
JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 107

Probabilistic Theorem Proving
By Vibhav Gogate and Pedro Domingos

DOI:10.1145/2936726

Abstract
Many representation schemes combining first-order logic and
probability have been proposed in recent years. Progress in
unifying logical and probabilistic inference has been slower.
Existing methods are mainly variants of lifted variable elimi-
nation and belief propagation, neither of which take logical
structure into account. We propose the first method that has
the full power of both graphical model inference and first-
order theorem proving (in finite domains with Herbrand
interpretations). We first define probabilistic theorem prov-
ing (PTP), their generalization, as the problem of computing
the probability of a logical formula given the probabilities or
weights of a set of formulas. We then show how PTP can be
reduced to the problem of lifted weighted model counting,
and develop an efficient algorithm for the latter. We prove the
correctness of this algorithm, investigate its properties, and
show how it generalizes previous approaches. Experiments
show that it greatly outperforms lifted variable elimination
when logical structure is present. Finally, we propose an
algorithm for approximate PTP, and show that it is superior
to lifted belief propagation.

1. INTRODUCTION
Unifying first-order logic and probability enables uncertain
reasoning over domains with complex relational structure,
and is a long-standing goal of AI. Proposals go back to at
least Nilsson,17 with substantial progress within the com-
munity that studies uncertainty in AI starting in the 1990s
(e.g., Bacchus,1 Halpern,14 Wellman25), and added impetus
from the new field of statistical relational learning start-
ing in the 2000s.11 Many well-developed representations
now exist (e.g., DeRaedt,7 and Domingos10), but the state of
inference is less advanced. For the most part, inference is
still carried out by converting models to propositional form
(e.g., Bayesian networks) and then applying standard prop-
ositional algorithms. This typically incurs an exponential
blowup in the time and space cost of inference, and forgoes
one of the chief attractions of first-order logic: the ability to
perform lifted inference, that is, reason over large domains
in time independent of the number of objects they contain,
using techniques like resolution theorem proving.20

In recent years, progress in lifted probabilistic inference
has picked up. An algorithm for lifted variable elimination
was proposed by Poole18 and extended by de Salvo Braz8 and
others. Lifted belief propagation was introduced by Singla
and Domingos.24 These algorithms often yield impressive effi-
ciency gains compared to propositionalization, but still fall
well short of the capabilities of first-order theorem proving,
because they ignore logical structure, treating potentials as
black boxes. This paper proposes the first full-blown probabi-
listic theorem prover that is capable of exploiting both lifting
and logical structure, and includes standard theorem proving
and graphical model inference as special cases.

Our solution is obtained by reducing probabilistic theo-
rem proving (PTP) to lifted weighted model counting. We
first do the corresponding reduction for the propositional
case, extending previous work by Sang et al.22 and Chavira
and Darwiche.3 We then lift this approach to the first-order
level, and refine it in several ways. We show that our algorithm
can be exponentially more efficient than first-order variable
elimination, and is never less efficient (up to constants). For
domains where exact inference is not feasible, we propose
a sampling-based approximate version of our algorithm.
Finally, we report experiments in which PTP greatly outper-
forms first-order variable elimination and belief propagation,
and discuss future research directions.

2. LOGIC AND THEOREM PROVING
We begin with a brief review of propositional logic, first-order
logic and theorem proving.

The simplest formulas in propositional logic are atoms:
individual symbols representing propositions that may be
true or false in a given world. More complex formulas are
recursively built up from atoms and the logical connectives
¬(negation), ∧ (conjunction), ∨ (disjunction), ⇒ (implication)
and ⇔ (equivalence). For example, ¬A ∨ (B ∧ C) is true iff
A is false or B and C are true. A knowledge base (KB) is a set
of logical formulas. The fundamental problem in logic is
determining entailment, and algorithms that do this are
called theorem provers. A knowledge base K entails a query
formula Q iff Q is true in all worlds in which all formulas in
K are true, a world being an assignment of truth values to
all atoms.

A world is a model of a KB iff the KB is true in it. Theorem
provers typically first convert K and Q to conjunctive nor-
mal form (CNF). A CNF formula is a conjunction of clauses,
each of which is a disjunction of literals, each of which is an
atom or its negation. For example, the CNF of ¬A ∨ (B ∧ C) is
(¬A ∨ B) ∧ (¬A ∨ C). A unit clause consists of a single literal.
Entailment can then be computed by adding ¬Q to K and
determining whether the resulting KB KQ is satisfiable, that
is, whether there exists a world where all clauses in KQ are
true. If not, KQ is unsatisfiable, and K entails Q. Algorithm 1
shows this basic theorem proving schema. CNF(K) converts K
to CNF, and SAT(C) returns True if C is satisfiable and False
otherwise.

Algorithm 1 TP(KB K, query Q)

KQ ← K ∪ {¬Q}
return ¬SAT(CNF(KQ) )

The original version of this paper was published in the
Proceedings of the 27th Conference on Uncertainty in Artificial
Intelligence, 2011, AUAI Press, 256–265.

http://doi.acm.org/10.1145/2936726

research highlights

108 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

The earliest theorem prover is the Davis–Putnam algorithm
(henceforth called DP).6 It makes use of the resolution rule:
if a KB contains the clauses A1 ∨ . . . ∨ An and B1 ∨ . . . ∨ Bm,
where the A’s and B’s represent literals, and some literal Ai is
the negation of some literal Bj, then the clause A1 ∨ . . . ∨ Ai−1
∨ Ai+1 ∨ . . . ∨ An ∨ B1 ∨ . . . ∨ Bj−1 ∨ Bj+1 ∨ . . . ∨ Bm can be added
to the KB. For each atom A in the KB, DP resolves every pair
of clauses C1, C2 in the KB such that C1 contains A and C2
contains ¬A, and adds the result to the KB. It then deletes
all clauses that contain a literal of A from the KB. If at some
point the empty clause is derived, the KB is unsatisfiable,
and the query formula (previously negated and added to the
KB) is therefore proven to be entailed by the KB. DP is in fact
just the variable elimination algorithm for the special case
of 0-1 potentials.

Modern propositional theorem provers use the DPLL
algorithm,5 a variant of DP that replaces the elimination
step with a splitting step: instead of eliminating all clauses
containing the chosen atom A, resolve all clauses in the KB
with A, simplify and recurse, and do the same with ¬A. If
both recursions fail, the KB is unsatisfiable. DPLL has lin-
ear space complexity, compared to exponential for Davis–
Putnam, and is the basis of the algorithms in this paper.

First-order logic inherits all the features of proposi-
tional logic, and in addition allows atoms to have internal
structure. An atom is now a predicate symbol, representing
a relation in the domain of interest, followed by a paren
thesized list of variables and/or constants, representing
objects. For example, Friends(Anna, x) is an atom. A ground
atom has only constants as arguments. First-order logic
has two additional connectives, ∀ (universal quantifica-
tion) and ∃ (existential quantification). For example, ∀x
Friends(Anna,  x) means that Anna is friends with every-
one, and ∃x Friends(Anna,  x) means that Anna has at
least one friend. In this paper, we assume that domains
are finite (and therefore function-free) and that there is a
one-to-one mapping between constants and objects in the
domain (Herbrand interpretations).

As long as the domain is finite, first-order theorem prov-
ing can be carried out by propositionalization: creating atoms
from all possible combinations of predicates and constants,
and applying a propositional theorem prover. However, this
is potentially very inefficient. A more sophisticated alternative
is first-order resolution,20 which proceeds by resolving pairs
of clauses and adding the result to the KB until the empty
clause is derived. Two first-order clauses can be resolved if
they contain complementary literals that unify, that is, there
is a substitution of variables by constants or other variables
that makes the two literals identical up to the negation sign.
Conversion to CNF is carried out as before, with the additional
step of removing all existential quantifiers by a process called
skolemization.

First-order logic allows knowledge to be expressed more
concisely than propositional logic. For example, the rules
of chess can be stated in a few pages in first-order logic,
but require hundreds of thousands in propositional logic.
Probabilistic logical languages extend this power to uncer-
tain domains. The goal of this paper is to similarly extend
the power of first-order theorem proving.

3. PROBLEM DEFINITION
Following Nilsson,17 we define PTP as the problem of deter-
mining the probability of an arbitrary query formula Q given
a set of logical formulas Fi and their probabilities P(Fi). For
the problem to be well defined, the probabilities must be
consistent, and Nilsson17 provides a method for verifying con-
sistency. Probabilities estimated by maximum likelihood
from an observed world are guaranteed to be consistent.
In general, a set of formula probabilities does not specify
a complete joint distribution over the atoms appearing in
them, but one can be obtained by making the maximum
entropy assumption: the distribution contains no informa-
tion beyond that specified by the formula probabilities.17
Finding the maximum entropy distribution given a set of for-
mula probabilities is equivalent to learning a maximum-
likelihood log-linear model whose features are the formulas;
many algorithms for this purpose are available (iterative
scaling, gradient descent, etc.).

We call a set of formulas and their probabilities together
with the maximum entropy assumption a probabilistic knowl-
edge base (PKB). Equivalently, a PKB can be directly defined
as a log-linear model with the formulas as features and the
corresponding weights or potential values. Potentials are
the most convenient form, since they allow determinism
(0-1 probabilities) without recourse to infinity. If x is a world
and Φi(x) is the potential corresponding to formula Fi, by
convention (and without loss of generality) we let Φi(x) = 1 if
Fi is true, and Φi(x) = φi ≥ 0 if the formula is false. Hard formulas
have φi = 0 and soft formulas have φi > 0. In order to compactly
subsume standard probabilistic models, we interpret a uni-
versally quantified formula as a set of features, one for each
grounding of the formula, as in Markov logic.10 A PKB {(Fi, φi)}
thus represents the joint distribution

� (1)

where ni(x) is the number of false groundings of Fi in x, and
Z is a normalization constant (the partition function). We can
now define PTP succinctly as follows:

Probabilistic theorem proving (PTP)
Input: Probabilistic KB K and query formula Q
Output: P(Q|K)

If all formulas are hard, a PKB reduces to a standard logi-
cal KB. Determining whether a KB K logically entails a
query Q is equivalent to determining whether P(Q|K) = 1.10
Graphical models can be easily converted into equivalent
PKBs.3 Conditioning on evidence is done by adding the cor-
responding hard ground atoms to the PKB, and the condi-
tional marginal of an atom is computed by issuing the atom
as the query. Thus PTP has both logical theorem proving and
inference in graphical models as special cases.

In this paper, we solve PTP by reducing it to lifted weighted
model counting. Model counting is the problem of determin-
ing the number of worlds that satisfy a KB. Weighted model
counting can be defined as follows.3 Assign a weight to each
literal, and let the weight of a world be the product of the
weights of the literals that are true in it. Then weighted

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 109

model counting is the problem of determining the sum of
the weights of the worlds that satisfy a KB:

Weighted model counting (WMC)
Input: CNF C and set of literal weights W
Output: Sum of weights of worlds that satisfy C

Figure 1 depicts graphically the set of inference prob-
lems addressed by this paper. Generality increases in the
direction of the arrows. We first propose an algorithm for
propositional weighted model counting and then lift it to
the first-order level. The resulting algorithm is applicable to
all the problems in the diagram. (Weighted SAT/MPE infer-
ence requires replacing sums with maxes with an additional
traceback or backtracking step, but we do not pursue it here
and leave it for future work.)

4. PROPOSITIONAL CASE
This section generalizes the Bayesian network inference
techniques in Darwiche4 and Sang et al.22 to arbitrary propo-
sitional PKBs, evidence, and query formulas. Although this
is of value in its own right, its main purpose is to lay the
groundwork for the first-order case.

The probability of a formula is the sum of the probabilities
of the worlds that satisfy it. Thus to compute the probability of
a formula Q given a PKB K it suffices to compute the partition
function of K with and without Q added as a hard formula:

� (2)

where 1Q(x) is the indicator function (1 if Q is true in x and 0
otherwise).

In turn, the computation of partition functions can be reduced
to weighted model counting using the procedure in Algorithm 2.
This replaces each soft formula Fi in K by a corresponding
hard formula Fi ⇔ Ai, where Ai is a new atom, and assigns to
every ¬Ai literal a weight of φi (the value of the potential Φi
when Fi is false).

Theorem 1. Z(K) = WMC(WCNF(K) ).

Proof. If a world violates any of the hard clauses in K or
any of the Fi ⇔ Ai equivalences, it does not satisfy C and is
therefore not counted. The weight of each remaining world
x is the product of the weights of the literals that are true in
x. By the Fi ⇔ Ai equivalences and the weights assigned by
WCNF(K), this is ∏i Φi(x). (Recall that Φi(x) = 1 if Fi is true in
x and Φi(x) = φi otherwise.) Thus x’s weight is the unnormal-
ized probability of x under K. Summing these yields the par-
tition function Z(K).  

Equation 2 and Theorem 1 lead to Algorithm 3 for PTP.
(Compare with Algorithm 1.) WMC(C, W) can be any weighted
model counting algorithm.3 Most model counters are varia-
tions of Relsat, itself an extension of DPLL.2 Relsat splits on
atoms until the CNF is decomposed into sub-CNFs sharing
no atoms, and recurses on each sub-CNF. This decomposi-
tion is crucial to the efficiency of the algorithm. In this paper
we use a weighted version of Relsat, shown in Algorithm 4.
A(C) is the set of atoms that appear in C. C|A denotes the CNF
obtained by removing the literal A and its negation ¬A from
all clauses in which they appear in and setting to Satisfied all
clauses in which A appears in. Notice that, unlike in DPLL,
satisfied clauses cannot simply be deleted, because we need
to keep track of which atoms they are over for model count-
ing purposes. However, they can be ignored in the decompo-
sition step, since they introduce no dependencies. The atom
to split on in the splitting step can be chosen using various
heuristics.23

Figure 1. Inference problems addressed in this paper. TPo and TP1
is propositional and first-order theorem proving respectively, PI is
probabilistic inference (computing marginals), MPE is computing the
most probable explanation, SAT is satisfiability, MC is model counting,
W is weighted and L is lifted. A = B means A can be reduced to B.

LWSAT

LMC

MC

Counting
We
igh
ted

Li
ft
ed

PTP = LWMC

TP1

TP0 = SAT

MPE = WSAT PI = WMC

Algorithm 3 PTP(PKB K, query Q)

KQ ← K ∪ {(Q, 0)}
return WMC(WCNF(KQ) )/WMC(WCNF(K) )

Algorithm 4 WMC(CNF C, weights W)

// Base case
if all clauses in C are satisfied then
  return ∏A∈A(C) (WA + W¬A)
if C has an empty unsatisfied clause then return 0
// Decomposition step
if C can be partitioned into CNFs C1, . . . , Ck sharing no atoms then
  return ∏k

i = 1 WMC (Ci, W)
// Splitting step
Choose an atom A
return WA WMC(C|A; W) + W¬A WMC(C|¬A; W)

Algorithm 2 WCNF(PKB K)

for all (Fi, φi) ∈ K s.t. φi > 0 do
   K ← K ∪ {(Fi ⇔ Ai, 0)} \ {(Fi, φi)}
C ← CNF(K)
for all ¬Ai literals do W¬ Ai ← φi

for all other literals L do WL ← 1
return (C, W)

research highlights

110 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

sufficient since each atom A has nA(S) groundings, and all
ground atoms are independent because the CNF is satisfied
irrespective of their truth values. Note that nA(S) is the num-
ber of groundings of A consistent with S that can be formed
using all the constants in the original CNF.

5.2. Lifting the decomposition step
Clearly, if C can be decomposed into two or more CNFs such
that no two CNFs share any unifiable literals, a lifted decom-
position of C is possible (i.e., a decomposition of C into
first-order CNFs on which LWMC can be called recursively).
But the symmetry of the first-order representation can be
further exploited. For example, if the CNF C can be decom-
posed into k CNFs C1, . . . , Ck sharing no unifiable literals and
such that for all i, j, Ci is identical to Cj up to a renaming of
the variables and constants, then LWMC(C) = [LWMC(C1)]k.
We formalize these conditions below.

Definition 1. The set of first-order CNFs {C1,1,   . . .   , C1,m1
, . . . ,

Ck,1, . . . , Ck,mk} is called a lifted decomposition of CNF C under
substitution constraints S if, given S, it satisfies the following three
properties: (i) C = C1,1

 ∧ . . . ∧ Ck,mk
;   (ii) no two Ci, j’s share any unifiable

literals; (iii) for all i, j, j′, such that j ≠ j′, Ci, j is identical to Ci, j′.
a

Proposition 1. If {C1,1, . . . , C1, m1
 . . . , Ck,1, . . . , Ck,mk} is a lifted

decomposition of C under S, then

� (3)

Rules for identifying lifted decompositions can be derived
in a straightforward manner from the inversion argument in
de Salvo Braz8 and the power rule in Jha et al.15 An example of
such a rule is given in the definition and proposition below.

Definition 2. A set of variables X = {x
1
, . . . , x

m
} is called a

decomposer of a CNF C if it satisfies the following three proper-
ties: (i) for each clause Cj in C, there is exactly one variable x

i
 in

X such that x
i
 appears in all atoms in Cj; (ii) if x

i
 ∈ X appears

as an argument of predicate R (say at position k in an atom hav-
ing predicate symbol R), then all variables in all clauses that

Theorem 2. Algorithm WMC(C,W) correctly computes the
weighted model count of CNF C under literal weights W.

Proof sketch. If all clauses in C are satisfied, all assign-
ments to the atoms in C satisfy it, and the corresponding
total weight is ∏A∈A(C)(WA + W¬A). If C has an empty unsatis-
fied clause, it is unsatisfiable given the truth assignment so
far, and the corresponding weighted count is 0. If two CNFs
share no atoms, the WMC of their conjunction is the product
of the WMCs of the individual CNFs. Splitting on an atom
produces two disjoint sets of worlds, and the total WMC is
therefore the sum of the WMCs of the two sets, weighted by
the corresponding literal’s weight.   

5. FIRST-ORDER CASE
We now lift PTP to the first-order level. We consider first the
case of PKBs without existential quantifiers. Algorithms 2
and 3 remain essentially unchanged, except that formu-
las, literals and CNF conversion are now first-order. In par-
ticular, for Theorem 1 to remain true, each new atom Ai in
Algorithm 2 must now consist of a new predicate symbol fol-
lowed by a parenthesized list of the variables and constants
in the corresponding formula Fi. The proof of the first-order
version of the theorem then follows by propositionalization.
Lifting Algorithm 4 is the focus of the rest of this section.

We begin with some necessary definitions. A substitution
constraint is an expression of the form x = y or x ≠ y, where
x is a variable and y is either a variable or a constant. (Much
richer substitution constraint languages are possible, but
we adopt the simplest one that allows PTP to subsume both
standard function-free theorem proving and first-order vari-
able elimination.) Two literals are unifiable under a set of
substitution constraints S if there exists at least one ground
literal consistent with S that is an instance of both, up to
the negation sign. A (C, S) pair, where C is a first-order CNF
whose variables have been standardized apart and S is a
set of substitution constraints, represents the ground CNF
obtained by replacing each clause in C with the conjunction
of its groundings that are consistent with the constraints
in S. For example, using upper case for constants and lower
case for variables, and assuming that the PKB contains only
two constants A and B, if C = R(A, B) ∧ (¬R(x, y) ∨ S(y, z) ) and
S = {x = y, z ≠ A}, (C, S) represents the ground CNF R(A, B)
∧ (¬R(A, A) ∨ S(A, B) ) ∧ (¬R(B, B) ∨ S(B, B) ). Clauses with
equality substitution constraints can be abbreviated in the
obvious way (e.g., T(x, y, z) with x = y and z = C can be abbre-
viated as T(x,  x,  C) ).

We lift the base case, decomposition step, and splitting
step of Algorithm 4 in turn. The result is shown in Algorithm 5.
In addition to the first-order CNF C and weights on first-order
literals W, LWMC takes as an argument an initially empty set
of substitution constraints S which, similar to logical theo-
rem proving, is extended along each branch of the inference
as the algorithm progresses.

5.1. Lifting the base case
The base case changes only by raising each first-order atom
A’s sum of weights to nA(S), the number of groundings of
A compatible with the constraints in S. This is necessary and

Algorithm 5 LWMC(CNF C, substs. S, weights W)

// Lifted base case
if all clauses in C are satisfied then
  return ∏A∈A(C)(WA + W¬A)n

A
 (S)

if C has an empty unsatisfied clause then return 0
// Lifted decomposition step
if there exists a lifted decomposition {C1,1, . . . , C1,m1

, . . . ,
  Ck,1, . . . , Ck,mk} of C under S then
  return [LWMC (Ci,1, S, W)]mi
// Lifted splitting step
Choose an atom A
Let {∑(1)

A,S, . . ., ∑
(l)
A,S} be a lifted split of A for C under S

return ∑(l)
i = 1 niW ti

A W fi
¬A LWMC (C|σj; Sj, W )

  where ni, ti,  fi, σj and Sj are as in Proposition 3

a  Throughout this paper, when we say that two clauses are identical, we mean
that they are identical up to a renaming of constants and variables.

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 111

appear as the same argument (namely at position k) of R are
included in X; and (iii) no pair of variables x

i
, x

j
 ∈ X such

that i ≠ j appear as different arguments of a predicate R in C.

For example, {x
1
, x

2
} is a decomposer of the CNF (R(x

1
) ∨

S(x
1
, x

3
) ) ∧ (R(x

2
) ∨ T(x

2
, x

4
) ) while the CNF (R(x

1
, x

2
) ∨ S(x

2
,

x
3
) ) ∧ (R(x

4
, x

5
) ∨ T(x

4
, x

6
) ) has no decomposer. Given a

decomposer {x
1
,   . . . , x

m
} and a CNF C, it is easy to see that for

every pair of substitutions of the form S
X
 = {x

1
  =  X,  . . . , x

m
  =  X}

and S
Y
 = {x

1
 = Y, . . . , x

m
 = Y}, with X ≠ Y, the CNFs C

X
 and C

Y

obtained by applying S
X
 and S

Y
 to C do not share any unifiable

literals. A decomposer thus yields a lifted decomposition.
Given a CNF, a decomposer can be found in linear time.

When there are no substitution constraints on the vari-
ables in the decomposer, as in the example above, all CNFs
formed by substituting the variables in the decomposer with
the same constant are identical. Thus, k = 1 in Equation (3)
and m1 equals the number of constants (objects) in the PKB.
However, when there are substitution constraints, the CNFs
may not be identical. For example, given the CNF (R ( x

1
) ∨

S(x
1
, x

3
) ) ∧ (R (x

2
) ∨ T(x

2
, x

4
) ) and substitution constraints

{x
1
  ≠  A, x

2
  ≠  B}, the CNF formed by substituting {x

1
 = A,

x
2
  =  A} is not identical to the CNF formed by substituting

{x
1
  =  C, x

2
  =  C}. Specifically, the first CNF is (R(A)   ∨  T(A,

x
4
) ) (since the clause (R (x

1
)   ∨   S(x

1
, x

3
) ) has no valid ground-

ings for the substitution x1 = A given the constraint x
1
 ≠ A) while

the second CNF is (R(C)   ∨ S(C, x
3
) )   ∧ (R(C) ∨ T(C, x

4
) ).

A possible approach for solving this problem is illus-
trated below. For simplicity, assume that each variable x
in the decomposer is involved in exactly one substitution
constraint of the form x ≠ X (or x = X) where X is a constant.
Consider all possible combinations (Cartesian product)
of the constraints and their negation on the decomposer.
Observe that for each clause in the CNF, the subset of con-
stants O that satisfy all constraints in a given combination
also satisfy the following property: for any two distinct con-
stants X

i
 and X

j
 in O, the clause (possibly having no valid

groundings) obtained by substituting the decomposer vari-
able in it by X

i
 is identical to the one obtained by substi-

tuting the decomposer variable by X
j
 (up to a renaming of

constants and variables). Thus, a simple approach to decom-
pose the CNF into subsets of identical but disjoint CNFs is to
partition the constants, with each part corresponding to a
possible combination of the constraints and their negation.

For instance, in our example CNF, given the decom-
poser X = {x

1
, x

2
}, and the constraints {x ≠ A, x ≠ B} where

x ∈ X, we have the following four combinations of con-
straints and their negation: (1) (x ≠ A, x ≠ B); (2) (x ≠ A,
x = B); (3) (x = A, x ≠ B); and (4) (x = A, x = B). Notice
that the last combination is inconsistent (has no solu-
tion) and therefore we can ignore it. Assuming that there
are five constants {A, B, C, D, E} in the domain, the three
consistent combinations given above yield the following
partition of the constants: {{C, D, E}, {A}, {B}}. The three
corresponding parts of the lifted decomposition of the
CNF are (for readability, we do not standardize variables
apart): (1) (R(x

1
)  ∨  S(x

1
, x

3
) )  ∧  (R(x

2
)  ∨  T (x

2
, x

4
) ),  {x

1
, x

2
  ∈  

{C, D, E}, x
1
  ≠  A, x

2
  ≠  B};  (2)  (R (x

1
)  ∨  S (x

1
, x

3
) ) ∧ (R(x

2
)  

∨  T(x
2
, x

4
) ),  {x

1
, x

2
  ∈  {B},  x

1
  ≠  A, x

2
  ≠ B}; and  (3)

(R(x
1
)   ∨ S(x

1
, x

3
) )  ∧  (R(x

2
)  ∨  T(x

2
, x

4
) ),  {x

1
, x

2
  ∈  {A}, x

1
  ≠  A,

x
2
  ≠  B}.
In general, the partitioning problem described above can be

solved using constraint satisfaction techniques. In summary:

Proposition 2. Let X be a decomposer of a CNF C and let S be a
set of substitution constraints over C. Let {{X

1,1, . . . , X1, m1
}, . . . , {X

k, 1,
. . . , X

k, mk
}} be a partition of the constants in the domain and let

C′ = {C
1,1, . . . , C1, m 1

, . . . , C
k, 1, . . . , C

k, m k}
 be such that (i) for all i, j,

j′, j ≠ j′, C
i, j is identical to C

i, j′ given S, and (ii) C
i, mi

 is a CNF
formed by substituting each variable in X by X

i, mi
. Then C′ is a

lifted decomposition of C under S.

5.3. Lifting the splitting step
Splitting on a non-ground atom means splitting on all ground-
ings of it consistent with the current substitution constraints S.
Naively, if the atom has c groundings consistent with S this
will lead to a sum of 2c recursive calls to LWMC, one for each
possible truth assignment to the c ground atoms. However,
in general these calls will have repeated structure and can
be replaced by a much smaller number. The lifted splitting
step exploits this.

We introduce some notation and definitions. Let σA, S denote
a truth assignment to the groundings of atom A that is con-
sistent with the substitution constraints S, and let ΣA,S denote
the set of all possible such assignments. Let C|σA,S denote the
CNF formed by removing A and ¬A from all clauses that satisfy
S, and setting to Satisfied all ground clauses that are satisfied
because of σA,S. This can be done in a lifted manner by updat-
ing the substitution constraints associated with each clause.
For instance, consider the clause R(x) ∨ S(x, y) and substitu-
tion constraint {x ≠ A}, and suppose the domain is {A, B, C}
(i.e., these are all the constants appearing in the PKB). Given
the assignment R(B) = True, R(C) = False and ignoring satis-
fied clauses, the clause becomes S(x, y) and the constraint
set becomes {x ≠ A, x ≠ B}. R(x) is removed from the clause
because all of its groundings are instantiated. The constraint
x ≠ B is added because the assignment R(B) = True satisfies
all groundings in which x = B.

Definition 3. The partition of ΣA,S is called a
lifted split of atom A for CNF C under substitution constraints
S if every part satisfies the following two properties: (i) all
truth assignments in have the same number of true
atoms; (ii) for all pairs σj, , C|σj is identical to C|σk.

Proposition 3. If is a lifted split of A for C
under S, then

where , ti, and fi are the number of true and
false atoms in σ respectively, and Si is S augmented with the
substitution constraints required to form C|σ.

Again, we can derive rules for identifying a lifted split
by using the counting arguments in de Salvo Braz8 and the
generalized binomial rule in Jha et al.15 We omit the details
for lack of space. In the worst case, lifted splitting defaults
to splitting on a ground atom. In most inference problems,

research highlights

112 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

in propositional inference that can be ported to LWMC
include pure literals, clause learning, clause indexing, and
random restarts.2, 3, 23

Caching/Memoization In a typical inference, LWMC will
be called many times on the same subproblems. The solu-
tions of these can be cached when they are computed, and
reused when they are encountered again. (Notice that a
cache hit only requires identity up to renaming of variables
and constants.) This can greatly reduce the time complex-
ity of LWMC, but at the cost of increased space complexity.
If the results of all calls to LWMC are cached (full caching),
in the worst case LWMC will use exponential space. In prac-
tice, we can limit the cache size to the available memory and
heuristically prune elements from it when it is full. Thus, by
changing the cache size, LWMC can explore various time/
space tradeoffs. Caching in LWMC corresponds to both cach-
ing in model counting23 and recursive conditioning4 and to
memoization of common subproofs in theorem proving.

Knowledge-Based Model Construction KBMC first uses
logical inference to select the subset of the PKB that is rele-
vant to the query, and then propositionalizes the result and
performs standard probabilistic inference on it.25 A similar
effect can be obtained in PTP by noticing that in Equation
2 factors that are common to Z(K ∪ {(Q, 0)}) and Z(K) cancel
out and do not need to be computed. Thus we can modify
Algorithm 3 as follows: (i) simplify the PKB by unit propa-
gation starting from evidence atoms, etc.; (ii) drop from the
PKB all formulas that have no path of unifiable literals to
the query; (iii) pass to LWMC only the remaining formulas,
with an initial S containing the substitutions required for
the unifications along the connecting path(s).

We now state two theorems (proofs are provided in the
extended version of the paper) which compare the efficiency
of PTP and first-order variable elimination (FOVE).8, 18

Theorem 4. PTP can be exponentially more efficient than FOVE.

Theorem 5. LWMC with full caching has the same worst-case
time and space complexity as FOVE.

De Salvo Braz’s FOVE8 and lifted BP24 completely shatter
the PKB in advance. This may be wasteful because many of
those splits may not be necessary. In contrast, LWMC splits
only as needed.

PTP yields new algorithms for several of the inference
problems in Figure 1. For example, ignoring weights and
replacing products by conjunctions and sums by disjunctions
in Algorithm 5 yields a lifted version of DPLL for first-order
theorem proving.

Of the standard methods for inference in graphical
models, propositional PTP is most similar to recursive
conditioning4 and AND/OR search9 with context-sensitive
decomposition and caching, but applies to arbitrary PKBs,
not just Bayesian networks. Also, PTP effectively performs
formula-based inference13 when it splits on one of the auxil-
iary atoms introduced by Algorithm 2.

PTP realizes some of the benefits of lazy inference for
relational models10 by keeping in lifted form what lazy infer-
ence would leave as default.

the PKB will contain many hard ground unit clauses (the evi-
dence). Splitting on the corresponding ground atoms then
reduces to a single recursive call to LWMC for each atom.
In general, the atom to split on in Algorithm 5 should be
chosen with the goal of yielding lifted decompositions in
the recursive calls (e.g., using lifted versions of the proposi-
tional heuristics23).

Notice that the lifting schemes used for decomposition
and splitting in Algorithm 5 by no means exhaust the space of
possible probabilistic lifting rules. For example, Jha et al.15
and Milch et al.16 contain examples of other lifting rules.
Searching for new probabilistic lifted inference rules, and
positive and negative theoretical results about what can be
lifted, looks like a fertile area for future research.

The theorem below follows from Theorem 2 and the argu-
ments above.

Theorem 3. Algorithm LWMC(C, 0/, W) correctly computes the
weighted model count of CNF C under literal weights W.

5.4. Extensions and discussion
Although most probabilistic logical languages do not include
existential quantification, handling it in PTP is desirable for
the sake of logical completeness. This is complicated by the
fact that skolemization is not sound for model counting
(skolemization will not change satisfiability but can change
the model count), and so cannot be applied. The result of
conversion to CNF is now a conjunction of clauses with uni-
versally and/or existentially quantified variables (e.g., [∀x∃y
(R(x,  y) ∨ S(y) )] ∧ [∃u∀v∀wT(u,  v,  w)]). Algorithm 5 now
needs to be able to handle clauses of this form. If no univer-
sal quantifier appears nested inside an existential one, this
is straightforward, since in this case an existentially quanti-
fied clause is just a compact representation of a longer one.
For example, if the domain is {A, B, C}, the unit clause ∀x∃y
R(x, y) represents the clause ∀x (R(x, A) ∨ R(x, B) ∨ R(x, C) ).
The decomposition and splitting steps in Algorithm 5 are
both easily extended to handle such clauses without loss
of lifting (and the base case does not change). However, if
universals appear inside existentials, a first-order clause
now corresponds to a disjunction of conjunctions of propo-
sitional clauses. For example, if the domain is {A, B}, ∃x∀y
(R(x, y) ∨ S(x, y) ) represents (R(A, A) ∨ S(A, A) ) ∧ (R(A, B) ∨
S(A, B) ) ∨ (R(B, A) ∨ S(B, A) ) ∧ (R(B, B) ∨ S(B, B) ). Whether
these cases can be handled without loss of lifting remains
an open question.

Several optimizations of the basic LWMC procedure in
Algorithm 5 can be readily ported from the algorithms PTP
generalizes. These optimizations can tremendously improve
the performance of LWMC.

Unit Propagation When LWMC splits on atom A, the
clauses in the current CNF are resolved with the unit
clauses A and ¬A. This results in deleting false atoms, which
may produce new unit clauses. The idea in unit propaga-
tion is to in turn resolve all clauses in the new CNF with
all the new unit clauses, and continue to do this until no
further unit resolutions are possible. This often produces
a much smaller CNF, and is a key component of DPLL
that can also be used in LWMC. Other techniques used

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 113

6. APPROXIMATE INFERENCE
LWMC lends itself readily to Monte Carlo approximation, by
replacing the sum in the splitting step with a random choice of
one of its terms, calling the algorithm many times, and averag-
ing the results. This yields the first lifted sampling algorithm.

We first apply this importance sampling approach21 to
WMC, yielding the MC-WMC algorithm. The two algorithms
differ only in the last line. Let Q(A|C, W) denote the importance
or proposal distribution over A given the current CNF C and
literal weights W. Then we return MC-WMC(C| A;  W)
with probability Q(A|C, W), or MC-WMC(C|¬A; W) oth-
erwise. By importance sampling theory21 and by the law of
total expectation, it is easy to show that:

Theorem 6. If Q(A|C, W) satisfies WMC(C|A; W) > 0 ⇒ Q(A|C, W)
> 0 for all atoms A and its true and false assignments, then the
expected value of the quantity output by MC-WMC(C, W) equals
WMC(C, W). In other words, MC-WMC(C, W) yields an unbiased
estimate of WMC(C, W).

An estimate of WMC(C, W) is obtained by running MC-
WMC(C, W) multiple times and averaging the results. By lin-
earity of expectation, the running average is also unbiased. It
is well known that the accuracy of the estimate is inversely pro-
portional to its variance.21 The variance can be reduced by either
running MC-WMC more times or by choosing Q that is as close
as possible to the posterior distribution P (or both). Thus, for
MC-WMC to be effective in practice, at each point, given the cur-
rent CNF C, we should select Q(A|C, W) that is as close as possi-
ble to the marginal probability distribution of A w.r.t. C and W.

In presence of hard formulas, MC-WMC suffers from the
rejection problem12: it may return a zero. We can solve this
problem by either backtracking when a sample is rejected or by
generating samples from the backtrack-free distribution.12

Next, we present a lifted version of MC-WMC, which is
obtained by replacing the (last line of the) lifted splitting
step in LWMC by the following lifted sampling step:

independent and identical random variables and m random
samples (r1,1, . . . , r1,m) of R1, the expected value of the product
of the random variables equals E[R1]k and is an
asymptotically unbiased estimate of E[R1]k. Therefore, the
following theorem immediately follows from Theorem 6.

Theorem 7. If satisfies WMC(C|σ; Si, W) > 0 ⇒
  for all elements of the lifted split of A for C under

S, then MC-LWMC(C, S, W) yields an asymptotically unbiased
estimate of WMC(C, W).

Because of the lifted decomposition and sampling steps,
the time and space complexity of MC-LWMC is much smaller
than that of MC-WMC. As a result, given a time bound the
estimate returned by MC-LWMC will be based on a much
larger sample size than the one returned by MC-WMC.
Since variance goes down (and the accuracy goes up) as we
increase the sample size, MC-LWMC has smaller variance
(and is potentially more accurate) than MC-WMC.

7. EXPERIMENTS
7.1. Exact inference
We implemented PTP in C++ and ran all our experiments on
a Linux machine with a 2.33 GHz Intel Xeon processor and
2GB of RAM. We used a constraint solver based on forward
checking to implement the substitution constraints. We
used the following heuristics for splitting. At any point, we
prefer an atom which yields the smallest number of recur-
sive calls to LWMC (i.e., an atom that yields maximum lift-
ing). We break ties by selecting an atom that appears in the
largest number of ground clauses; this number can be com-
puted using the constraint solver. If it is the same for two or
more atoms, we break ties randomly.

We compare the performance of PTP and FOVE8 on a
link prediction PKB (additional experimental results on ran-
domly generated PKBs are presented in the full version of
the paper). Link prediction is the problem of determining
whether a link exists between two nodes in a network and
is an important problem in many domains such as social
network analysis and Web mining. We experimented with
a simple link prediction PKB consisting of two clauses:
GoodProf(x) ∧ GoodStudent(y) ∧ Advises(x, y) ⇒
FutureProf(y) and Coauthor(x, y) ⇒ Advises(x, y). The
PKB has two types of objects: professors (x) and students
(y). Given data on a subset of papers and “goodness” of pro-
fessors and students, the task is to be predict who advises
whom and who is likely to be a professor in the future.

We evaluated the performance of FOVE and PTP along two
dimensions: (i) the number of objects and (ii) the amount of
evidence. We varied the number of objects from 10 to 1000
and the number of evidence atoms from 10% to 80%.

Figure 2a shows the impact of increasing the number of
evidence atoms on the performance of the two algorithms
on a link prediction PKB with 100 objects. FOVE runs out of
memory (typically after around 20 minutes of runtime) after
the percentage of evidence atoms rises above 40%. PTP solves
all the problems and is also much faster than FOVE (notice
the log-scale on the y-axis). Figure 2b shows the impact of
increasing the number of objects on a link prediction PKB

return MC-LWMC(C|σ, Si, W)

  where is sampled from Q, and ni, ti, fi, σ, and Si are as
in Proposition 3.

In the lifted sampling step, we construct a distribution Q
over the lifted split and sample an element from it. Then
we weigh the sampled element w.r.t. Q and call the algorithm
recursively on the CNF conditioned on .

Notice that in the lifted sampling algorithm, A is a first-
order atom and the distribution is defined in a lifted
manner. Moreover, since each represents a subset of
truth assignments to the groundings of A, given a ground
assignment , the probability of sampling σ is

. Therefore, ignoring the decomposition
step, MC-LWMC is equivalent to MC-WMC that uses QG to
sample a truth assignment to the groundings of A. In the
decomposition step, given a set of identical and disjoint
CNFs, we simply sample just one of the CNFs and raise our
estimate to the appropriate count. The correctness of this
step follows from the fact that given a set {R1, . . . , Rk} of k

research highlights

114 COMMUNICATIONS OF THE ACM | JULY 2016 | VOL. 59 | NO. 7

The results, averaged over 10 runs, are shown in Figure 3a
and b. The figures show how the log-likelihood of the data var-
ies with time for the four inference algorithms used. We see that
MC-LWMC has the lowest negative log-likelihood of all algo-
rithms by a large margin. It significantly dominates MC-WMC in
about 2 min of runtime and is substantially superior to both lifted
BP and MC-SAT (notice the log scale). This shows the advantages
of approximate PTP over lifted BP and ground inference.

8. CONCLUSION
Probabilistic theorem proving (PTP) combines theorem
proving and probabilistic inference. This paper proposed
an algorithm for PTP based on reducing it to lifted weighted
model counting, and showed both theoretically and empiri-
cally that it has significant advantages compared to previous
lifted probabilistic inference algorithms. An implementa-
tion of PTP is available in the Alchemy 2.0 system (available
at https://code.google.com/p/alchemy-2/).

Directions for future research include: extension of PTP to
infinite, non-Herbrand first-order logic; new lifted inference
rules; theoretical analysis of liftability; porting to PTP more
speedup techniques from logical and probabilistic inference;
lifted splitting heuristics; better handling of existentials;
variational PTP algorithms; better importance distributions;
approximate lifting; answering multiple queries simultane-
ously; applications; etc.

Figure 2. (a) Impact of increasing the amount of evidence on the
time complexity of FOVE and PTP in the link prediction domain.
The number of objects in the domain is 100. (b) Impact of increasing
the number of objects on the time complexity of FOVE and PTP in the
link prediction domain, with 20% of the atoms set as evidence.

0.01

0.1

1

10

100

1000

10000

100000

10 20 30 40 50 60 70 80

Ti
m

e
(s

ec
on

ds
)

Percentage of evidence objects

PTP

FOVE

0.01

0.1

1

10

100

1000

10000

100000

100 200 300 400 500

Ti
m

e
(s

ec
on

ds
)

Number of objects

PTP
FOVE

(a)

(b)

0.01

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60

N
eg

at
iv

e
lo

g
lik

el
ih

oo
d

Time (minutes)

Lifted-BP
MC-SAT

MC-WMC
MC-LWMC

(a)

0.01

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60

N
eg

at
iv

e
lo

g
lik

el
ih

oo
d

Time (minutes)

Lifted-BP
MC-SAT

MC-WMC
MC-LWMC

(b)

Figure 3. Negative log-likelihood of the data as a function of time
for lifted BP, MC-SAT, MC-WMC, and MC-LWMC on (a) the entity
resolution (Cora) and (b) the collective classification domains.

with 20% of the atoms set as observed. We see that FOVE is
unable to solve any problems after the number of objects is
increased beyond 100 because it runs out of memory. PTP,
on the other hand, solves all problems in less than 100s.

7.2. Approximate inference
In this subsection, we compare the performance of MC-
LWMC, MC-WMC, lifted belief propagation,24 and MC-SAT19
on two domains: entity resolution (Cora) and collective clas-
sification. The Cora dataset contains 1295 citations to 132
different research papers. The inference task here is to detect
duplicate citations, authors, titles, and venues. The collective
classification dataset consists of about 3000 query atoms.

Since computing the exact posterior marginals is infea-
sible in these domains, we used the following evaluation
method. We partitioned the data into two equalsized sets:
evidence set and test set. We then computed the probability
of each ground atom in the test set given all atoms in the evi-
dence set using the four inference algorithms. We measure
the error using negative log-likelihood of the data according
to the inference algorithms (the negative log-likelihood is a
sampling approximation of the K–L divergence to the data-
generating distribution, shifted by its entropy).

JULY 2016 | VOL. 59 | NO. 7 | COMMUNICATIONS OF THE ACM 115

© 2016 ACM 0001-0782/16/07 $15.00

	12.	 Gogate, V., Dechter, R. SampleSearch:
Importance sampling in presence
of determinism. Artif. Intell. 175, 2
(2011), 694–729.

	13.	 Gogate, V., Domingos, P. Formula-
based probabilistic inference.
In Proceedings of the Twenty-
Sixth Conference on Uncertainty
in Artificial Intelligence (2010),
210–219.

	14.	 Halpern, J. An analysis of first-order
logics of probability. Artif. Intell. 46
(1990), 311–350.

	15.	 Jha, A., Gogate, V., Meliou, A., Suciu, D.
Lifted inference from the other side:
The tractable features. In Proceedings
of the Twenty-Fourth Annual
Conference on Neural Information
Processing Systems (2010), 973–981.

	16.	 Milch, B., Zettlemoyer, L.S., Kersting,
K., Haimes, M., Kaelbling, L.P. Lifted
probabilistic inference with counting
formulas. In Proceedings of the
Twenty-Third AAAI Conference on
Artificial Intelligence (2008), 1062–1068.

	17.	 Nilsson, N. Probabilistic logic. Artif.
Intell. 28 (1986) 71–87.

	18.	 Poole, D. First-Order probabilistic
inference. In Proceedings of the
Eighteenth International Joint
Conference on Artificial Intelligence
(2003), 985–991.

	19.	 Poon, H., Domingos, P. Sound and

efficient inference with probabilistic
and deterministic dependencies.
In Proceedings of the Twenty-First
National Conference on Artificial
Intelligence (2006), 458–463.

	20.	 Robinson, J.A. A machine-oriented
logic based on the resolution
principle. J. ACM 12 (1965) 23–41.

	21.	 Rubinstein, R.Y. Simulation and the
Monte Carlo Method. John Wiley &
Sons Inc. Hoboken, NJ, 1981.

	22.	 Sang, T., Beame, P., Kautz, H. Solving
Bayesian networks by weighted
model counting. In Proceedings of
the Twentieth National Conference
on Artificial Intelligence (2005),
475–482.

	23.	 Sang, T., Beame, P., Kautz, H.
Heuristics for fast exact model
counting. In Eighth International
Conference on Theory and
Applications of Satisfiability Testing
(2005), 226–240.

24.  Singla, P., Domingos, P. Lifted
first-order belief propagation. In
Lifted first-order belief propagation.
In Proceedings of the Twenty-Third
AAAI Conference on Artificial
Intelligence (2008), 1094–1099.

25.  Wellman, M., Breese, J.S.,
Goldman, R.P. From knowledge bases
to decision models. Knowledge Eng.
Rev. 7 (1992), 35–53.

Acknowledgments
This research was funded by the ARO MURI grant
W911NF-08-1-0242, AFRL contracts FA8750-09-C-0181 and
FA8750-14-C-0021, DARPA contracts FA8750-05-2-0283,
FA8750-14-C-0005, FA8750-07-D-0185, HR0011-06-C-0025,
HR0011-07-C-0060, and NBCH-D030010, NSF grants IIS-
0534881 and IIS-0803481, and ONR grant N00014-08-1-0670.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as neces-
sarily representing the official policies, either expressed or
implied, of ARO, DARPA, NSF, ONR, or the U.S. Government.�

	 1.	 Bacchus, F. Representing and Reasoning
with Probabilistic Knowledge. MIT
Press, Cambridge, MA, 1990.

	 2.	 Bayardo, R.J., Jr., Pehoushek, J.D.
Counting models using connected
components. In Proceedings of the
Seventeenth National Conference on
Artificial Intelligence (2000), 157–162.

	 3.	 Chavira, M., Darwiche, A. On
probabilistic inference by weighted
model counting. Artif. Intell. 172, 6–7
(2008), 772–799.

	 4.	 Darwiche, A. Recursive conditioning.
Artif. Intell. 126, 1–2 (February 2001),
5–41.

	 5.	 Davis, M., Logemann, G., Loveland, D. A
machine program for theorem proving.
Commun. ACM 5 (1962) 394–397.

	 6.	 Davis, M., Putnam, H. A computing
procedure for quantification theory.
J. Assoc. Comput. Mach. 7, 3 (1960),
201–215.

	 7.	 De Raedt, L., Kimmig, A., Toivonen,
H. ProbLog: A probabilistic Prolog
and its application in link discovery.
In Proceedings of the Twentieth
International Joint Conference
on Artificial Intelligence (2007),
2462–2467.

	 8.	 de Salvo Braz, R. Lifted first-order
probabilistic inference. PhD thesis,
University of Illinois, Urbana-
Champaign, IL (2007).

	 9.	 Dechter, R., Mateescu, R. AND/OR
search spaces for graphical
models. Artif. Intell. 171, 2–3
(2007), 73–106.

	10.	 Domingos, P., Lowd, D. Markov Logic:
An Interface Layer for Artificial
Intelligence. Morgan & Claypool, San
Rafael, CA, 2009.

	11.	 Getoor, L., Taskar, B., eds. Introduction
to Statistical Relational Learning. MIT
Press, Cambridge, MA, 2007.

References

Vibhav Gogate (vgogate@hlt.utdallas.
edu), The University of Texas at Dallas,
Richardson, TX.

Pedro Domingos (pedrod@cs.washington.
edu), University of Washington Seattle, WA.

nodesummit-half-page_160513.indd 1 5/13/16 2:55 PM

