
Discriminative Training of Markov Logic Networks

Parag Singla Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350, U.S.A.

{parag, pedrod}@cs.washington.edu

Abstract

Many machine learning applications require a combination
of probability and first-order logic. Markov logic networks
(MLNs) accomplish this by attaching weights to first-order
clauses, and viewing these as templates for features of
Markov networks. Model parameters (i.e., clause weights)
can be learned by maximizing the likelihood of a relational
database, but this can be quite costly and lead to suboptimal
results for any given prediction task. In this paper we pro-
pose a discriminative approach to training MLNs, one which
optimizes the conditional likelihood of the query predicates
given the evidence ones, rather than the joint likelihood of
all predicates. We extend Collins’s (2002) voted perceptron
algorithm for HMMs to MLNs by replacing the Viterbi algo-
rithm with a weighted satisfiability solver. Experiments on
entity resolution and link prediction tasks show the advan-
tages of this approach compared to generative MLN training,
as well as compared to purely probabilistic and purely logical
approaches.

Introduction
AI systems must be able to learn, reason logically, and
handle uncertainty. Research on combining all three has
grown rapidly in recent years (Dietterich, Getoor, & Murphy
2003). For example, probabilistic relational models com-
bine Bayesian networks with description logics (Friedman et
al. 1999), and Bayesian logic programs combine Bayesian
networks with inductive logic programming (Kersting & De
Raedt 2001). The need to avoid directed cycles in these ap-
proaches causes many difficulties, which can be overcome
by using Markov networks as the probabilistic representa-
tion. Relational Markov networks do this, but are limited in
expressiveness to conjunctive database queries, and require
exponential space in the size of the cliques (Taskar, Abbeel,
& Koller 2002). Markov logic networks (MLNs) overcome
these limitations by allowing the features of Markov net-
works to be specified by arbitrary formulas in finite first-
order logic (Richardson & Domingos 2004).

Learning Markov network parameters is difficult because
computing the likelihood and its gradient requires per-
forming inference, which has worst-case exponential cost.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

An oft-used alternative is to optimize instead a pseudo-
likelihood measure, which involves only each variable’s
probability given its Markov blanket (graph neighbors) in
the data (Besag 1975). This is the approach used by Richard-
son and Domingos (2004). However, the pseudo-likelihood
ignores non-local interactions between variables, and may
underperform when these need to be taken into account at
inference time.

Both likelihood and pseudo-likelihood are generative
learning approaches in the sense that they attempt to opti-
mize the joint distribution of all variables. In contrast, dis-
criminative approaches maximize the conditional likelihood
of a set of outputs given a set of inputs (e.g., Lafferty et
al. (2001)). This often produces better results, because no
effort is spent modeling dependencies between inputs. The
voted perceptron is a discriminative algorithm for labeling
sequence data, a special case in which tractable inference
is possible using the Viterbi algorithm (Collins 2002). In
this paper we generalize the voted perceptron to arbitrary
Markov logic networks, by replacing the Viterbi algorithm
with a weighted satisfiability solver. Experiments in two
real-world domains show the promise of this approach.

We begin by briefly reviewing the necessary background
in Markov networks, logic, and Markov logic networks. We
then describe our algorithm for discriminative learning of
MLNs. Finally, we report our experiments.

Markov Networks
A Markov network (also known as Markov random field)
is a model for the joint distribution of a set of variables
X = (X1, X2, . . . , Xn) ∈ X (Della Pietra, Della Pietra, &
Lafferty 1997). It is composed of an undirected graph G and
a set of potential functions φk . The graph has a node for each
variable, and the model has a potential function for each
clique in the graph. A potential function is a non-negative
real-valued function of the state of the corresponding clique.
The joint distribution represented by a Markov network is
given by

P (X =x) =
1

Z

∏

k

φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of
the variables that appear in that clique). Z, known as the
partition function, is given by Z =

∑

x∈X

∏

k φk(x{k}).

Markov networks are often conveniently represented as log-
linear models, with each clique potential replaced by an ex-
ponentiated weighted sum of features of the state, leading
to

P (X =x) =
1

Z
exp





∑

j

wjfj(x)



 (2)

A feature may be any real-valued function of the state. This
paper will focus on binary features, fj(x) ∈ {0, 1}. In
the most direct translation from the potential-function form
(Equation 1), there is one feature corresponding to each
possible state x{k} of each clique, with its weight being
log φk(x{k}). This representation is exponential in the size
of the cliques. However, we are free to specify a much
smaller number of features (e.g., logical functions of the
state of the clique), allowing for a more compact represen-
tation than the potential-function form, particularly when
large cliques are present. MLNs take advantage of this.

Maximum a posteriori (MAP) inference in Markov net-
works involves finding the most likely state of a set of query
(output) variables given the state of a set of evidence (input)
variables, and is NP-hard (Roth 1996). Conditional infer-
ence involves computing the distribution of the query vari-
ables given the evidence, and is #P-complete (Roth 1996).
The most widely used approximate solution to this problem
is Markov chain Monte Carlo (MCMC) (Gilks, Richardson,
& Spiegelhalter 1996), and in particular Gibbs sampling,
which proceeds by sampling each variable in turn given its
Markov blanket (i.e., its neighbors in the graph), and count-
ing the fraction of samples that each variable is in each state.

First-Order Logic
A first-order knowledge base (KB) is a set of sentences or
formulas in first-order logic (Genesereth & Nilsson 1987).
Formulas are constructed using four types of symbols: con-
stants, variables, functions, and predicates. Constant sym-
bols represent objects in the domain of interest (e.g., peo-
ple: Anna, Bob, Chris, etc.). Variable symbols range
over the objects in the domain. Function symbols (e.g.,
MotherOf) represent mappings from tuples of objects to ob-
jects. Predicate symbols represent relations among objects
in the domain (e.g., Friends) or attributes of objects (e.g.,
Smokes). A term is any expression representing an object
in the domain. It can be a constant, a variable, or a func-
tion applied to a tuple of terms. For example, Anna, x, and
GreatestCommonDivisor(x, y) are terms. An atomic for-
mula or atom is a predicate symbol applied to a tuple of
terms (e.g., Friends(x, MotherOf(Anna))). A ground term
is a term containing no variables. A ground atom or ground
predicate is an atomic formula all of whose arguments are
ground terms. Formulas are recursively constructed from
atomic formulas using logical connectives and quantifiers.
A positive literal is an atomic formula; a negative literal is
a negated atomic formula. A KB in clausal form is a con-
junction of clauses, a clause being a disjunction of literals.
A possible world or Herbrand interpretation assigns a truth
value to each possible ground atom. In finite domains, first-
order KBs can be propositionalized by replacing each uni-

versally (existentially) quantified formula with a conjunc-
tion (disjunction) of all its groundings.

A central (and NP-complete) problem in logic is that of
determining if a KB (usually in clausal form) is satisfiable,
i.e., if there is an assignment of truth values to ground atoms
that makes the KB true. One approach to this problem is
stochastic local search, exemplified by the WalkSat solver
(Selman, Kautz, & Cohen 1996). Beginning with a random
truth assignment, WalkSat repeatedly flips the truth value
of either (a) an atom that maximizes the number of satis-
fied clauses, or (b) a random atom in an unsatisfied clause.
WalkSat is able to solve hard instances of satisfiability with
hundreds of thousands of variables in minutes. Many first-
order problems (e.g., planning) can be solved efficiently by
propositionalizing them and applying a satisfiability solver.
The weighted satisfiability problem is a variant of satisfiabil-
ity where each clause has an associated weight, and the goal
is to maximize the sum of the weights of satisfied clauses.
MaxWalkSat is a direct extension of WalkSat to this problem
(Kautz, Selman, & Jiang 1997).

Markov Logic Networks
A first-order KB can be seen as a set of hard constraints on
the set of possible worlds: if a world violates even one for-
mula, it has zero probability. The basic idea in MLNs is to
soften these constraints: when a world violates one formula
in the KB it is less probable, but not impossible. The fewer
formulas a world violates, the more probable it is. Each for-
mula has an associated weight that reflects how strong a con-
straint it is: the higher the weight, the greater the difference
in log probability between a world that satisfies the formula
and one that does not, other things being equal.

Definition 1 (Richardson & Domingos 2004) A Markov
logic network L is a set of pairs (Fi, wi), where Fi is a
formula in first-order logic and wi is a real number. To-
gether with a finite set of constants C = {c1, c2, . . . , c|C|},
it defines a Markov network ML,C (Equations 1 and 2) as
follows:

1. ML,C contains one binary node for each possible ground-
ing of each predicate appearing in L. The value of the
node is 1 if the ground predicate is true, and 0 otherwise.

2. ML,C contains one feature for each possible grounding
of each formula Fi in L. The value of this feature is 1 if
the ground formula is true, and 0 otherwise. The weight
of the feature is the wi associated with Fi in L.

Thus there is an edge between two nodes of ML,C iff the
corresponding ground predicates appear together in at least
one grounding of one formula in L. An MLN can be viewed
as a template for constructing Markov networks. From Def-
inition 1 and Equations 1 and 2, the probability distribution
over possible worlds x specified by the ground Markov net-
work ML,C is given by

P (X =x) =
1

Z
exp

(

F
∑

i=1

wini(x)

)

(3)

where F is the number formulas in the MLN and ni(x) is the
number of true groundings of Fi in x. As formula weights

increase, an MLN increasingly resembles a purely logical
KB, becoming equivalent to one in the limit of all infinite
weights.

In this paper we will focus on MLNs whose formulas are
function-free clauses and assume domain closure, ensuring
that the Markov networks generated are finite (Richardson &
Domingos 2004). In this case, the groundings of a formula
are formed simply by replacing its variables with constants
in all possible ways. For example, if C = {Anna, Bob},
the formula ∀x Smokes(x) ⇒ Cancer(x) in the MLN
L yields the features Smokes(Anna) ⇒ Cancer(Anna)
and Smokes(Bob) ⇒ Cancer(Bob) in the ground Markov
network ML,C (or ¬Smokes(Anna) ∨ Cancer(Anna) and
¬Smokes(Bob) ∨ Cancer(Bob) in clausal form). See
Richardson and Domingos (2004, Table II) for details.

Learning MLNs
Generative Training
MLN weights can be learned generatively by maximizing
the likelihood of a relational database (Equation 3). (A
closed-world assumption is made, whereby all ground atoms
not in the database are assumed false.) The gradient of the
log-likelihood with respect to the weights is

∂

∂wi

log Pw(X =x) = ni(x)−
∑

x′

Pw(X =x′)ni(x
′) (4)

where the sum is over all possible databases x′, and Pw(X =
x′) is P (X = x′) computed using the current weight vec-
tor w = (w1, . . . , wi, . . .). In other words, the ith com-
ponent of the gradient is simply the difference between the
number of true groundings of the ith formula in the data
and its expectation according to the current model. Un-
fortunately, computing these expectations requires inference
over the model, which can be very expensive. Most fast nu-
meric optimization methods (e.g., conjugate gradient with
line search, L-BFGS) also require computing the likelihood
itself and hence the partition function Z, which is also in-
tractable. Although inference can be done approximately
using Markov chain Monte Carlo, Richardson and Domin-
gos (2004) found this to be too slow. Instead, they maxi-
mized the pseudo-likelihood of the data, an alternative mea-
sure widely used in areas like spatial statistics, social net-
works and natural language (Besag 1975). If x is a possible
world (relational database) and xl is the lth ground atom’s
truth value, the pseudo-log-likelihood of x given weights w
is

log P ∗
w(X =x) =

n
∑

l=1

log Pw(Xl =xl|MBx(Xl)) (5)

where MBx(Xl) is the state of Xl’s Markov blanket in the
data (i.e., the truth values of the ground atoms it appears
in some ground formula with). Computing the pseudo-
likelihood and its gradient does not require inference, and
is therefore much faster. However, the pseudo-likelihood
parameters may lead to poor results when inference across
non-neighboring variables is required.

Discriminative Training
In many applications, we know a priori which predicates
will be evidence and which ones will be queried, and the
goal is to correctly predict the latter given the former. If we
partition the ground atoms in the domain into a set of evi-
dence atoms X and a set of query atoms Y , the conditional
likelihood of Y given X is

P (y|x) =
1

Zx

exp

(

∑

i∈FY

wini(x, y)

)

=
1

Zx

exp





∑

j∈GY

wjgj(x, y)



 (6)

where FY is the set of all MLN clauses with at least one
grounding involving a query atom, ni(x, y) is the number
of true groundings of the ith clause involving query atoms,
GY is the set of ground clauses in ML,C involving query
atoms, and gj(x, y) = 1 if the jth ground clause is true in
the data and 0 otherwise. When some variables are “hidden”
(i.e., neither query nor evidence) the conditional likelihood
should be computed by summing them out, but for simplic-
ity we treat all non-evidence variables as query variables.
The gradient of the conditional log-likelihood (CLL) is

∂

∂wi

log Pw(y|x) = ni(x, y) −
∑

y′

Pw(y′|x)ni(x, y′)

= ni(x, y) − Ew[ni(x, y)] (7)

As before, computing the expected counts Ew[ni(x, y)] is
intractable. However, they can be approximated by the
counts ni(x, y∗

w) in the MAP state y∗
w(x). This will be

a good approximation if most of the probability mass of
Pw(y|x) is concentrated around y∗

w(x). Computing the gra-
dient of the CLL now requires only MAP inference to find
y∗

w(x), which is much faster than the full conditional infer-
ence for Ew [ni(x, y)]. (If the training database is broken up
into separate examples, an MAP inference per example is
performed.) This approach was used successfully by Collins
(2002) in the special case of a Markov network (and hence of
an MLN) where the query nodes form a linear chain. In this
case, the MAP state can be found in polynomial time using
the Viterbi algorithm, a form of dynamic programming (Ra-
biner 1989). Collins’s voted perceptron algorithm initializes
all weights to zero, performs T iterations of gradient ascent
using the approximation above, and returns the parameters
averaged over all iterations, wi =

∑T

t=1
wi,t/T . The pa-

rameter averaging helps to combat overfitting. T is chosen
using a validation subset of the training data.

Generalizing this solution to arbitrary MLNs requires re-
placing the Viterbi algorithm with a general-purpose algo-
rithm for MAP inference in MLNs. The form of Equation 6
suggests a solution. Since y∗

w(x) is the state that maximizes
the sum of the weights of the satisfied ground clauses, it can
be found using the MaxWalkSat solver (see the section on
logic). Given an MLN and set of evidence atoms, the KB
to be passed to MaxWalkSat is formed by constructing all

groundings of clauses in the MLN involving query atoms,
replacing the evidence atoms in those groundings by their
truth values, and simplifying. When hidden variables are
present, the algorithm of Richardson and Domingos (2004,
Table III) is used. (In practice, it is often convenient to
make a closed world assumption on the evidence predicates,
whereby all ground predicates not explicitly listed in the ev-
idence database are assumed false.)

Unlike the Viterbi algorithm, MaxWalkSat is not guaran-
teed to find the global MAP state. This is a potential ad-
ditional source of error in the weight estimates produced.
The quality of the estimates can be improved by running a
Gibbs sampler starting at the state returned by MaxWalkSat,
and averaging counts over the samples. If the Pw(y|x) dis-
tribution has more than one mode, doing multiple runs of
MaxWalkSat followed by Gibbs sampling may also be use-
ful. In the limit, this is equivalent to computing the expected
counts exactly, which gives us a straightforward way of trad-
ing off computational cost and accuracy of estimates.

MaxWalkSat assumes that all weights are positive, while
learning can produce negative weights. However, it is
easily shown that a formula with a negative weight in a
grounded MLN is equivalent to its negation with the sym-
metric weight. We thus perform this conversion, if nec-
essary, before passing a ground network to MaxWalkSat.
The negation of a clause

∨n
i=1

Li, where Li is a literal, is
∧n

i=1
¬Li, a conjunction of n unit clauses. If the original

clause’s weight is w, we assign a weight of −w/n to each
of these unit clauses.

A step of gradient ascent consists of setting wi,t =

wi,t−1+η ∂
∂wi

log Pw(y|x)|wt−1
. The original voted percep-

tron algorithm uses a learning rate of η = 1. In the general-
ized version, we have found it useful to set this value using a
validation set, as is typically done. Weights are initialized to
the corresponding clauses’ log odds of being true in the data;
this tends to produce faster convergence. (Because the opti-
mization problem is convex, the initial state does not affect
the solution found.)

Experiments
Databases
We carried out experiments on two publicly-
available databases: the UW-CSE database used
by Richardson and Domingos (2004) (available at
http://www.cs.washington.edu/ai/mln), and McCal-
lum’s Cora database of computer science citations as
segmented by Bilenko and Mooney (2003) (available at
http://www.cs.utexas.edu/users/ml/riddle/data/cora.tar.gz).

The UW-CSE domain consists of 22 predicates and 1158
constants divided into 10 types.1 Types include: publication,
person, course, etc. Predicates include: Student(person),
Professor(person), AdvisedBy(person1, person2),
TaughtBy(course, person, quarter), Publication

(paper, person) etc. Using typed variables, the total num-
ber of possible ground atoms is 4,055,575. The database

1We added the equality predicates that were missing from the
original database.

contains a total of 3212 tuples (true ground atoms, with
the remainder assumed false). We used the hand-coded
knowledge base provided with it, which includes 94 for-
mulas stating regularities like: each student has at most
one advisor; if a student is an author of a paper, so is her
advisor; etc. Notice that these statements are not always
true, but are typically true. The task is to predict who
is whose advisor from information about coauthorships,
classes taught, etc. More precisely, the query atoms are
all groundings of AdvisedBy(person1, person2), and
the evidence atoms are all groundings of all other predi-
cates except Student(person) and Professor(person),
corresponding to the “Partial Information” scenario in
Richardson and Domingos (2004).

The Cora database is a collection of 1295 different
citations to computer science research papers. We cleaned
it up by correcting some labels and filling in missing values.
This cleaned-up version contains references to 132 different
research papers. We used the author, venue, and title fields.
The goal is to de-duplicate citations, authors and venues
(i.e., to determine which pairs of citations, author fields,
and venue fields refer to the same underlying paper, author
and venue, respectively). We thus defined the equality
predicates SameCitation(citation1, citation2),
SameAuthor(author1, author2), and SameVenue

(venue1, venue2). We also defined an equality predi-
cate for each pair of title field values, i.e., SameTitle

(title1, title2). For each field, we defined six pred-
icates testing whether the cosine TF-IDF similarity
score (Salton & McGill 1983) of two field values lies in
a particular range (0, 0–0.2, 0.2–0.4, etc.). For exam-
ple, TitleTFIDF.4(title1, title2) is true if the titles
title1 and title2 have a TF-IDF score in the range
(0.2, 0.4], and false otherwise. The TFIDF predicates can
be computed directly from the data, and their groundings
are the evidence atoms. At inference time, all equality
predicates are unknown; we hand-labeled them for training
and testing purposes (except for SameCitation, which was
provided in the original database). Using typed variables,
the total number of possible ground atoms is 401,552. The
database contained a total of 82,026 tuples (true ground
atoms). We hand-coded a KB for this domain, consisting
of 46 clauses stating regularities like: if two citations are
the same, their authors, venues, etc., are the same, and
vice-versa; if two fields have a high TF-IDF score, they
are the same; etc. While these are not valid as categorical
logical statements, they capture important probabilistic
relationships when incorporated with weights into an MLN.

Systems
We compared three versions of MLN weight learning, ap-
plied to the formulas in the hand-coded KB: the voted per-
ceptron algorithm with MaxWalkSat inference, as described
in the previous section (MLN(VP)); maximum likelihood
using MC-MLE, as described in Richardson and Domingos
(2004) (MLN(ML)); and pseudo-likelihood, as described
in Richardson and Domingos (2004) (MLN(PL)). In ad-
dition, we compared MLN learning with a pure ILP ap-
proach (CLAUDIEN (De Raedt & Dehaspe 1997) (CL)), a

pure knowledge-based approach (the hand-coded KB (KB)),
and two pure probabilistic approaches: naive Bayes (NB)
(Domingos & Pazzani 1997) and Bayesian networks (BN)
(Heckerman, Geiger, & Chickering 1995).

In MLN(VP) training, we used a single run of MaxWalk-
Sat during each learning iteration. In the UW-CSE domain
we used η = 0.001 and T = 200. In Cora we used
η = 5 × 10−7 and T = 100. (Cora has a much larger
number of query predicates than UW-CSE, necessitating the
use of a much smaller learning rate.) Following Richardson
and Domingos (2004), we trained MLN(PL) and MLN(ML)
using L-BFGS with a zero-centered Gaussian prior. We used
Gibbs sampling to approximate the function value and gra-
dient for MLN(ML). Running it to convergence was found
to be too slow for the learning to complete in any practical
amount of time. A single inference did not satisfy the con-
vergence criteria even when run for more than 24 hours. To
obtain the estimates in a reasonable time, we limited each
Gibbs sampling inference to at most 50,000 passes for burn-
in and 500,000 passes for mixing. The total learning time
was limited to a maximum of three days. For inference in
all the MLN systems, we used a single run of MaxWalkSat
to compute the MAP truth values of non-evidence atoms,
followed by Gibbs sampling to compute their conditional
probabilities given the evidence.

We used the same settings for CLAUDIEN as Richardson
and Domingos, and let CLAUDIEN run for 24 hours on a
Sun Blade 1000 workstation.2

In the UW-CSE domain, we used the algorithm of
Richardson and Domingos (2004) to construct attributes for
the naive Bayes and Bayesian network learners. Following
Richardson and Domingos, we tried using order-1 and order-
1+2 attributes, and report the best results. In the Cora do-
main, we used the evidence predicates as attributes (i.e., we
predicted whether two fields values are the same from their
TF-IDF similarity scores; for the citations, evidence values
from all the corresponding fields were used as attributes.).

Methodology
In the UW-CSE domain, we used the same leave-one-area-
out methodology as Richardson and Domingos (2004). In
the Cora domain, we performed eight-fold cross-validation,
ensuring that no true set of matching records was split be-
tween folds, to avoid train-test set contamination. For each
system on each test set, we measured the conditional log-
likelihood (CLL) and area under the precision-recall curve
(AUC) for the query predicate. The advantage of the CLL
is that it directly measures the quality of the probability es-
timates produced. The advantage of the AUC is that it is in-
sensitive to the large number of true negatives (i.e., ground
atoms that are false and predicted to be false). The CLL of
a query predicate is the average over all its groundings of
the ground atom’s log-probability given the evidence. The
precision-recall curve for a predicate is computed by vary-
ing the threshold CLL above which a ground atom is pre-
dicted to be true. We computed the standard deviations of
the AUCs using the method of Richardson and Domingos

2CLAUDIEN only runs on Solaris machines.

Table 1: Experimental results on the UW-CSE database.

System CLL AUC
MLN(VP) −0.033±0.003 0.295±0.022
MLN(ML) −0.063±0.004 0.077±0.011
MLN(PL) −0.034±0.003 0.232±0.024
KB −0.053±0.004 0.114±0.004
CL −0.693±0.000 0.006±0.000
NB −1.237±0.035 0.065±0.000
BN −0.046±0.002 0.020±0.000

(2004). To obtain probabilities from CL and KB (required
to compute CLLs and AUCs) we treated CLAUDIEN’s out-
put and the hand-coded KBs as MLNs with all equal infinite
weights. We smoothed all probabilities for all systems as in
Richardson and Domingos (2004).

Results
The results on the UW-CSE domain are shown in Table 1.
MLNs with discriminative training clearly outperform all
the other approaches. The poor results of MLN(ML) are
attributable to the fact that learning using non-converged
chains of Gibbs sampling produces parameters which are
far from optimal. MLN(PL) is only marginally worse than
MLN(VP) on CLL but loses substantially on AUC. Purely
logical and purely probabilistic approaches all give poor re-
sults.

The results on Cora are shown in Table 2. Again,
MLNs with discriminative training outperform the other ap-
proaches. The performance of MLN(ML) is very poor due
to the non-convergence of Gibbs sampling. MLN(PL) per-
forms much worse than MLN(VP) on both CLL and AUC.
The purely logical KB performs very poorly. CL performs
better than KB, but still much worse than MLN(VP). Among
the probabilistic approaches, BN performs marginally better
than MLN(VP) on CLL on predicting citations, but signif-
icantly worse on AUC. On authors and venues, MLN(VP)
outperforms all other approaches on both CLL and AUC.

Conclusion
Markov logic networks are a powerful combination of logic
and probability. In this paper we developed an algorithm for
discriminative learning of MLN parameters by combining
the voted perceptron with a weighted satisfiability solver,
and we verified experimentally that this approach outper-
forms generative learning.

Directions for future work include discriminative learning
of MLN structure (cf. (McCallum 2003)), maximum-margin
learning of MLN parameters (cf. (Taskar et al. 2004)), ex-
tensions of MaxWalkSat, and further application of MLNs
to entity resolution, link prediction and other problems.

Acknowledgments
This research was partly supported by ONR grant N00014-
02-1-0408 and by a Sloan Fellowship awarded to the second
author.

Table 2: Experimental results on the Cora database.

Citation Author Venue
System CLL AUC CLL AUC CLL AUC
MLN(VP) −0.069±0.001 0.973±0.000 −0.069±0.008 0.969±0.001 −0.232±0.006 0.771±0.003
MLN(ML) −13.261±0.013 0.111±0.000 −12.973±0.086 0.162±0.000 −13.380±0.034 0.061±0.000
MLN(PL) −0.699±0.000 0.722±0.001 −3.062±0.046 0.323±0.001 −0.708±0.002 0.342±0.005
KB −8.629±0.009 0.149±0.000 −8.096±0.062 0.180±0.000 −8.475±0.022 0.096±0.000
CL −0.461±0.000 0.187±0.000 −2.375±0.069 0.090±0.000 −1.261±0.022 0.047±0.000
NB −0.082±0.000 0.945±0.000 −0.203±0.008 0.734±0.006 −0.233±0.003 0.339±0.001
BN −0.067±0.000 0.951±0.000 −0.203±0.008 0.734±0.006 −0.233±0.003 0.339±0.001

References
Besag, J. 1975. Statistical analysis of non-lattice data. The
Statistician 24:179–195.
Bilenko, M., and Mooney, R. 2003. Adaptive duplicate de-
tection using learnable string similarity measures. In Pro-
ceedings of the Ninth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 39–48.
Washington, DC: ACM Press.
Collins, M. 2002. Discriminative training methods for hid-
den Markov models: Theory and experiments with percep-
tron algorithms. In Proceedings of the 2002 Conference on
Empirical Methods in Natural Language Processing, 1–8.
Philadelphia, PA: ACL.
De Raedt, L., and Dehaspe, L. 1997. Clausal discovery.
Machine Learning 26:99–146.
Della Pietra, S.; Della Pietra, V.; and Lafferty, J. 1997.
Inducing features of random fields. IEEE Transactions on
Pattern Analysis and Machine Intelligence 19:380–392.
Dietterich, T.; Getoor, L.; and Murphy, K., eds. 2003. Pro-
ceedings of the ICML-2004 Workshop on Statistical Rela-
tional Learning and its Connections to Other Fields. Banff,
Canada: IMLS.
Domingos, P., and Pazzani, M. 1997. On the optimality
of the simple Bayesian classifier under zero-one loss. Ma-
chine Learning 29:103–130.
Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A. 1999.
Learning probabilistic relational models. In Proceedings
of the Sixteenth International Joint Conference on Artifi-
cial Intelligence, 1300–1307. Stockholm, Sweden: Mor-
gan Kaufmann.
Genesereth, M. R., and Nilsson, N. J. 1987. Logical Foun-
dations of Artificial Intelligence. San Mateo, CA: Morgan
Kaufmann.
Gilks, W. R.; Richardson, S.; and Spiegelhalter, D. J., eds.
1996. Markov Chain Monte Carlo in Practice. London,
UK: Chapman and Hall.
Heckerman, D.; Geiger, D.; and Chickering, D. M. 1995.
Learning Bayesian networks: The combination of knowl-
edge and statistical data. Machine Learning 20:197–243.
Kautz, H.; Selman, B.; and Jiang, Y. 1997. A general
stochastic approach to solving problems with hard and soft
constraints. In Gu, D.; Du, J.; and Pardalos, P., eds.,

The Satisfiability Problem: Theory and Applications. New
York, NY: American Mathematical Society. 573–586.
Kersting, K., and De Raedt, L. 2001. Towards combin-
ing inductive logic programming with Bayesian networks.
In Proceedings of the Eleventh International Conference
on Inductive Logic Programming, 118–131. Strasbourg,
France: Springer.
Lafferty, J.; McCallum, A.; and Pereira, F. 2001. Con-
ditional random fields: Probabilistic models for segment-
ing and labeling sequence data. In Proceedings of the
Eighteenth International Conference on Machine Learn-
ing, 282–289. Williamstown, MA: Morgan Kaufmann.
McCallum, A. 2003. Efficiently inducing features of con-
ditional random fields. In Proceedings of the Nineteenth
Conference on Uncertainty in Artificial Intelligence, 403–
410. Acapulco, Mexico: Morgan Kaufmann.
Rabiner, L. R. 1989. A tutorial on hidden Markov models
and selected applications in speech recognition. Proceed-
ings of the IEEE 77:257–286.
Richardson, M., and Domingos, P. 2004. Markov logic net-
works. Technical report, Department of Computer Science
and Engineering, University of Washington, Seattle, WA.
http://www.cs.washington.edu/homes/pedrod/mln.pdf.
Roth, D. 1996. On the hardness of approximate reasoning.
Artificial Intelligence 82:273–302.
Salton, G., and McGill, M. J. 1983. Introduction to Modern
Information Retrieval. New York, NY: McGraw-Hill.
Selman, B.; Kautz, H.; and Cohen, B. 1996. Local search
strategies for satisfiability testing. In Johnson, D. S., and
Trick, M. A., eds., Cliques, Coloring, and Satisfiability:
Second DIMACS Implementation Challenge. Washington,
DC: American Mathematical Society. 521–532.
Taskar, B.; Abbeel, P.; and Koller, D. 2002. Discriminative
probabilistic models for relational data. In Proceedings of
the Eighteenth Conference on Uncertainty in Artificial In-
telligence, 485–492. Edmonton, Canada: Morgan Kauf-
mann.
Taskar, B.; Wong, M. F.; Abbeel, P.; and Koller, D. 2004.
Max-margin Markov networks. In Thrun, S.; Saul, L.; and
Schölkopf, B., eds., Advances in Neural Information Pro-
cessing Systems 16. Cambridge, MA: MIT Press.

