output token
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Forward pass 1: 
LLM processes the prompt to generate first output token
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Forward pass 2: 
LLM generates next token using KV cache and previous token

KV 
cache

Pizza

Pizza

Generated output tokensUser

GPT-4 model

User prompt
13

Which is better,
pizza or burger?



Forward pass 2: 
LLM generates next token using KV cache and previous token
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Forward pass 3: 
LLM generates next token using KV cache and previous token
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Forward pass 3: 
LLM generates next token using KV cache and previous token
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Forward pass 4: 
LLM generates next token using KV cache and previous token
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Forward pass 4: 
LLM generates next token using KV cache and previous token
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Latency metrics for LLM inference
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Prompt computation vs. token generation

Prompt phase Token phase
User input processed in parallel Serialized token generation

Compute intensive Memory intensive (relies on KV cache)

Pizza is better .

User prompt First token Rest of the output tokens
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Which is better,
pizza or burger?



Prompt phases hit a throughput bottleneck
Prompt phase Token phase
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Token phase batches are memory constrained

Token phases use the KV cache, which can take up hundreds of GBs!
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Profiled for BLOOM-176B on 8 A100 GPUs 
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Prompt phases are power intensive

Prompt phases

Token phases

3x BLOOM-176B inference requests on 8 GPUs
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Prompt computation vs. token generation

Prompt phase Token phase
Compute and power intensive Memory intensive

Limited batching benefits Batching improves throughput

Which is better,
    pizza or burger?

Pizza is better .

User prompt First token Rest of the output tokens
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Inefficient to run both on the same hardware
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Splitwise splits phases onto different servers
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Prompt server
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Different trade-offs on different GPUs

Spec H100 : A100 ratio
Cost 2.15x

Max. power 1.75x
TFLOPs 3.43x
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GPU memory scales slower than compute

Spec H100 : A100 ratio
Cost 2.15x

Max. power 1.75x
TFLOPs 3.43x

HBM capacity 1.00x
HBM bandwidth 1.64x
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Phase preference for different GPUs
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Splitwise splits phases onto different servers
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Each phase could use preferred hardware
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Splitting inference requires fast state transfers
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Splitwise uses GPU Infiniband to ship state
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Splitwise uses GPU Infiniband to ship state
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Parallelize transfers for high bandwidth
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Transfer overheads may still be large

Prompt phase

Transfer state

Delay

Token phase

KV cache sizes can be hundreds of GBs!

Transfer state
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Splitwise overlaps transfer with prompt phase

Prompt phase

Delay

Start shipping the KV-cache after the first prompt layer

Transfer state 
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Splitwise adds very little latency overhead

Less than ~0.8% overhead for a typical inference request

Implemented in vLLM
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Characterize generative LLM inference

Split inference onto different servers

Design clusters using Splitwise

Splitwise: Phase Splitting for Generative LLMs
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Splitwise partitions servers into three pools

Prompt pool Token poolMixed pool

Details in the paper
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Servers are fungible across the pools

Global
scheduler

Details in the paper
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Scheduler decides how to split LLM requests

Requests
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Details in the paper
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Servers implement phase-aware batching

Requests

Details in the paper
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Evaluation compares different cluster designs

Code Conversation
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Traces available at: https://github.com/Azure/AzurePublicDataset 
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Optimize for different metrics on two production traces

https://github.com/Azure/AzurePublicDataset


Simulated at scale using performance profiles

45

Simulated cluster
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A100 A100 A100

H100 A100

Run requests end-to-end
on same server

Use the same server type for
prompt and token phases
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More results in the paper
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Splitwise
Phase Splitting for Efficient Generative LLM Inference

LLM inference requests have distinct prompt
and token phases

Splitting inference enables phase-specific
resource management

Splitwise improves inference cluster efficiency
across various metrics

Thanks!
pratyush@cs.uw.edu

aka.ms/splitwise

Paper, code, traces at
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