
A Unified Bias-Variance Decomposition for Zero-One and Squared Loss

Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, Washington 98195, U.S.A.

pedrod@cs.washington.edu
http://www.cs.washington.edu/homes/pedrod

Abstract

The bias-variance decomposition is a very useful and
widely-used tool for understanding machine-learning
algorithms. It was originally developed for squared
loss. In recent years, several authors have proposed
decompositions for zero-one loss, but each has signif-
icant shortcomings. In particular, all of these decompo-
sitions have only an intuitive relationship to the original
squared-loss one. In this paper, we define bias and vari-
ance for an arbitrary loss function, and show that the
resulting decomposition specializes to the standard one
for the squared-loss case, and to a close relative of Kong
and Dietterich’s (1995) one for the zero-one case. The
same decomposition also applies to variable misclassi-
fication costs. We show a number of interesting conse-
quences of the unified definition. For example, Schapire
et al.’s (1997) notion of “margin” can be expressed as a
function of the zero-one bias and variance, making it
possible to formally relate a classifier ensemble’s gen-
eralization error to the base learner’s bias and variance
on training examples. Experiments with the unified def-
inition lead to further insights.

Introduction
For the better part of the last two decades, machine-learning
research has concentrated mainly on creating ever more flex-
ible learners using ever more powerful representations. At
the same time, very simple learners were often found to per-
form very well in experiments, sometimes better than more
sophisticated ones (e.g., Holte (1993), Domingos & Pazzani
(1997)). In recent years the reason for this has become clear:
predictive error has two components, and while more pow-
erful learners reduce one (bias) they increase the other (vari-
ance). The optimal point in this trade-off varies from appli-
cation to application. In a parallel development, researchers
have found that learning ensembles of models very often
outperforms learning a single model (e.g., Bauer & Kohavi
(1999)). That complex ensembles would outperform simple
single models contradicted many existing intuitions about
the relationship between simplicity and accuracy. This find-
ing, apparently at odds with the one above about the value
of simple learners, also becomes easier to understand in light
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of a bias-variance decomposition of error: while allowing a
more intensive search for a single model is liable to increase
variance, averaging multiple models will often (though not
always) reduce it. As a result of these developments, the
bias-variance decomposition of error has become a corner-
stone of our understanding of inductive learning.

Although machine-learning research has been mainly
concerned with classification problems, using zero-one loss
as the main evaluation criterion, the bias-variance insight
was borrowed from the field of regression, where squared-
loss is the main criterion. As a result, several authors have
proposed bias-variance decompositions related to zero-one
loss (Kong & Dietterich, 1995; Breiman, 1996b; Kohavi &
Wolpert, 1996; Tibshirani, 1996; Friedman, 1997). How-
ever, each of these decompositions has significant shortcom-
ings. In particular, none has a clear relationship to the origi-
nal decomposition for squared loss. One source of difficulty
has been that the decomposition for squared-loss is purely
additive (i.e., loss = bias + variance), but it has proved dif-
ficult to obtain the same result for zero-one loss using defi-
nitions of bias and variance that have all the intuitively nec-
essary properties. Here we take the position that instead of
forcing the bias-variance decomposition to be purely addi-
tive, and defining bias and variance so as to make this hap-
pen, it is preferable to start with a single consistent definition
of bias and variance for all loss functions, and then investi-
gate how loss varies as a function of bias and variance in
each case. This should lead to more insight and to a clearer
picture than a collection of unrelated decompositions. It
should also make it easier to extend the bias-variance de-
composition to further loss functions. Intuitively, since a
bias-variance trade-off exists in any generalization problem,
it should be possible and useful to apply a bias-variance
analysis to any “reasonable” loss function. We believe the
unified decomposition we propose here is a step towards this
goal.

We begin by proposing unified definitions of bias and
variance, and showing how squared-loss, zero-one loss and
variable misclassification costs can be decomposed accord-
ing to them. This is followed by the derivation of a number
of properties of the new decomposition, in particular relat-
ing it to previous results. We then describe experiments with
the new decomposition and discuss related work.



A Unified Decomposition
Given a training set {(x1, t1), . . . , (xn, tn)}, a learner pro-
duces a model f . Given a test example x, this model pro-
duces a prediction y = f(x). (For the sake of simplicity, the
fact that y is a function of x will remain implicit throughout
this paper.) Let t be the true value of the predicted variable
for the test example x. A loss function L(t, y) measures the
cost of predicting y when the true value is t. Commonly used
loss functions are squared loss (L(t, y) = (t−y)2), absolute
loss (L(t, y) = |t − y|), and zero-one loss (L(t, y) = 0 if
y = t, L(t, y) = 1 otherwise). The goal of learning can be
stated as producing a model with the smallest possible loss;
i.e, a model that minimizes the average L(t, y) over all ex-
amples, with each example weighted by its probability. In
general, t will be a nondeterministic function of x (i.e., if x
is sampled repeatedly, different values of t will be seen). The
optimal prediction y∗ for an example x is the prediction that
minimizes Et[L(t, y∗)], where the subscript t denotes that
the expectation is taken with respect to all possible values
of t, weighted by their probabilities given x. The optimal
model is the model for which f(x) = y∗ for every x. In
general, this model will have non-zero loss. In the case of
zero-one loss, the optimal model is called the Bayes classi-
fier, and its loss is called the Bayes rate.

Since the same learner will in general produce different
models for different training sets, L(t, y) will be a function
of the training set. This dependency can be removed by av-
eraging over training sets. In particular, since the training set
size is an important parameter of a learning problem, we will
often want to average over all training sets of a given size.
Let D be a set of training sets. Then the quantity of interest
is the expected loss ED,t[L(t, y)], where the expectation is
taken with respect to t and the training sets in D (i.e., with
respect to t and the predictions y = f(x) produced for ex-
ample x by applying the learner to each training set in D).
Bias-variance decompositions decompose the expected loss
into three terms: bias, variance and noise. A standard such
decomposition exists for squared loss, and a number of dif-
ferent ones have been proposed for zero-one loss.

In order to define bias and variance for an arbitrary loss
function we first need to define the notion of main predic-
tion.

Definition 1 The main prediction for a loss function L and
set of training sets D is yL,D

m = argminy′ED[L(y, y′)].

When there is no danger of ambiguity, we will represent
yL,D

m simply as ym. The expectation is taken with respect
to the training sets in D, i.e., with respect to the predictions
y produced by learning on the training sets in D. Let Y be
the multiset of these predictions. (A specific prediction y
will appear more than once in Y if it is produced by more
than one training set.) In words, the main prediction is the
value y′ whose average loss relative to all the predictions in
Y is minimum (i.e., it is the prediction that “differs least”
from all the predictions in Y according to L). The main pre-
diction under squared loss is the mean of the predictions;
under absolute loss it is the median; and under zero-one loss
it is the mode (i.e., the most frequent prediction). For ex-
ample, if there are k possible training sets of a given size,

we learn a classifier on each, 0.6k of these classifiers predict
class 1, and 0.4k predict 0, then the main prediction under
zero-one loss is class 1. The main prediction is not neces-
sarily a member of Y ; for example, if Y = {1, 1, 2, 2} the
main prediction under squared loss is 1.5.

We can now define bias and variance as follows.

Definition 2 The bias of a learner on an example x is
B(x) = L(y∗, ym).

In words, the bias is the loss incurred by the main prediction
relative to the optimal prediction.

Definition 3 The variance of a learner on an example x is
V (x) = ED [L(ym, y)].

In words, the variance is the average loss incurred by predic-
tions relative to the main prediction. Bias and variance may
be averaged over all examples, in which case we will re-
fer to them as average bias Ex[B(x)] and average variance
Ex[V (x)].

It is also convenient to define noise as follows.

Definition 4 The noise of an example x is N(x) =
Et[L(t, y∗)].

In other words, noise is the unavoidable component of the
loss, that is incurred independently of the learning algo-
rithm.

Definitions 2 and 3 have the intuitive properties associ-
ated with bias and variance measures. ym is a measure of
the “central tendency” of a learner. (What “central” means
depends on the loss function.) Thus B(x) measures the sys-
tematic loss incurred by a learner, and V (x) measures the
loss incurred by its fluctuations around the central tendency
in response to different training sets. The bias is indepen-
dent of the training set, and is zero for a learner that always
makes the optimal prediction. The variance is independent
of the true value of the predicted variable, and is zero for a
learner that always makes the same prediction regardless of
the training set. However, it is not necessarily the case that
the expected loss ED,t[L(t, y)] for a given loss function L
can be decomposed into bias and variance as defined above.
Our approach will be to propose a decomposition and then
show that it applies to each of several different loss func-
tions. We will also exhibit some loss functions to which it
does not apply. (However, even in such cases it may still
be worthwhile to investigate how the expected loss can be
expressed as a function of B(x) and V (x).)

Consider an example x for which the true prediction is t,
and consider a learner that predicts y given a training set in
D. Then, for certain loss functions L, the following decom-
position of ED,t[L(t, y)] holds:

ED,t[L(t, y)]

= c1Et[L(t, y∗)] + L(y∗, ym) + c2ED[L(ym, y)]

= c1N(x) + B(x) + c2V (x) (1)

c1 and c2 are multiplicative factors that will take on different
values for different loss functions. We begin by showing that
this decomposition reduces to the standard one for squared
loss.



Theorem 1 Equation 1 is valid for squared loss, with c1 =
c2 = 1.

Proof. Substituting L(a, b) = (a − b)2, y∗ = Et[t], ym =
ED [y] and c1 = c2 = 1, Equation 1 becomes:

ED,t[(t − y)2] = Et[(t − Et[t])
2] + (Et[t] − ED[y])2

+ED[(ED [y] − y)2] (2)

This is the standard decomposition for squared loss, as de-
rived in (for example) Geman et al. (1992). y∗ = Et[t]
because Et[(t − y)2] = Et[(t − Et[t])

2] + (Et[t] − y)2

(also shown in Geman et al. (1992), etc.), and therefore
Et[(t − y)2] is minimized by making y = Et[t].

Some authors (e.g., Kohavi and Wolpert, 1996) refer to
the (Et[t]−ED [y])2 term as “bias squared.” Here we follow
the same convention as Geman et al. (1992) and others, and
simply refer to it as “bias.” This makes more sense given
our goal of a unified bias-variance decomposition, since the
square in (Et[t] − ED [y])2 is simply a consequence of the
square in squared loss.

We now show that the same decomposition applies to
zero-one loss in two-class problems, with c1 reflecting the
fact that on noisy examples the non-optimal prediction is
the correct one, and c2 reflecting that variance increases er-
ror on biased examples but decreases it on biased ones. Let
PD(y = y∗) be the probability over training sets in D that
the learner predicts the optimal class for x.

Theorem 2 Equation 1 is valid for zero-one loss in two-
class problems, with c1 = 2PD(y = y∗) − 1 and c2 = 1
if ym = y∗, c2 = −1 otherwise.

Proof. L(a, b) represents zero-one loss throughout this
proof. We begin by showing that

Et[L(t, y)] = L(y∗, y) + c0Et[L(t, y∗)] (3)

with c0 = 1 if y = y∗ and c0 = −1 if y 6= y∗. If y = y∗
Equation 3 is trivially true with c0 = 1. Assume now that
y 6= y∗. Given that there are only two classes, if y 6= y∗
then t 6= y∗ implies that t = y and vice-versa. Therefore
Pt(t = y) = Pt(t 6= y∗), and

Et[L(t, y)] = Pt(t 6= y) = 1 − Pt(t = y)

= 1 − Pt(t 6= y∗) = 1 − Et[L(t, y∗)]

= L(y∗, y) − Et[L(t, y∗)]

= L(y∗, y) + c0Et[L(t, y∗)] (4)

with c0 = −1, proving Equation 3. We now show in a simi-
lar manner that

ED [L(y∗, y)] = L(y∗, ym) + c2ED [L(ym, y)] (5)

with c2 = 1 if ym = y∗ and c2 = −1 if ym 6= y∗. If
ym = y∗ Equation 5 is trivially true with c2 = 1. If ym 6= y∗
then ym 6= y implies that y∗ = y and vice-versa, and

ED [L(y∗, y)] = PD(y∗ 6= y) = 1 − PD(y∗ = y)

= 1 − PD(ym 6= y) = 1 − ED [L(ym, y)]

= L(y∗, ym) − ED [L(ym, y)]

= L(y∗, ym) + c2ED [L(ym, y)] (6)

with c2 = −1, proving Equation 5. Using Equation 3,

ED,t[L(t, y)] = ED[Et[L(t, y)]]

= ED[L(y∗, y) + c0Et[L(t, y∗)]] (7)

Since L(t, y∗) does not depend on D,

ED,t[L(t, y)] = ED [c0]Et[L(t, y∗)] + ED [L(y∗, y)] (8)

and since

ED [c0] = PD(y = y∗) − PD(y 6= y∗)

= 2PD(y = y∗) − 1 = c1 (9)

we finally obtain Equation 1, using Equation 5.

This decomposition for zero-one loss is closely related to
that of Kong and Dietterich (1995). The main differences
are that Kong and Dietterich ignored the noise component
N(x) and defined variance simply as the difference between
loss and bias, apparently unaware that the absolute value of
that difference is the average loss incurred relative to the
most frequent prediction. A side-effect of this is that Kong
and Dietterich incorporate c2 into their definition of vari-
ance, which can therefore be negative. Kohavi and Wolpert
(1996) and others have criticized this fact, since variance for
squared loss must be positive. However, our decomposition
shows that the subtractive effect of variance follows from a
self-consistent definition of bias and variance for zero-one
and squared loss, even if the variance itself remains positive.
The fact that variance is additive in unbiased examples but
subtractive in biased ones has significant consequences. If
a learner is biased on an example, increasing variance de-
creases loss. This behavior is markedly different from that
of squared loss, but is obtained with the same definitions of
bias and variance, purely as a result of the different proper-
ties of zero-one loss. It helps explain how highly unstable
learners like decision-tree and rule induction algorithms can
produce excellent results in practice, even given very limited
quantities of data. In effect, when zero-one loss is the evalu-
ation criterion, there is a much higher tolerance for variance
than if the bias-variance decomposition was purely additive,
because the increase in average loss caused by variance on
unbiased examples is partly offset (or more than offset) by
its decrease on biased ones. The average loss over all exam-
ples is the sum of noise, the average bias and what might be
termed the net variance, Ex[(2B(x) − 1)V (x)]:

ED,t,x[L(t, y)]

= Ex[c1N(x)] + Ex[B(x)] + Ex[(2B(x) − 1)V (x)]

(10)

by averaging Equation 1 over all test examples x.
The c1 factor (see Equation 9) also points to a key differ-

ence between zero-one and squared loss. In squared loss,
increasing noise always increases error. In zero-one loss, for
training sets and test examples where y 6= y∗, increasing
noise decreases error, and a high noise level can therefore in
principle be beneficial to performance.

The same decomposition applies in the more general case
of multiclass problems, with correspondingly generalized
coefficients c1 and c2.



Theorem 3 Equation 1 is valid for zero-one loss in
multiclass problems, with c1 = PD(y = y∗) −
PD(y 6= y∗) Pt(y = t | y∗ 6= t) and c2 = 1 if ym = y∗,
c2 = −PD(y = y∗ | y 6= ym) otherwise.

Proof. The proof is similar to that of Theorem 2, with the
key difference that now y 6= y∗ and t 6= y∗ no longer imply
that t = y, and ym 6= y∗ and ym 6= y no longer imply that
y = y∗. Given that y 6= y∗ implies Pt(y = t | y∗ = t) = 0,

Pt(y = t) = Pt(y∗ 6= t) Pt(y = t | y∗ 6= t)

+ Pt(y∗ = t) Pt(y = t | y∗ = t)

= Pt(y∗ 6= t) Pt(y = t | y∗ 6= t) (11)

and Equation 4 becomes

Et[L(t, y)] = Pt(y 6= t) = 1 − Pt(y = t)

= 1 − Pt(y∗ 6= t) Pt(y = t | y∗ 6= t)

= L(y∗, y) + c0Et[L(t, y∗)] (12)

with c0 = −Pt(y = t | y∗ 6= t). When y = y∗ Equation 3
is trivially true with c0 = 1, as before. A similar treatment
applies to Equation 5, leading to c2 = −PD(y = y∗ | y 6=
ym) if ym 6= y∗, etc. Given that

ED [c0] = PD(y = y∗)−PD(y 6= y∗)Pt(y = t|y∗ 6= t) = c1

(13)
we obtain Theorem 3.

Theorem 3 means that in multiclass problems not all vari-
ance on biased examples contributes to reducing loss; of all
training sets for which y 6= ym, only some have y = y∗,
and it is in these that loss is reduced. This leads to an in-
teresting insight: when zero-one loss is the evaluation cri-
terion, the tolerance for variance will decrease as the num-
ber of classes increases, other things being equal. Thus the
ideal setting for the “bias-variance trade-off” parameter in a
learner (e.g., the number of neighbors in k-nearest neighbor)
may be more in the direction of high variance in problems
with fewer classes.

In many classification problems, zero-one loss is an inap-
propriate evaluation measure because misclassification costs
are asymmetric; for example, classifying a cancerous patient
as healthy is likely to be more costly than the reverse. Con-
sider the two class case with ∀y L(y, y) = 0 (i.e., there is
no cost for making the correct prediction), and with any
nonzero real values for L(y1, y2) when y1 6= y2. The de-
composition above also applies in this case, with the appro-
priate choice of c1 and c2.

Theorem 4 In two-class problems, Equation 1 is valid for
any real-valued loss function for which ∀y L(y, y) = 0
and ∀y1 6=y2

L(y1, y2) 6= 0, with c1 = PD(y = y∗) −
L(y∗,y)
L(y,y∗)

PD(y 6= y∗) and c2 = 1 if ym = y∗, c2 = −L(y∗,ym)
L(ym,y∗)

otherwise.

We omit the proof in the interests of space; see Domingos
(2000). Theorem 4 essentially shows that the loss-reducing
effect of variance on biased examples will be greater or
smaller depending on how asymmetric the costs are, and on

which direction they are greater in. Whether this decompo-
sition applies in the multiclass case is an open problem. It
does not apply if L(y, y) 6= 0; in this case the decomposition
contains an additional term corresponding to the cost of the
correct predictions.

Properties of the Unified Decomposition
One of the main concepts Breiman (1996a) used to explain
why the bagging ensemble method reduces zero-one loss
was that of an order-correct learner.

Definition 5 (Breiman, 1996a) A learner is order-correct on
an example x iff ∀y 6=y∗

PD(y) < PD(y∗).

Breiman showed that bagging transforms an order-correct
learner into a nearly optimal one. An order-correct learner
is an unbiased one according to Definition 2:

Theorem 5 A learner is order-correct on an example x iff
B(x) = 0 under zero-one loss.

The proof is immediate from the definitions, considering
that ym for zero-one loss is the most frequent prediction.

Schapire et al. (1997) have proposed an explanation for
why the boosting ensemble method works in terms of the
notion of margin. For algorithms like bagging and boost-
ing, that generate multiple hypotheses by applying the same
learner to multiple training sets, their definition of margin
can be stated as follows.

Definition 6 (Schapire et al., 1997) In two-class problems,
the margin of a learner on an example x is M(x) = PD(y =
t) − PD(y 6= t).

A positive margin indicates a correct classification by the
ensemble, and a negative one an error. Intuitively, a large
margin corresponds to a high confidence in the prediction.
D here is the set of training sets to which the learner is ap-
plied. For example, if 100 rounds of boosting are carried out,
|D| = 100. Further, for algorithms like boosting where the
different training sets (and corresponding predictions) have
different weights that sum to 1, PD(.) is computed according
to these weights. Definitions 1–4 apply unchanged in this
situation. In effect, we have generalized the notions of bias
and variance to apply to any training set selection scheme,
not simply the traditional one of “all possible training sets of
a given size, with equal weights.”

Schapire et al. (1997) showed that it is possible to bound
an ensemble’s generalization error (i.e., its zero-one loss on
test examples) in terms of the distribution of margins on
training examples and the VC dimension of the base learner.
In particular, the smaller the probability of a low margin,
the lower the bound on generalization error. The following
theorem shows that the margin is closely related to bias and
variance as defined above.

Theorem 6 The margin of a learner on an example x can
be expressed in terms of its zero-one bias and variance as
M(x) = ±[2B(x) − 1][2V (x) − 1], with positive sign if
y∗ = t and negative sign otherwise.

Proof. When y∗ = t, M(x) = PD(y = y∗)−PD(y 6= y∗) =
2PD(y = y∗) − 1. If B(x) = 0, ym = y∗ and M(x) =



2PD(y = ym) − 1 = 2[1 − V (x)] − 1 = −[2V (x) − 1].
If B(x) = 1 then M(x) = 2V (x) − 1. Therefore M(x) =
[2B(x) − 1][2V (x) − 1]. The demonstration for y∗ 6= t is
similar, with M(x) = PD(y 6= y∗) − PD(y = y∗).

Conversely, it is possible to express the bias and vari-
ance in terms of the margin: B(x) = 1

2 [1 ± sign(M(x))],
V (x) = 1

2 [1±|M(x)|], with positive sign if y∗ 6= t and neg-
ative sign otherwise. The relationship between margins and
bias/variance expressed in Theorem 6 implies that Schapire
et al.’s theorems can be stated in terms of the bias and vari-
ance on training examples. Bias-variance decompositions
relate a learner’s loss on an example to its bias and variance
on that example. However, to our knowledge this is the first
time that generalization error is related to bias and variance
on training examples.

Theorem 6 also sheds light on the polemic between
Breiman (1996b, 1997) and Schapire et al. (1997) on how
the success of ensemble methods like bagging and boosting
is best explained. Breiman has argued for a bias-variance
explanation, while Schapire et al. have argued for a margin-
based explanation. Theorem 6 shows that these are two faces
of the same coin, and helps to explain why the bias-variance
explanation sometimes seems to fail when applied to boost-
ing. Maximizing margins is a combination of reducing the
number of biased examples, decreasing the variance on un-
biased examples, and increasing it on biased ones (for exam-
ples where y∗ = t; the reverse, otherwise). Without differ-
entiating between these effects it is hard to understand how
boosting affects bias and variance.

Unfortunately, there are many loss functions to which the
decomposition in Equation 1 does not apply. For example,
it does not apply to L(t, y) = (t − y)m with arbitrary m; in
particular, it does not apply to absolute loss. (See Domingos
(2000).) An important direction for future work is determin-
ing general properties of loss functions that are necessary
and/or sufficient for Equation 1 to apply. Here we show that,
as long as the loss function is a metric, it can be bounded
from above and below by simple functions of the bias, vari-
ance and noise.

Theorem 7 The following inequalities are valid for any
metric loss function:

ED,t[L(t, y)] ≤ N(x) + B(x) + V (x)

ED,t[L(t, y)] ≥ max({N(x) − B(x) − V (x),

B(x) − V (x) − N(x),

V (x) − B(x) − N(x)})

Proof. Recall that a function of two arguments d(a1, a2)
is a metric iff ∀a,b d(a, b) ≥ d(a, a) = 0 (minimality),
∀a,b d(a, b) = d(b, a) (symmetry), and ∀a,b,c d(a, b) +
d(b, c) ≥ d(a, c) (triangle inequality). Using the triangle
inequality,

L(t, y) ≤ L(t, y∗) + L(y∗, y)

≤ L(t, y∗) + L(y∗, ym) + L(ym, y) (14)

Taking the expected value of this equation with respect to D
and t and simplifying produces the upper bound. Using the
triangle inequality and symmetry,

L(y∗, ym) ≤ L(y∗, t) + L(t, y) + L(y, ym)

≤ L(t, y∗) + L(t, y) + L(ym, y) (15)

Rearranging terms, taking the expectation wrt D and t and
simplifying leads to ED,t[L(t, y)] ≥ B(x)−V (x)−N(x).
The remaining components of the lower bound are obtained
in a similar manner.

Experiments
We used the bias-variance decomposition for zero-one loss
proposed here in numerous experiments on a large suite of
benchmark datasets (Blake & Merz, 2000). While space
limitations preclude a full description of the experiments
(see Domingos (2000)), some of the main observations made
are:

• Surprisingly, varying C4.5’s pruning parameter (Quinlan,
1993) has only a minor effect on bias and variance.

• Varying the maximum number of levels in C4.5’s deci-
sion trees produces more interesting results. Bias typi-
cally decreases very rapidly at first (one to three levels)
and then stabilizes. Net variance increases steadily but
slowly, largely because variance on biased examples sig-
nificantly offsets variance on unbiased ones. The mini-
mum loss is often found at one extreme (one level or un-
limited levels).

• Boosting C4.5 tends to slightly reduce bias and strongly
reduce variance. The bulk of bias reduction occurs in the
first few rounds, after which bias stabilizes. The variance
curves are more irregular.

• In k-nearest neighbor bias increase with k dominates vari-
ance reduction. However, increasing k has the “ideal”
effect of reducing variance on unbiased examples while
increasing it on biased ones.

• Compared to the results of Kohavi and Wolpert (1996)
with their decomposition, variance is typically a smaller
contributor to error. Again, this can be largely traced to
the conflicting effects of variance on biased and unbiased
examples.

• There are exceptions to every one of the previous obser-
vations. In general, it is not always the case that variance
increases as bias decreases, or that both vary monotoni-
cally with the “bias-variance” parameter.

Related Work
The first bias-variance decomposition for zero-one loss was
proposed by Kong and Dietterich (1995). Although they
proposed it in a purely ad hoc manner and only applied it
to one ensemble learner in one artificial, noise-free domain,
our results show that it is in fact a well-founded and useful
decomposition, even if incomplete. Breiman (1996b) pro-
posed a decomposition for the average zero-one loss over all
examples, leaving bias and variance for a specific example x
undefined. As Tibshirani (1996) points out, Breiman’s def-
initions of bias and variance have some undesirable prop-
erties, seeming artificially constructed to produce a purely



additive decomposition. Tibshirani’s (1996) definitions do
not suffer from these problems; on the other hand, he makes
no use of the variance, instead decomposing zero-one loss
into bias and an unrelated quantity he calls the “aggregation
effect.” Kohavi and Wolpert (1996) defined bias and vari-
ance in terms of quadratic functions of Pt(t) and PD(y).
Although the resulting decomposition is purely additive, it
suffers from the serious problem that it does not assign
zero bias to the Bayes classifier. Also, although Kohavi
and Wolpert emphasize the fact that their definition of zero-
one bias is not restricted to taking on the values 0 or 1, it
would seem that a binary-valued bias is the natural conse-
quence of a binary-valued loss function. In practice, Kohavi
and Wolpert’s method produces biased estimates of bias and
variance; although their estimators can be debiased, this ob-
scures their meaning (for example, the corrected bias can be
negative). Friedman (1997) studied the relationship between
zero-one loss and the bias and variance of class probability
estimates. He emphasized that the effect of bias and variance
is strongly non-additive; increasing variance can reduce er-
ror. In this paper we obtain similar results directly in terms
of the bias and variance of class predictions, and without
Friedman’s restrictive assumptions (only two classes, Gaus-
sian probabilities).

Conclusion
In this paper we proposed general definitions of bias and
variance applicable to any loss function, and derived the cor-
responding decompositions for squared loss, zero-one loss
and variable misclassification costs. We also showed that
margins can be expressed as a function of zero-one bias and
variance, and that a simple relationship between loss, bias
and variance exists for any metric loss function. Experi-
ments on benchmark datasets illustrated the utility of our
decomposition. Directions for future work include apply-
ing the decomposition to further loss functions, and conduct-
ing further experiments. C functions implementing the bias-
variance decomposition proposed in this paper are available
at http://www.cs.washington.edu/homes/pedrod/bvd.c.
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