
On Theoretical Properties of Sum-Product Networks

Robert Peharz Sebastian Tschiatschek Franz Pernkopf Pedro Domingos
BEE-PRI BioTechMed-Graz

iDN, Inst. of Physiology
Medical University of Graz

Dept. of Computer Science
ETH Zurich

SPSC Lab
Graz University
of Technology

Dept. of Computer Science
and Engineering

University of Washington

Abstract

Sum-product networks (SPNs) are a promis-
ing avenue for probabilistic modeling and
have been successfully applied to various
tasks. However, some theoretic properties
about SPNs are not yet well understood. In
this paper we fill some gaps in the theoretic
foundation of SPNs. First, we show that the
weights of any complete and consistent SPN
can be transformed into locally normalized
weights without changing the SPN distribu-
tion. Second, we show that consistent SPNs
cannot model distributions significantly (ex-
ponentially) more compactly than decompos-
able SPNs. As a third contribution, we ex-
tend the inference mechanisms known for
SPNs with finite states to generalized SPNs
with arbitrary input distributions.

1 INTRODUCTION

Sum-product networks (SPNs) are a promising type of
probabilistic model and showed impressive results for
image completion [Poon and Domingos, 2011, Dennis
and Ventura, 2012, Peharz et al., 2013], computer vi-
sion [Amer and Todorovic, 2012], classification [Gens
and Domingos, 2012] and speech/language modeling
[Peharz et al., 2014, Cheng et al., 2014]. The po-
tentially deep structure of SPNs allows them to cap-
ture complex interaction of the model variables, while
at the same time still guaranteeing efficient inference.
Inference cost is directly related to the network size,
opening the door for inference-aware learning. How-
ever, some aspects of SPNs are not yet well understood
and there are many open questions worth investigat-
ing. In this paper, we revisit the foundations of SPNs

Appearing in Proceedings of the 18th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2015, San Diego, CA, USA. JMLR: W&CP volume 38.
Copyright 2015 by the authors.

and present new theoretic insights, consisting of three
main contributions.

The first contribution is concerned with normalized
weights: SPNs have been defined to have nonnega-
tive parameters (sum weights), where most work so far
has additionally assumed locally normalized parame-
ters, i.e. that for each sum node the associated weights
sum up to 1. This assures that the SPN distribution
is readily correctly normalized. Up to now it is not
clear if this somehow restricts our modeling abilities,
i.e. are there “fewer” locally normalized SPNs than
unnormalized SPNs? The answer is no, and further-
more we provide an algorithm which transforms any
unnormalized parameter set into a locally normalized
one, without changing the modeled distribution. Thus,
from a representational point of view we can always
assume locally normalized parameters.

As a second contribution we investigate the two no-
tions of consistency and decomposability, either of
which is sufficient to make inference in SPNs efficient,
given that the SPN is also complete. Consistency is the
more general condition, i.e. any decomposable SPN is
also consistent, but not vice versa. So far, only de-
composable SPNs have been considered in practice,
since decomposability is easier to ensure. An inter-
esting question is: How much do we lose when we go
for decomposability? Can we model our distribution
exponentially more concise, using consistency? The
answer we give is negative. We show that any distri-
bution represented by a consistent SPN can also be
represented by a decomposable SPN, using only poly-
nomially more arithmetic operations. Furthermore, we
show that consistent SPNs are not amenable to the
differential approach [Darwiche, 2003], i.e. simultane-
ously obtaining all marginal posteriors given evidence.
This fact was not mentioned in the literature so far.
Decomposable SPNs, on the other hand, represent net-
work polynomials and can be used in the differential
approach.

SPNs were originally defined for finitely many states
using indicator variables as leaves [Poon and Domin-

744

On Theoretical Properties of Sum-Product Networks

gos, 2011]. However, SPNs can be generalized and
equipped with arbitrary distributions as inputs. As
a third contribution, we extend the inference mecha-
nisms known for finite state SPNs to these generalized
SPNs. We show that marginalization in generalized
SPNs reduces to marginalization over the input distri-
butions. Furthermore, we propose a generalized differ-
ential approach, which yields the marginal posteriors
of all variables given some evidence.

Throughout the paper, we use the following nota-
tion. Random variables (RVs) are denoted as X, Y
and Z. The set of values an RV X can assume is
val(X), where corresponding lower-case letters denote
their values, e.g. x is an element of val(X). Sets
of random variables are denoted by boldface letters,
e.g. X = {X1, . . . , XN}. We define val(X) as the
set of compound values, i.e. the Cartesian product
val(X) =

ŚN
n=1 val(Xn), and use x for elements of

val(X). For Y ⊆ X and X ∈ X, x[Y] and x[X] denote
the projections of x onto Y and onto X, respectively.
The elements of val(X) represent complete evidence,
assigning each RV in X a value. Partial evidence
about X is represented as subsets X ⊆ val(X), which
is an element of the sigma-algebra AX induced by RV
X. For discrete RVs, we assume AX = 2val(X), i.e. the
power-set of val(X). For continuous RVs, we use
AX = {X ∈ B | X ⊆ val(X)}, where B are the Borel-
sets over R. For sets of RVs X = {X1, . . . , XN}, we

use the product sets HX := {
ŚN

n=1 Xn | Xn ∈ AXn
}

to represent partial evidence about X. Elements of
HX are denoted as X . When Y ⊆ X, X ∈ X and
X ∈ HX, we define X [Y] := {x[Y] | x ∈ X} and
X [Y] = {x[Y] | x ∈ X}. An example for partial evi-
dence is provided in the supplementary paper.

The paper is organized as follows: In Section 3 we dis-
cuss SPNs over random variables with finitely many
states. Inference for generalized SPNs is discussed in
Section 4. Section 5 concludes the paper. In the main
paper, we provide proofs only for the main results.
Proofs for all results can be found in the supplemen-
tary paper.

2 RELATED WORK

Darwiche [2003] introduced network polynomials
(NPs) for Bayesian networks over RVs X with finitely
many states. Poon and Domingos [2011] generalized
them to unnormalized distributions, i.e. any nonnega-
tive function Φ(x) where ∃x : Φ(x) > 0. We introduce
the so-called indicator variables (IVs) for each RV and
each state, where λX=x ∈ R is the IV for X and state
x. Let λ be a vector collecting all IVs of X.

Definition 1 (Network Polynomial). Let Φ be an un-
normalized probability distribution over RVs X with

finitely many states and λ be their IVs. The network
polynomial fΦ of Φ is defined as

fΦ(λ) :=
∑

x∈val(X)

Φ(x)
∏
X∈X

λX=x[X]. (1)

The NP contains exponentially many term in the num-
ber of RVs. As shown by Darwiche [2003], it represents
the distribution Φ in the following sense. Restrict the
IVs to {0, 1} and as a function of x ∈ val(X):

λX=x(x) =

{
1 if x = x[X]

0 otherwise.
(2)

Let λ(x) be the corresponding vector-valued function,
collecting all λX=x(x). When we input λ(x) to fΦ,
all but one of the terms evaluate to 0, i.e. fΦ(λ(x)) =
Φ(x). Now, let us extend (2) to a function of X ∈ HX:

λX=x(X) =

{
1 if x ∈ X [X]

0 otherwise.
(3)

Let λ(X) be the corresponding vector-valued function.
It is easily verified that fΦ(λ(X)) =

∑
x∈X Φ (x) ,

i.e. the NP returns the unnormalized probability mea-
sure for arbitrary sets in HX. Thus, the NP compactly
describes marginalization over arbitrary domains of
the RVs by simply setting the corresponding IVs to
1. In particular, when we set λ ≡ 1, it returns the
normalization constant of Φ. A direct implementation
of the NP is not practical due the exponentially many
terms. In [Darwiche, 2002, 2003, Lowd and Domingos,
2008, Lowd and Rooshenas, 2013] exponentially more
compact representations were learned using arithmetic
circuits.

It is important to note that, although the IVs are
called indicator variables and set to values out of {0, 1}
by functions (2) and (3), they are in fact real-valued
variables – this difference is essential when we take
derivatives w.r.t. the IVs. These derivatives are used
in the so-called differential approach to inference [Dar-
wiche, 2003]. Taking the first derivative with respect
to some λX=x yields

∂fΦ

∂λX=x
(λ(X)) = Φ(x,X [X \X]), (4)

since the derivatives of sum-terms in (1) with x[X] 6= x
are 0, and the derivatives of sum-terms with x[X] =
x are Φ(x)

∏
X′∈X\X λX′=x[X′]. Thus, the deriva-

tive in (4), which is indeed the standard derivative
known from calculus, evaluates Φ for modified evidence
x,X [X \X] and is proportional to the marginal poste-
rior Φ(x | X \X). The marginal posteriors are espe-
cially useful for approximate MAP solvers [Park, 2002,

745

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, Pedro Domingos

Park and Darwiche, 2004]. Given a compact represen-
tation of the NP, e.g. using an arithmetic circuit, all
derivatives of the form (4) can be computed simul-
taneously using back-propagation, i.e. using a single
upward and downward pass in the circuit.

3 FINITE STATE SPNS

For some node N in an acyclic directed graph, we de-
note the set of parents and children as pa(N) and
ch(N), respectively. The descendants desc(N) are re-
cursively defined as the set containing N and the chil-
dren of any descendant. We now define SPNs over RVs
with finitely many states [Poon and Domingos, 2011]:

Definition 2 (Sum-Product Network). Let X be a
set of RVs with finitely many states and λ their IVs.
A sum-product network S = (G,w) over X is a
rooted acyclic directed graph G = (V,E) and a set
of nonnegative parameters w. All leaves of G are
IVs and all internal nodes are either sums or prod-
ucts. A sum node S computes a weighted sum S(λ) =∑

C∈ch(S) wS,C C(λ), where the weight wS,C ∈ w is as-

sociated with the edge (S,C) ∈ E. A product node
computes P(λ) =

∏
C∈ch(P) C(λ). The output of S is

the function computed by the root node and denoted
as S(λ). The number of additions and multiplica-
tions performed by SPN S are denoted as AS and
MS , respectively, and given as AS =

∑
S∈V |ch(S)|,

MS =
∑

P∈V (|ch(P)| − 1) +
∑

S∈V |ch(S)|.

We use symbols λ, S, P, N, C, F to refer to nodes
in SPNs, where λ denotes an IV, S always refers to
a sum and P always to a product. N, C, F refer to
nodes without specifying their type, where N can be
any node, C and F are used to highlight their roles as
children and parents of other nodes, respectively.

The scope of N, denoted as sc(N), is defined as

sc(N) =

{
{X} if N is some IV λX=x⋃

C∈ch(N) sc(C) otherwise.

(5)
For any N in an SPN, we define the sub-SPN SN =
(GN,wN), resulting from the graph GN induced by
desc(N) together with the corresponding weights wN.

The nodes in an SPN are functions over the IVs λ.
Using (2) and (3), we define N(x) := N(λ(x)) and
N(X) := N(λ(X)). To avoid pathological cases, we
assume that for each N there exist x ∈ val(X) such
that N(x) > 0. The SPN distribution is defined as
[Poon and Domingos, 2011]:

Definition 3 (SPN Distribution). Let S be an SPN
over X. The distribution represented by S is

PS(x) :=
S(x)∑

x′∈val(X) S(x′)
. (6)

Using sub-SPNs, we associate to each node N a distri-
bution PN := PSN over sc(N).

Inference in structurally unconstrained SPNs is gener-
ally intractable. Therefore, Poon and Domingos [2011]
introduce the notion of validity :

Definition 4 (Valid SPN). An SPN S over X is valid
if for each X ∈ HX∑

x∈X
PS(x) =

S(X)∑
x′∈val(X) S(x′)

. (7)

A valid SPN performs marginalization in similar man-
ner as an NP, cf. Section 2. Two conditions are given
for guaranteeing validity of an SPN, completeness and
consistency, which are defined as follows:

Definition 5 (Completeness). A sum node S in SPN
S is complete if sc(C′) = sc(C′′), ∀C′,C′′ ∈ ch(S). S
is complete if every sum node in S is complete.

Definition 6 (Consistency). A product node P in SPN
S is consistent if ∀C′,C′′ ∈ ch(P),C′ 6= C′′, it holds
that λX=x ∈ desc(C′)⇒ ∀x′ 6= x : λX=x′ /∈ desc(C′′).
S is consistent if every product node in S is consistent.

Thus, for complete and consistent SPNs, we can per-
form arbitrary marginalization tasks of the form (7)
with computational cost linear in the network size. A
more restrictive condition implying consistency is de-
composability :

Definition 7 (Decomposability). A product node P in
SPN S is decomposable if ∀C′,C′′ ∈ ch(P),C′ 6= C′′,
it holds that sc(C′) ∩ sc(C′′) = ∅. S is decomposable
if every product node in S is decomposable.

Decomposability requires that the scopes of a prod-
uct node’s children do not overlap, while the notion of
consistency is somewhat harder to grasp. The follow-
ing definition and proposition provide an equivalent
condition to consistency.

Definition 8 (Shared RVs). The shared RVs of some
product node P are defined as

Y =
⋃

C′,C′′∈ch(P)
C′ 6=C′′

sc(C′) ∩ sc(C′′), (8)

i.e. the part of sc(P) shared by at least two children.

Proposition 1. Let P be a product node and Y be its
shared RVs. P is consistent iff for each Y ∈ Y there
exists a unique y∗ ∈ val(Y) with λY=y∗ ∈ desc(P).

We call y∗ the consistent state of the shared RV Y , and
collect all y∗ in y∗ ∈ val(Y). The following theorem
shows that the distribution represented by a consistent
product is deterministic with respect to the shared RVs.

746

On Theoretical Properties of Sum-Product Networks

Furthermore, the distributions represented by descen-
dants of this product are deterministic with respect to
the RVs which overlap with Y.

Theorem 1. Let S be a complete and consistent SPN
and P be a non-decomposable product in S, Y be the
shared RVs of P and y∗ the consistent state of Y. For
N ∈ desc(P) define YN := Y ∩ sc(N) and XN :=
sc(N) \ YN. Then for all N ∈ desc(P), and all x ∈
val(sc(N)):

PN(x) = 1
(
x[YN] = y∗[YN]

)
PN

(
x[XN]

)
, (9)

where 1 is the indicator function.

For the proof we require two lemmas.

Lemma 1. Let N be a node in some complete and
consistent SPN over X, X ∈ sc(N) and x ∈ val(X).
When λX=x /∈ desc(N), then ∀x ∈ val(X) with
x[X] = x we have N(x) = 0.

Lemma 2. Let P be a probability mass function
(PMF) over X and Y ⊆ X, Z = X\Y such that there
exists a y∗ ∈ val(Y) with P (z,y) = 0 when y 6= y∗.
Then we have P (z,y) = 1(y = y∗)P (z).

Proof of Theorem 1. From Proposition 1 we know
that ∀Y ∈ Y : λY=y∗[Y] ∈ desc(P) and ∀y 6=
y∗[Y] : λY=y /∈ desc(P). Consequently, for any N ∈
desc(P) we have for all Y ∈ YN that λY=y∗[Y] ∈
desc(N) and ∀y 6= y∗[Y] : λY=y /∈ desc(N). With
Lemma 1 it follows that for all x ∈ val(sc(N)) with
x[YN] 6= y∗[YN], we have PN(x) = 0. Theorem 1 fol-
lows with Lemma 2.

Corollary 1. Let P, Y, y∗ be as in Theorem 1. For
C ∈ ch(P), let XC := sc(C) \Y, i.e. the part of sc(C)
which belongs exclusively to C. Then

PP(x) = 1(x[Y] = y∗)
∏

C∈ch(P)

C
(
x[XC]

)
. (10)

A decomposable product has the intuitive interpreta-
tion of a distribution assuming independence among
the scopes of its children. Corollary 1 shows that a
consistent product assumes independence among the
shared RVs Y and the RVs which are exclusive to P’s
children. Independence of Y stems from the fact that
Y is deterministically set to the consistent state y∗.

3.1 Locally Normalized SPNs

In this section we present our first main contribu-
tion. In valid SPNs, the normalization constant ZS =∑

x S(x) can be determined efficiently by a single up-
wards pass, setting λ ≡ 1. We call SPNs with ZS = 1
normalized SPNs, for which we have PS(x) = S(x).
When the sum weights are normalized for each sum

S, i.e. ∀S :
∑

C∈ch(S) wS,C = 1, the SPN is automat-

ically normalized, since i) IVs can be interpreted as
distributions, ii) complete sum nodes with normalized
weights are normalized if their children are normal-
ized, and iii) consistent product nodes are normalized
if their children are normalized, following from Corol-
lary 1. We call such SPNs, whose weights are normal-
ized for each sum, locally normalized SPNs. Clearly,
any sub-SPN of a locally normalized SPNs is also lo-
cally normalized. Thus, for any complete, consistent
and locally normalized SPN S and any N of S, we have
∀x ∈ sc(N) : PN(x) = SN(x). The question rises, if lo-
cally normalized SPNs are a weaker class of models
than non-normalized SPNs, i.e. are there distributions
which can be represented by an SPN with structure G,
but not by a locally normalized SPN sharing the same
structure? The answer is no, as stated in the following
theorem.

Theorem 2. For each complete and consistent SPN
S ′ = (G′,w′), there exists a complete, consistent and
locally normalized SPN S = (G,w) with G′ = G, such
that ∀N ∈ G : SN ≡ PS′N .

Algorithm 1 Locally Normalize SPN

1: Let N1, . . . ,NK be a topologically ordered list of
all sum and product nodes

2: For all product nodes P initialize αP ← 1
3: for k = 1 : K do
4: if Nk is a sum node then
5: α←

∑
C∈ch(Nk) wNk,C

6: ∀C ∈ ch(Nk) : wNk,C ←
wNk,C

α
7: end if
8: if Nk is a product node then
9: α← αNk

10: αNk
← 1

11: end if
12: for F ∈ pa(Nk) do
13: if F is a sum node then
14: wF,Nk

← αwF,Nk

15: end if
16: if F is a product node then
17: αF ← ααF

18: end if
19: end for
20: end for

Proof. Algorithm 1 finds locally normalized weights
without changing the distribution of any node. For
deriving the algorithm, we introduce a nonnegative
correction factor αP for each product node P, initial-
ized to αP = 1. We redefine the product node P as
P(λ) := αPP(λ). At the end of the algorithm, all αP

will be 1 and can effectively be removed.

747

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, Pedro Domingos

︸ ︷︷ ︸
λX=x1

λX=x2

︸ ︷︷ ︸
λY =y1

λY =y2

S1

P1

S2

P2 P3 P4

Figure 1: Example of a complete and consistent (but
not decomposable) SPN over two binary RVs {X,Y }.

Let N′1, . . . ,N
′
K be a topologically ordered list of all

sums and products in the unnormalized SPN S ′,
i.e. N′k /∈ desc(N′l) if k > l. Let N1, . . . ,NK be the
corresponding list of S, which will be the normalized
version after the algorithm has terminated. We have
the following loop invariant for the main loop. Given
that at the kth entrance of the main loop, i) PN′l

= SNl
,

for 1 ≤ l < k, and ii) S ′N′m = SNm
, for k ≤ m ≤ K, the

same will hold for k + 1 at the end of the loop.

Point i) holds since we normalize Nk during the main
loop: All nodes prior in the topological order, and
therefore all children of Nk are already normalized. If
Nk is a sum, then it represents a mixture distribution
after step 6. If Nk is a product, then it will be nor-
malized after step 10, due to Corollary 1 and since we
set αNk

= 1. Point ii) holds since the modification of
Nk can change any Nm, m > k, only via pa(Nk). The
change of Nk is compensated for all parents either in
step 14 or step 17, depending on whether the parent
is a sum or a product. From this loop invariance it
follows by induction that all N1, . . . ,NK compute the
normalized distributions of N′1, . . . ,N

′
K after the Kth

iteration.

Theorem 2 shows that from a representational point of
view, we can always assume locally normalized SPNs.
It might be advantageous during learning to assume
the parameter space of non-normalized SPNs. How-
ever, after learning is completed we can use Algo-
rithm 1 to find a set of locally normalized parameters.

3.2 Consistency vs. Decomposability

As already noted, consistency together with complete-
ness guarantees validity of an SPN, i.e. we can perform
efficient marginalization, similarly to NPs. However, a
valid but non-decomposable SPN does in general not
compute an NP, as the following example shows. The
SPN depicted in Figure 1 is complete and consistent,
but not decomposable, since P1 is not decomposable.

It computes the function

S(λ) = wS1,P1 wS2,P2 λ2
X=x1

λY=y1

+ wS1,P1 wS2,P3 λ2
X=x1

λY=y2

+ wS1,P3 λX=x1
λY=y2

+ wS1,P4 λX=x2
λY=y1 ,

(11)

which is clearly no NP since λX=x1
is raised to the

power of 2 in two terms. This generally happens in
non-decomposable SPNs and as a consequence, Dar-
wiche’s differential approach is not applicable to con-
sistent SPNs. For example, consider the derivative

∂S
∂λX=x1

(λ) = 2wS1,P1 wS2,P2 λX=x1
λY=y1

+ 2wS1,P1 wS2,P3 λX=x1
λY=y2

+ wS1,P3 λY=y2 ,

(12)

which does not have the probabilistic interpretation
of evaluation of modified evidence, such as the deriva-
tives of an NP, cf. (4). A complete and consistent,
but non-decomposable SPN is valid and thus identical
to some NP on the domain of binary vectors. How-
ever, when taking the derivative, intuitively speaking,
we also consider a small ε-environment around the 0’s
and 1’s, corrupting the differential approach.

However, complete and decomposable SPNs compute
NPs and are thus amenable for the differential ap-
proach. This is stated in the following proposition.

Proposition 2. A complete and decomposable SPN
computes the NP of some unnormalized distribution.

Therefore, when evaluations of modified evidence (4)
are required, we should use decomposable SPNs in-
stead of consistent SPNs. When these are not re-
quired, we might want to use the more general condi-
tion of consistency instead of decomposability, since we
could possibly represent distributions more compactly,
i.e. using smaller networks and fewer arithmetic opera-
tions. However, the following theorem shows that this
potential saving is relatively modest.

Theorem 3. Every complete and consistent SPN S =
((V,E),w) over X can be transformed into a com-
plete and decomposable SPN S ′ = ((V ′, E′),w′) over
X such that PS ≡ PS′ , and where |V ′| ∈ O(|V |2),
AS′ = AS and MS′ ∈ O(MS |X|).

Proof. Due to Theorem 2 we assume w.l.o.g. that S ′
is locally normalized, and thus PS ≡ S. Algorithm 2
transforms S into a complete and decomposable SPN,
representing the same distribution. First it finds a
topologically ordered list N1, . . . ,NK of all sum and
product nodes, i.e. k > l ⇒ Nk /∈ desc(Nl). Then, in
steps 2–7, it considers all sum nodes S and all children

748

On Theoretical Properties of Sum-Product Networks

C ∈ ch(S); if the child C has further parents except
S, a newly generated product node PS,C is intercon-
nected between S and C, i.e. PS,C is connected as child
of S with weight wS,C, C is disconnected from S and
connected as child of PS,C. To PS,C we refer as link
between S and C. Note that the link has only S as
parent, i.e. the link represents a private copy of child
C for sum node S. Clearly, after step 7, the SPN still
computes the same function.

In each iteration of the main loop 8–26, the algorithm
finds the lowest non-decomposable product node Nk =
P w.r.t. the topological ordering. We distinguish two
cases: sc(P) = Y and sc(P) 6= Y ⇔ Y ⊂ sc(P).

In the first case, we know from Corollary 1 that
P(y) = 1(y = y∗), which is equivalent to the decom-
posable product

∏
Y ∈Y λY=y∗[Y] replacing P, i.e. this

new product is connected as child of all parents of P,
and P itself is deleted. Deletion of P might render
some nodes unreachable; however, these unreachable
nodes do not “influence” the root node and will be
safely deleted in step 27.

In the second case, when Y ⊂ sc(P), the algorithm
first finds the set Nd of all sum and product descen-
dants of P. It also finds the subset No of Nd, contain-
ing all nodes whose scope overlaps with Y, but is no
subset of Y. Clearly, P is contained in No. The basic
strategy is to “cut” Y from the scope of P, i.e. that Y
is marginalized, rendering P decomposable. Then, by
re-connecting all indicators λY=y∗[Y] to P in step 24, P
computes the same distribution as before due to Corol-
lary 1, but is rendered decomposable now. Steps 21–23
cut Y from all nodes in No, in particular from P, but
leave all sub-SPNs rooted at any node in Nd \No un-
changed. This can be shown by induction over a topo-
logical ordering of No. Due to space reasons, we omit
this sub-proof here, but provide it in the supplemen-
tary. Although we achieve our primary goal to render
P decomposable, steps 21–23 also cut Y from any other
node in N ∈ No, which would modify the SPN output
via N’s parents outside of Nd, i.e. via F = pa(N) \Nd.
Note that all nodes in F must be products. To see
this, assume that F contains a sum S. This would im-
ply that N is a link, which can reached from P only
via its single parent S. This implies S ∈ Nd, a con-
tradiction. By Theorem 1, the distribution of N is
deterministic w.r.t. sc(N) ∩ Y. Steps 21–23 cut Y
from N (see supplementary), which could change the
distribution of the nodes in F. Thus, in step 19 the
IVs corresponding to Y∩sc(N) are connected to all F,
such that they still “see” the same distribution after
steps 21–23. It is easy to see that if some F ∈ F was de-
composable beforehand, it will also be decomposable
after step 23, i.e. steps 15–24 do not render other prod-
ucts non-decomposable. Thus, in each iteration, one

Algorithm 2 Transform to decomposable SPN

1: Let N = N1, . . . ,NK be a topologically ordered list
of all sums and products

2: for all sum nodes S and all C ∈ ch(S) do
3: if pa(C) > 1 then
4: Generate a new product node PS,C

5: Interconnect PS,C between S and C
6: end if
7: end for
8: while exist non-decomposable products in N do
9: P← Nmin{k′ | Nk′ is a non-decomposable product}

10: Y ← shared RVs of P
11: y∗ ← consistent state of Y
12: if sc(P) = Y then
13: Replace P by

∏
Y ∈Y λY=y∗[Y]

14: else
15: Nd ← sums and products in desc(P)
16: No ← {N ∈ Nd : sc(N) 6⊆ Y, sc(N)∩Y 6= ∅}
17: for N ∈ No \ {P} do
18: F← pa(N) \Nd

19: ∀Y ∈ Y ∩ sc(N) :
connect λY=y∗[Y] as child of all F

20: end for
21: for Po ∈ No do
22: Disconnect C ∈ ch(Po) if sc(C) ⊆ Y
23: end for
24: ∀Y ∈ Y : connect λY=y∗[Y] as child of P
25: end if
26: end while
27: Delete all unreachable sums and products

non-decomposable product is rendered decomposable,
without changing the SPN distribution.

Since the only new introduced nodes are the links be-
tween sum nodes and their children, and the number
of sum-edges is in O(|V |2), we have |V ′| ∈ O(|V |2).
The number of summations is the same in S and S ′,
i.e. AS′ = AS . Furthermore, introducing the links can-
not introduce more than twice the number of multipli-
cations, since we already require one multiplication per
sum-edge. Thus, after step 7 we have MS′ ∈ O(MS).
Since the while-loop in Algorithm 2 cannot connect
more than one IV per X ∈ X to each product node,
we have MS′ ∈ O(MS |X|).

A graphical example of Algorithm 2 is given in the
supplementary. We see that any complete and consis-
tent SPN S can be transformed into a complete and
decomposable SPN S ′ with the same number of addi-
tion operations, and whose number of multiplication
operations grows at most linearly with MS |X|. Any
distribution which can be encoded by a consistent SPN
using polynomially many arithmetic operations in |X|,
can also be polynomially encoded by a decomposable

749

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, Pedro Domingos

SPN. Consequently, the class of consistent SPNs is not
exponentially more compact than the class of decom-
posable SPNs.

Furthermore, Algorithm 2 shows that using consistent
but non-decomposable products is actually wasteful
for a particular sub-class of SPNs we denote as sum-
product trees:

Definition 9 (Sum-Product Tree). A sum-product
tree (SPT) is an SPN where each sum and product
has at most one parent.

Proposition 3. Every complete and consistent, but
non-decomposable SPT S = ((V,E),w) over X can
be transformed into a complete and decomposable SPT
S ′ = ((V ′, E′),w′) over X such that PS ≡ PS′ , and
where |V ′| ≤ |V |, AS′ ≤ AS and MS′ < MS .

The proof and an example of applying Algorithm 2 to
an SPT is given in the supplementary.

4 GENERALIZED SPNS

So far, we considered SPNs over finite states using IVs.
However, as pointed out in [Gens and Domingos, 2013,
Peharz et al., 2013, Rooshenas and Lowd, 2014], SPNs
can be generalized by replacing the IVs with arbitrary
distributions over arbitrary large scopes. From now
on, we assume that each RV is either continuous or
discrete, where the latter can also have countably in-
finitely many states (e.g. Poisson distributed). PMFs
and PDFs can be mixed within the same distribution:
For example, consider a binary RV X with val(X) =
{x1, x2} and a continuous RV Y with val(Y) = R.
The function

D{X,Y }(x, y) = 0.4× 1(x = x1)×N (y;µ1, σ1)

+ 0.6× 1(x = x2)×N (y;µ2, σ2),
(13)

is a PMF with respect to X and a PDF with respect
to Y . We refer to DY as distribution nodes or simply
as distributions. We define generalized SPNs as in
Section 3, but now using distributions as leaves. The
scope is now defined as

sc(N) =

{
Y if N is some DY⋃

C∈ch(N) sc(C) otherwise.
(14)

We require that all sums are complete and all prod-
ucts are decomposable. Note that we do allow het-
erogeneous scopes of the input distributions, i.e. when
we have a DY with Y ∈ Y, we can have another DY′

with Y ∈ Y′ and Y 6= Y′. In the most extreme case
we can have distributions DY for all possible subsets
of Y ⊆ X, as long as completeness and decompos-
ability hold. It is easily verified that Theorem 2 also

holds for generalized SPNs, so w.l.o.g. we assume lo-
cally normalized weights. In generalized SPNs, each
node clearly represents a distribution over its scope: i)
leaves are distributions per definition, ii) products are
distributions assuming independence, and iii) sums are
mixture distributions.

In Section 3, we saw that for finite state SPNs we can
efficiently evaluate

1. S(x) for x ∈ val(X) (probability of sample).

2. S(X) for X ∈ HX (marginalization).

3. S(X,X [X \X]), simultaneously for all X ∈ X
(modified evidence).

We want to have the same inference mechanisms for
generalized SPNs. (1.) Evaluation of S(x) clearly
works in the same way as for SPNs over finite states.
(2.) Marginalization also works in a similar way, for
which we need to compute

S(X) =

∫
x1∈X1

. . .

∫
xN∈XN

S(x1, . . . , xN) dx1 . . . dxN ,

(15)
where integrals have to be replaced by sums for dis-
crete RVs. Given that integrals can be computed ef-
ficiently for the input distributions, the integral (15)
can be evaluated easily, since we can pull the integrals
over all sums and products down to the input distribu-
tions: At sum nodes, we can interchange the integrals
with the sum, due to completeness. At product nodes,
we can interchange the integrals with the product, due
to decomposability, i.e. since the factors are functions
over non-overlapping variable sets. Therefore, we sim-
ply perform marginalization at the input distributions
(over the respective scopes), and evaluate sums and
products in the usual way. Note that in the case of
finitely many states and using IVs, this precisely re-
produces the mapping (3).

(3.) For evaluation of modified evidence
S(X,X [X \X]) we develop an extension of the
differential approach. Let DX be the set of input dis-
tributions which have X in their scope. We assume an

arbitrary fixed ordering of DX = {DX,1, . . . ,DX,|DX |}
and define [D]X = k if D = DX,k. Note that
the sets DX do overlap, since for DY we have
∀X ∈ Y : DY ∈ DX . For each X, we introduce a
latent RV ZX with val(ZX) = {1, . . . , |DX |}. We
denote these RVs as distribution selectors (DS) and
let Z = {ZX | X ∈ X} be the set of all DS. Now we
replace each distribution node DY in the SPN by a
product node:

DY → DY ×
∏
X∈Y

λZX=[DY]X , (16)

and denote the result as gated SPN Sg. An example of
this process is shown in Figure 2. It is easy to see that

750

On Theoretical Properties of Sum-Product Networks

D1 D2 D3 D4

(a)

︸ ︷︷ ︸
λZX=1...3

︸ ︷︷ ︸
λZY =1...3

D1 D2 D3 D4

(b)

Figure 2: Construction of a gated SPN. We assume
that sc(D1) = {X}, sc(D2) = sc(D3) = {X,Y } and
sc(D4) = {Y }. (a): Excerpt showing the distribution
nodes over X and Y . (b): Same excerpt with IVs
λZX=1, λZX=2, λZX=3, λZY =1, λZY =2, λZY =3 of DSs.

the gated SPN is a complete and decomposable SPN
and thus represents a distribution over X∪Z. Further-
more, we have S(X) = Sg(X) =

∑
z∈val(Z) Sg(X, z),

since when the DS are marginalized, i.e. λZ ≡ 1, the
introduced products simply copy the original distri-
bution nodes. The following proposition establishes a
conditional factorization property of the gated SPN.

Proposition 4. Let Sg be a gated SPN. For any X ∈
X and k ∈ {1, . . . , |DX |}, let XD = sc(DX,k) and
XR = X \XD. It holds that Sg(X, ZX = k,Z \ZX) =
DX,k(XD)Sg(XR, ZX = k,Z \ ZX).

We define a modified notion of network polynomial,
the extended network polynomial (ENP).

Definition 10 (Extended Network Polynomial). Let
P (X,Z) be a probability distribution over RVs X, Z,
where Z have finitely many states. The extended
network polynomial feP is defined as feP (X,λ) =∑

z∈val(Z) P (X, z)
∏
Z∈Z λZ=z[Z].

The ENP is an NP over only a part of the RVs, namely
Z. Similar as for the NP, we can use it to evaluate and
marginalize over Z and apply the differential approach.
Now, using a modification of the proof for Theorem 2,
one can show that a gated SPN Sg over model RVs X
and DS Z computes the ENP feSg (X,λ).

We are now ready to derive the differential approach
for generalized SPNs, i.e. to evaluate S(X,X [X \X])
for all X simultaneously. Using Proposition 4, we have

S(X,X [X \X]) =
∑
z

Sg(X,X [X \X], z)

=

|DX |∑
k=1

DX,k(X,X [XD \X])
∑
z′

Sg(X [XR], ZX = k, z′)

=

|DX |∑
k=1

DX,k(X,X [XD \X])Sg(X [XR], ZX = k),

(17)

where the sets XD and XR, depending on X and
k, are defined as in Proposition 4 and z′ runs over

val(Z\ZX). We see that S(X,X [X \X]) is computed
by a linear combination of the input distributions
in DX , evaluated for modified evidence X [XD \X]
weighted by factors Sg(X [XR], ZX = k). These
factors are obtained using the differential approach.
When Z is marginalized, i.e. when λZ ≡ 1, the differ-
ential approach tells us that

Sg(X, ZX = k) =
∂Sg

∂λZX=k
=
∂Sg

∂P
DX,k(XD), (18)

where P is the parent product of λZX=k and DX,k in Sg
(see Figure 2). Note that ∂Sg

∂P equals ∂S
∂DX,k , since the

structure above DX,k in S is identical to the structure
in Sg above P. Comparing (17) and (18) we note that
Sg(X [XR], ZX = k) = ∂Sg

∂P = ∂S
∂DX,k , yielding

S(X,X [X \X]) =

|DX |∑
k=1

DX,k(X,X [XD \X])
∂S

∂DX,k
.

Inference scenario (3.) is summarized in Algorithm 3.
Note, that although we used gated SPNs and ENPs

Algorithm 3 Infer marginal posteriors

1: Evaluate input distributions for evidence X
2: Evaluate all sums and products (upwards pass)
3: For all nodes N, compute ∂S

∂N (backpropagation)
4: ∀X, k let fk(X) = DX,k(X,X [sc(DX,k) \X])

5: ∀X : S(X,X [X \X])←
∑|DX |
k=1

∂S
∂DX,k f

k(X)

for deriving this result, the required quantities can be
computed in the original non-gated SPN. Note that
Algorithm 3 reproduces the classical differential ap-
proach when considering SPNs over RVs with finitely
many states and using IVs as distributed nodes.

5 CONCLUSION

In this paper, we aimed to develop a deeper under-
standing of SPNs and summarize our main results. We
now summarize our main results. First, we do not lose
any model power when we assume that the weights of
SPNs are locally normalized, i.e. normalized for each
sum node. Second, we do not lose much model power
when we prefer the simpler condition of decomposabil-
ity over consistency. Third, the inference scenarios
known from network polynomials and Darwiche’s dif-
ferential approach can be applied in a similar way to
general SPNs, i.e. SPNs with more or less arbitrary
input distributions.

Acknowledgements

This work was supported by the Austrian Science Fund
(project number P25244-N15).

Bugs Bunny

751

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, Pedro Domingos

References

M. R. Amer and S. Todorovic. Sum-Product Networks
for Modeling Activities with Stochastic Structure.
In Proceedings of CVPR, pages 1314 – 1321, 2012.

W. C. Cheng, S. Kok, H. V. Pham, H. L. Chieu,
and K. M. A. Chai. Language Modeling with Sum-
Product Networks. In Proceedings of Interspeech,
2014.

A. Darwiche. A logical approach to factoring belief
networks. In Proceedings of KR, pages 409–420,
2002.

A. Darwiche. A Differential Approach to Inference in
Bayesian Networks. ACM, 50(3):280–305, 2003.

A. Dennis and D. Ventura. Learning the Architecture
of Sum-Product Networks Using Clustering on Vari-
ables. In Advances in Neural Information Processing
Systems 25, pages 2042–2050, 2012.

R. Gens and P. Domingos. Discriminative Learning
of Sum-Product Networks. In Proceedings of NIPS,
pages 3248–3256, 2012.

R. Gens and P. Domingos. Learning the Structure of
Sum-Product Networks. Proceedings of ICML, pages
873–880, 2013.

D. Lowd and P. Domingos. Learning Arithmetic Cir-
cuits. In Proceedings of UAI, pages 383–392, 2008.

D. Lowd and A. Rooshenas. Learning Markov Net-
works with Arithmetic Circuits. Proceedings of AIS-
TATS, pages 406–414, 2013.

J. D. Park. MAP Complexity Results and Approxima-
tion Methods. In Proceedings of UAI, pages 338–396,
2002.

J. D. Park and A. Darwiche. Complexity Results and
Approximation Strategies for MAP Explanations .
Journal of Artificial Intelligence Research, 21:101–
133, 2004.

R. Peharz, B. Geiger, and F. Pernkopf. Greedy
Part-Wise Learning of Sum-Product Networks.
In ECML/PKDD, volume 8189, pages 612–627.
Springer Berlin, 2013.

R. Peharz, G. Kapeller, P. Mowlaee, and F. Pernkopf.
Modeling Speech with Sum-Product Networks: Ap-
plication to Bandwidth Extension. In Proceedings of
ICASSP, 2014.

H. Poon and P. Domingos. Sum-Product Networks:
A New Deep Architecture. In Proceedings of UAI,
pages 337–346, 2011.

A. Rooshenas and D. Lowd. Learning Sum-Product
Networks with Direct and Indirect Variable Interac-
tions. ICML – JMLR W&CP, 32:710–718, 2014.

752

