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Abstract
Many representation schemes combining first-order logic and 
probability have been proposed in recent years. Progress in 
unifying logical and probabilistic inference has been slower. 
Existing methods are mainly variants of lifted variable elimi-
nation and belief propagation, neither of which take logical 
structure into account. We propose the first method that has 
the full power of both graphical model inference and first-
order theorem proving (in finite domains with Herbrand 
interpretations). We first define probabilistic theorem prov-
ing (PTP), their generalization, as the problem of computing 
the probability of a logical formula given the probabilities or 
weights of a set of formulas. We then show how PTP can be 
reduced to the problem of lifted weighted model counting, 
and develop an efficient algorithm for the latter. We prove the 
correctness of this algorithm, investigate its properties, and 
show how it generalizes previous approaches. Experiments 
show that it greatly outperforms lifted variable elimination 
when logical structure is present. Finally, we propose an 
algorithm for approximate PTP, and show that it is superior 
to lifted belief propagation.

1. INTRODUCTION
Unifying first-order logic and probability enables uncertain 
reasoning over domains with complex relational structure, 
and is a long-standing goal of AI. Proposals go back to at 
least Nilsson,17 with substantial progress within the com-
munity that studies uncertainty in AI starting in the 1990s 
(e.g., Bacchus,1 Halpern,14 Wellman25), and added impetus 
from the new field of statistical relational learning start-
ing in the 2000s.11 Many well-developed representations 
now exist (e.g., DeRaedt,7 and Domingos10), but the state of 
inference is less advanced. For the most part, inference is 
still carried out by converting models to propositional form 
(e.g., Bayesian networks) and then applying standard prop-
ositional algorithms. This typically incurs an exponential 
blowup in the time and space cost of inference, and forgoes 
one of the chief attractions of first-order logic: the ability to 
perform lifted inference, that is, reason over large domains 
in time independent of the number of objects they contain, 
using techniques like resolution theorem proving.20

In recent years, progress in lifted probabilistic inference 
has picked up. An algorithm for lifted variable elimination 
was proposed by Poole18 and extended by de Salvo Braz8 and 
others. Lifted belief propagation was introduced by Singla 
and Domingos.24 These algorithms often yield impressive effi-
ciency gains compared to propositionalization, but still fall 
well short of the capabilities of first-order theorem proving, 
because they ignore logical structure, treating potentials as 
black boxes. This paper proposes the first full-blown probabi-
listic theorem prover that is capable of exploiting both lifting 
and logical structure, and includes standard theorem proving 
and graphical model inference as special cases.

Our solution is obtained by reducing probabilistic theo-
rem proving (PTP) to lifted weighted model counting. We 
first do the corresponding reduction for the propositional 
case, extending previous work by Sang et al.22 and Chavira 
and Darwiche.3 We then lift this approach to the first-order 
level, and refine it in several ways. We show that our algorithm 
can be exponentially more efficient than first-order variable 
elimination, and is never less efficient (up to constants). For 
domains where exact inference is not feasible, we propose 
a sampling-based approximate version of our algorithm. 
Finally, we report experiments in which PTP greatly outper-
forms first-order variable elimination and belief propagation, 
and discuss future research directions.

2. LOGIC AND THEOREM PROVING
We begin with a brief review of propositional logic, first-order 
logic and theorem proving.

The simplest formulas in propositional logic are atoms: 
individual symbols representing propositions that may be 
true or false in a given world. More complex formulas are 
recursively built up from atoms and the logical connectives 
¬(negation), ∧	(conjunction), ∨ (disjunction), ⇒ (implication) 
and ⇔ (equivalence). For example, ¬A ∨ (B ∧ C) is true iff 
A is false or B and C are true. A knowledge base (KB) is a set 
of logical formulas. The fundamental problem in logic is 
determining entailment, and algorithms that do this are 
called theorem provers. A knowledge base K entails a query 
formula Q iff Q is true in all worlds in which all formulas in 
K are true, a world being an assignment of truth values to 
all atoms.

A world is a model of a KB iff the KB is true in it. Theorem 
provers typically first convert K and Q to conjunctive nor-
mal form (CNF). A CNF formula is a conjunction of clauses, 
each of which is a disjunction of literals, each of which is an 
atom or its negation. For example, the CNF of ¬A ∨ (B ∧ C) is 
(¬A ∨ B) ∧ (¬A ∨ C). A unit clause consists of a single literal. 
Entailment can then be computed by adding ¬Q to K and 
determining whether the resulting KB KQ is satisfiable, that 
is, whether there exists a world where all clauses in KQ are 
true. If not, KQ is unsatisfiable, and K entails Q. Algorithm 1 
shows this basic theorem proving schema. CNF(K) converts K 
to CNF, and SAT(C) returns True if C is satisfiable and False 
otherwise.

Algorithm 1 TP(KB K, query Q)

KQ ← K ∪ {¬Q}
return ¬SAT(CNF(KQ) )
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The earliest theorem prover is the Davis–Putnam algorithm 
(henceforth called DP).6 It makes use of the resolution rule: 
if a KB contains the clauses A1 ∨ . . . ∨ An and B1 ∨ . . . ∨ Bm, 
where the A’s and B’s represent literals, and some literal Ai is 
the negation of some literal Bj, then the clause A1 ∨ . . . ∨ Ai−1 
∨ Ai+1 ∨ . . . ∨ An ∨ B1 ∨ . . . ∨ Bj−1 ∨ Bj+1 ∨ . . . ∨ Bm can be added 
to the KB. For each atom A in the KB, DP resolves every pair 
of clauses C1, C2 in the KB such that C1 contains A and C2 
contains ¬A, and adds the result to the KB. It then deletes 
all clauses that contain a literal of A from the KB. If at some 
point the empty clause is derived, the KB is unsatisfiable, 
and the query formula (previously negated and added to the 
KB) is therefore proven to be entailed by the KB. DP is in fact 
just the variable elimination algorithm for the special case 
of 0-1 potentials.

Modern propositional theorem provers use the DPLL 
algorithm,5 a variant of DP that replaces the elimination 
step with a splitting step: instead of eliminating all clauses 
containing the chosen atom A, resolve all clauses in the KB 
with A, simplify and recurse, and do the same with ¬A. If 
both recursions fail, the KB is unsatisfiable. DPLL has lin-
ear space complexity, compared to exponential for Davis–
Putnam, and is the basis of the algorithms in this paper.

First-order logic inherits all the features of proposi-
tional logic, and in addition allows atoms to have internal 
structure. An atom is now a predicate symbol, representing 
a relation in the domain of interest, followed by a paren-
thesized list of variables and/or constants, representing 
objects. For example, Friends(Anna, x) is an atom. A ground 
atom has only constants as arguments. First-order logic 
has two additional connectives, ∀ (universal quantifica-
tion) and ∃ (existential quantification). For example, ∀x 
Friends(Anna,  x) means that Anna is friends with every-
one, and ∃x Friends(Anna,  x) means that Anna has at 
least one friend. In this paper, we assume that domains 
are finite (and therefore function-free) and that there is a 
one-to-one mapping between constants and objects in the 
domain (Herbrand interpretations).

As long as the domain is finite, first-order theorem prov-
ing can be carried out by propositionalization: creating atoms 
from all possible combinations of predicates and constants, 
and applying a propositional theorem prover. However, this 
is potentially very inefficient. A more sophisticated alternative 
is first-order resolution,20 which proceeds by resolving pairs 
of clauses and adding the result to the KB until the empty 
clause is derived. Two first-order clauses can be resolved if 
they contain complementary literals that unify, that is, there 
is a substitution of variables by constants or other variables 
that makes the two literals identical up to the negation sign. 
Conversion to CNF is carried out as before, with the additional 
step of removing all existential quantifiers by a process called 
skolemization.

First-order logic allows knowledge to be expressed more 
concisely than propositional logic. For example, the rules 
of chess can be stated in a few pages in first-order logic, 
but require hundreds of thousands in propositional logic. 
Probabilistic logical languages extend this power to uncer-
tain domains. The goal of this paper is to similarly extend 
the power of first-order theorem proving.

3. PROBLEM DEFINITION
Following Nilsson,17 we define PTP as the problem of deter-
mining the probability of an arbitrary query formula Q given 
a set of logical formulas Fi and their probabilities P(Fi). For 
the problem to be well defined, the probabilities must be 
consistent, and Nilsson17 provides a method for verifying con-
sistency. Probabilities estimated by maximum likelihood 
from an observed world are guaranteed to be consistent. 
In general, a set of formula probabilities does not specify 
a complete joint distribution over the atoms appearing in 
them, but one can be obtained by making the maximum 
entropy assumption: the distribution contains no informa-
tion beyond that specified by the formula probabilities.17 
Finding the maximum entropy distribution given a set of for-
mula probabilities is equivalent to learning a maximum-
likelihood log-linear model whose features are the formulas; 
many algorithms for this purpose are available (iterative 
scaling, gradient descent, etc.).

We call a set of formulas and their probabilities together 
with the maximum entropy assumption a probabilistic knowl-
edge base (PKB). Equivalently, a PKB can be directly defined 
as a log-linear model with the formulas as features and the 
corresponding weights or potential values. Potentials are 
the most convenient form, since they allow determinism 
(0-1 probabilities) without recourse to infinity. If x is a world 
and Φi(x) is the potential corresponding to formula Fi, by 
convention (and without loss of generality) we let Φi(x) = 1 if 
Fi is true, and Φi(x) = φi ≥ 0 if the formula is false. Hard formulas 
have φi = 0 and soft formulas have φi > 0. In order to compactly 
subsume standard probabilistic models, we interpret a uni-
versally quantified formula as a set of features, one for each 
grounding of the formula, as in Markov logic.10 A PKB {(Fi, φi)} 
thus represents the joint distribution

 (1)

where ni(x) is the number of false groundings of Fi in x, and 
Z is a normalization constant (the partition function). We can 
now define PTP succinctly as follows:

Probabilistic theorem proving (PTP)
Input: Probabilistic KB K and query formula Q
Output: P(Q|K)

If all formulas are hard, a PKB reduces to a standard logi-
cal KB. Determining whether a KB K logically entails a 
query Q is equivalent to determining whether P(Q|K) = 1.10 
Graphical models can be easily converted into equivalent 
PKBs.3 Conditioning on evidence is done by adding the cor-
responding hard ground atoms to the PKB, and the condi-
tional marginal of an atom is computed by issuing the atom 
as the query. Thus PTP has both logical theorem proving and 
inference in graphical models as special cases.

In this paper, we solve PTP by reducing it to lifted weighted 
model counting. Model counting is the problem of determin-
ing the number of worlds that satisfy a KB. Weighted model 
counting can be defined as follows.3 Assign a weight to each 
literal, and let the weight of a world be the product of the 
weights of the literals that are true in it. Then weighted 
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model counting is the problem of determining the sum of 
the weights of the worlds that satisfy a KB:

Weighted model counting (WMC)
Input: CNF C and set of literal weights W
Output: Sum of weights of worlds that satisfy C

Figure 1 depicts graphically the set of inference prob-
lems addressed by this paper. Generality increases in the 
direction of the arrows. We first propose an algorithm for 
propositional weighted model counting and then lift it to 
the first-order level. The resulting algorithm is applicable to 
all the problems in the diagram. (Weighted SAT/MPE infer-
ence requires replacing sums with maxes with an additional 
traceback or backtracking step, but we do not pursue it here 
and leave it for future work.)

4. PROPOSITIONAL CASE
This section generalizes the Bayesian network inference 
techniques in Darwiche4 and Sang et al.22 to arbitrary propo-
sitional PKBs, evidence, and query formulas. Although this 
is of value in its own right, its main purpose is to lay the 
groundwork for the first-order case.

The probability of a formula is the sum of the probabilities 
of the worlds that satisfy it. Thus to compute the probability of 
a formula Q given a PKB K it suffices to compute the partition 
function of K with and without Q added as a hard formula:

 (2)

where 1Q(x) is the indicator function (1 if Q is true in x and 0 
otherwise).

In turn, the computation of partition functions can be reduced 
to weighted model counting using the procedure in Algorithm 2. 
This replaces each soft formula Fi in K by a corresponding 
hard formula Fi ⇔ Ai, where Ai is a new atom, and assigns to 
every ¬Ai literal a weight of φi (the value of the potential Φi 
when Fi is false).

Theorem 1. Z(K) = WMC(WCNF(K) ). 

Proof. If a world violates any of the hard clauses in K or 
any of the Fi ⇔ Ai equivalences, it does not satisfy C and is 
therefore not counted. The weight of each remaining world 
x is the product of the weights of the literals that are true in 
x. By the Fi ⇔ Ai equivalences and the weights assigned by 
WCNF(K), this is ∏i Φi(x). (Recall that Φi(x) = 1 if Fi is true in 
x and Φi(x) = φi otherwise.) Thus x’s weight is the unnormal-
ized probability of x under K. Summing these yields the par-
tition function Z(K). 

Equation 2 and Theorem 1 lead to Algorithm 3 for PTP. 
(Compare with Algorithm 1.) WMC(C, W) can be any weighted 
model counting algorithm.3 Most model counters are varia-
tions of Relsat, itself an extension of DPLL.2 Relsat splits on 
atoms until the CNF is decomposed into sub-CNFs sharing 
no atoms, and recurses on each sub-CNF. This decomposi-
tion is crucial to the efficiency of the algorithm. In this paper 
we use a weighted version of Relsat, shown in Algorithm 4. 
A(C) is the set of atoms that appear in C. C|A denotes the CNF 
obtained by removing the literal A and its negation ¬A from 
all clauses in which they appear in and setting to Satisfied all 
clauses in which A appears in. Notice that, unlike in DPLL, 
satisfied clauses cannot simply be deleted, because we need 
to keep track of which atoms they are over for model count-
ing purposes. However, they can be ignored in the decompo-
sition step, since they introduce no dependencies. The atom 
to split on in the splitting step can be chosen using various 
heuristics.23

Figure 1. Inference problems addressed in this paper. TPo and TP1 
is propositional and first-order theorem proving respectively, PI is 
probabilistic inference (computing marginals), MPE is computing the 
most probable explanation, SAT is satisfiability, MC is model counting, 
W is weighted and L is lifted. A = B means A can be reduced to B.
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Algorithm 3 PTP(PKB K, query Q)

KQ ← K ∪ {(Q, 0)}
return WMC(WCNF(KQ) )/WMC(WCNF(K) )

Algorithm 4 WMC(CNF C, weights W)

// Base case
if all clauses in C are satisfied then
 return ∏A∈A(C) (WA + W¬A)
if C has an empty unsatisfied clause then return 0
// Decomposition step
if C can be partitioned into CNFs C1, . . . , Ck sharing no atoms then
 return ∏k

i = 1 WMC (Ci, W )
// Splitting step
Choose an atom A
return WA WMC(C|A; W) + W¬A WMC(C|¬A; W)

Algorithm 2 WCNF(PKB K)

for all (Fi, φi) ∈ K s.t. φi > 0 do
  K ← K ∪ {(Fi ⇔ Ai, 0)} \ {(Fi, φi)}
C ← CNF(K)
for all ¬Ai literals do W¬ Ai ←	φi

for all other literals L do WL ← 1
return (C, W)
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sufficient since each atom A has nA(S) groundings, and all 
ground atoms are independent because the CNF is satisfied 
irrespective of their truth values. Note that nA(S) is the num-
ber of groundings of A consistent with S that can be formed 
using all the constants in the original CNF.

5.2. Lifting the decomposition step
Clearly, if C can be decomposed into two or more CNFs such 
that no two CNFs share any unifiable literals, a lifted decom-
position of C is possible (i.e., a decomposition of C into 
first-order CNFs on which LWMC can be called recursively). 
But the symmetry of the first-order representation can be 
further exploited. For example, if the CNF C can be decom-
posed into k CNFs C1, . . . , Ck sharing no unifiable literals and 
such that for all i, j, Ci is identical to Cj up to a renaming of 
the variables and constants, then LWMC(C) = [LWMC(C1)]k. 
We formalize these conditions below.

Definition 1. The set of first-order CNFs {C1,1,   . . .   , C1,m1
, . . . ,  

Ck,1, . . . , Ck,mk} is called a lifted decomposition of CNF C under 
substitution constraints S if, given S, it satisfies the following three 
properties: (i) C = C1,1

 ∧ . . . ∧	Ck,mk
;   (ii) no two Ci, j’s share any unifiable 

literals; (iii) for all i, j, j′, such that j ≠ j′, Ci, j is identical to Ci, j′.
a

Proposition 1. If {C1,1, . . . , C1, m1
 . . . , Ck,1, . . . , Ck,mk} is a lifted 

decomposition of C under S, then

 (3)

Rules for identifying lifted decompositions can be derived 
in a straightforward manner from the inversion argument in 
de Salvo Braz8 and the power rule in Jha et al.15 An example of 
such a rule is given in the definition and proposition below.

Definition 2. A set of variables X = {x
1
, . . . , x

m
} is called a 

decomposer of a CNF C if it satisfies the following three proper-
ties: (i) for each clause Cj in C, there is exactly one variable x

i
 in 

X such that x
i
 appears in all atoms in Cj; (ii) if x

i
 ∈ X appears 

as an argument of predicate R (say at position k in an atom hav-
ing predicate symbol R), then all variables in all clauses that 

Theorem 2. Algorithm WMC(C,W) correctly computes the 
weighted model count of CNF C under literal weights W.

Proof sketch. If all clauses in C are satisfied, all assign-
ments to the atoms in C satisfy it, and the corresponding 
total weight is ∏A∈A(C )(WA + W¬A). If C has an empty unsatis-
fied clause, it is unsatisfiable given the truth assignment so 
far, and the corresponding weighted count is 0. If two CNFs 
share no atoms, the WMC of their conjunction is the product 
of the WMCs of the individual CNFs. Splitting on an atom 
produces two disjoint sets of worlds, and the total WMC is 
therefore the sum of the WMCs of the two sets, weighted by 
the corresponding literal’s weight.  

5. FIRST-ORDER CASE
We now lift PTP to the first-order level. We consider first the 
case of PKBs without existential quantifiers. Algorithms 2 
and 3 remain essentially unchanged, except that formu-
las, literals and CNF conversion are now first-order. In par-
ticular, for Theorem 1 to remain true, each new atom Ai in 
Algorithm 2 must now consist of a new predicate symbol fol-
lowed by a parenthesized list of the variables and constants 
in the corresponding formula Fi. The proof of the first-order 
version of the theorem then follows by propositionalization. 
Lifting Algorithm 4 is the focus of the rest of this section.

We begin with some necessary definitions. A substitution 
constraint is an expression of the form x = y or x ≠ y, where 
x is a variable and y is either a variable or a constant. (Much 
richer substitution constraint languages are possible, but 
we adopt the simplest one that allows PTP to subsume both 
standard function-free theorem proving and first-order vari-
able elimination.) Two literals are unifiable under a set of 
substitution constraints S if there exists at least one ground 
literal consistent with S that is an instance of both, up to 
the negation sign. A (C, S) pair, where C is a first-order CNF 
whose variables have been standardized apart and S is a 
set of substitution constraints, represents the ground CNF 
obtained by replacing each clause in C with the conjunction 
of its groundings that are consistent with the constraints 
in S. For example, using upper case for constants and lower 
case for variables, and assuming that the PKB contains only 
two constants A and B, if C = R(A, B) ∧ (¬R(x, y) ∨ S(y, z) ) and 
S = {x = y, z ≠ A}, (C, S) represents the ground CNF R(A, B) 
∧ (¬R(A, A) ∨ S(A, B) ) ∧ (¬R(B, B) ∨ S(B, B) ). Clauses with 
equality substitution constraints can be abbreviated in the 
obvious way (e.g., T(x, y, z) with x = y and z = C can be abbre-
viated as T(x,  x,  C) ).

We lift the base case, decomposition step, and splitting 
step of Algorithm 4 in turn. The result is shown in Algorithm 5. 
In addition to the first-order CNF C and weights on first-order 
literals W, LWMC takes as an argument an initially empty set 
of substitution constraints S which, similar to logical theo-
rem proving, is extended along each branch of the inference 
as the algorithm progresses.

5.1. Lifting the base case
The base case changes only by raising each first-order atom 
A’s sum of weights to nA(S), the number of groundings of 
A compatible with the constraints in S. This is necessary and 

Algorithm 5 LWMC(CNF C, substs. S, weights W)

// Lifted base case
if all clauses in C are satisfied then
 return ∏A∈A(C)(WA + W¬A)n

A
 (S)

if C has an empty unsatisfied clause then return 0
// Lifted decomposition step
if there exists a lifted decomposition {C1,1, . . . , C1,m1

, . . . ,  
 Ck,1, . . . , Ck,mk}  of C under S then
 return  [LWMC (Ci,1, S, W )]mi 
// Lifted splitting step
Choose an atom A
Let {∑(1)

A,S, . . ., ∑
(l)
A,S} be a lifted split of A for C under S

return ∑(l)
i = 1	niW ti

A W fi
¬A LWMC (C|σj; Sj, W )

 where ni, ti,  fi, σj and Sj are as in Proposition 3

a Throughout this paper, when we say that two clauses are identical, we mean 
that they are identical up to a renaming of constants and variables.
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appear as the same argument (namely at position k) of R are 
included in X; and (iii) no pair of variables x

i
, x

j
 ∈ X such 

that i ≠ j appear as different arguments of a predicate R in C.

For example, {x
1
, x

2
} is a decomposer of the CNF (R(x

1
) ∨  

S(x
1
, x

3
) ) ∧ (R(x

2
) ∨ T(x

2
, x

4
) ) while the CNF (R(x

1
, x

2
) ∨ S(x

2
, 

x
3
) ) ∧ (R(x

4
, x

5
) ∨ T(x

4
, x

6
) ) has no decomposer. Given a 

decomposer {x
1
,   . . . , x

m
} and a CNF C, it is easy to see that for 

every pair of substitutions of the form S
X
 = {x

1
  =  X,  . . . , x

m
  =  X}  

and S
Y
 = {x

1
 = Y, . . . , x

m
 = Y}, with X ≠ Y, the CNFs C

X
 and C

Y
 

obtained by applying S
X
 and S

Y
 to C do not share any unifiable 

literals. A decomposer thus yields a lifted decomposition. 
Given a CNF, a decomposer can be found in linear time.

When there are no substitution constraints on the vari-
ables in the decomposer, as in the example above, all CNFs 
formed by substituting the variables in the decomposer with 
the same constant are identical. Thus, k = 1 in Equation (3) 
and m1 equals the number of constants (objects) in the PKB. 
However, when there are substitution constraints, the CNFs 
may not be identical. For example, given the CNF (R ( x

1
) ∨ 

S(x
1
, x

3
) ) ∧ (R (x

2
) ∨ T(x

2
, x

4
) ) and substitution constraints  

{x
1
  ≠  A, x

2
  ≠  B}, the CNF formed by substituting {x

1
 = A,  

x
2
  =  A} is not identical to the CNF formed by substituting  

{x
1
  =  C, x

2
  =  C}. Specifically, the first CNF is (R(A)   ∨  T(A, 

x
4
) ) (since the clause (R (x

1
)   ∨   S(x

1
, x

3
) ) has no valid ground-

ings for the substitution x1 = A given the constraint x
1
 ≠ A) while 

the second CNF is (R(C)   ∨ S(C, x
3
) )   ∧ (R(C) ∨ T(C, x

4
) ).

A possible approach for solving this problem is illus-
trated below. For simplicity, assume that each variable x 
in the decomposer is involved in exactly one substitution 
constraint of the form x ≠ X (or x = X) where X is a constant. 
Consider all possible combinations (Cartesian product) 
of the constraints and their negation on the decomposer. 
Observe that for each clause in the CNF, the subset of con-
stants O that satisfy all constraints in a given combination 
also satisfy the following property: for any two distinct con-
stants X

i
 and X

j
 in O, the clause (possibly having no valid 

groundings) obtained by substituting the decomposer vari-
able in it by X

i
 is identical to the one obtained by substi-

tuting the decomposer variable by X
j
 (up to a renaming of 

constants and variables). Thus, a simple approach to decom-
pose the CNF into subsets of identical but disjoint CNFs is to 
partition the constants, with each part corresponding to a 
possible combination of the constraints and their negation.

For instance, in our example CNF, given the decom-
poser X = {x

1
, x

2
}, and the constraints {x ≠ A, x ≠ B} where 

x ∈ X, we have the following four combinations of  con-
straints and their negation: (1) (x ≠ A, x ≠ B); (2) (x ≠ A,   
x = B); (3) (x = A, x ≠ B); and (4) (x = A, x = B). Notice  
that the last combination is inconsistent (has no solu-
tion) and therefore we can ignore it. Assuming that there 
are five constants {A, B, C, D, E} in the domain, the three 
consistent combinations given above yield the following 
partition of the constants: {{C, D, E}, {A}, {B}}. The three 
corresponding parts of the lifted decomposition of the  
CNF are (for readability, we do not standardize variables 
apart): (1)  (R(x

1
)  ∨  S(x

1
, x

3
) )  ∧  (R(x

2
)  ∨  T (x

2
, x

4
) ),  {x

1
, x

2
  ∈   

{C, D, E}, x
1
  ≠  A, x

2
  ≠  B};  (2)  (R (x

1
)  ∨  S (x

1
, x

3
) ) ∧ (R(x

2
)   

∨  T(x
2
, x

4
) ),  {x

1
, x

2
  ∈  {B},  x

1
  ≠  A, x

2
  ≠ B}; and  (3) 

(R(x
1
)   ∨ S(x

1
, x

3
) )  ∧  (R(x

2
)  ∨  T(x

2
, x

4
) ),  {x

1
, x

2
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In general, the partitioning problem described above can be  

solved using constraint satisfaction techniques. In summary:

Proposition 2. Let X be a decomposer of a CNF C and let S be a 
set of substitution constraints over C. Let {{X

1,1, . . . , X1, m1
}, . . . , {X

k, 1, 
. . . , X

k, mk
}} be a partition of the constants in the domain and let 

C′ = {C
1,1, . . . , C1, m 1

, . . . , C
k, 1, . . . , C

k, m k}
 be such that (i) for all i, j, 

j′, j ≠ j′, C
i, j is identical to C

i, j′ given S, and (ii) C
i, mi

 is a CNF 
formed by substituting each variable in X by X

i, mi
. Then C′ is a 

lifted decomposition of C under S.

5.3. Lifting the splitting step
Splitting on a non-ground atom means splitting on all ground-
ings of it consistent with the current substitution constraints S. 
Naively, if the atom has c groundings consistent with S this 
will lead to a sum of 2c recursive calls to LWMC, one for each 
possible truth assignment to the c ground atoms. However, 
in general these calls will have repeated structure and can 
be replaced by a much smaller number. The lifted splitting 
step exploits this.

We introduce some notation and definitions. Let σA, S denote 
a truth assignment to the groundings of atom A that is con-
sistent with the substitution constraints S, and let ΣA,S denote 
the set of all possible such assignments. Let C|σA,S denote the 
CNF formed by removing A and ¬A from all clauses that satisfy 
S, and setting to Satisfied all ground clauses that are satisfied 
because of σA,S. This can be done in a lifted manner by updat-
ing the substitution constraints associated with each clause. 
For instance, consider the clause R(x) ∨ S(x, y) and substitu-
tion constraint {x ≠ A}, and suppose the domain is {A, B, C} 
(i.e., these are all the constants appearing in the PKB). Given 
the assignment R(B) = True, R(C) = False and ignoring satis-
fied clauses, the clause becomes S(x, y) and the constraint 
set becomes {x ≠ A, x ≠ B}. R(x) is removed from the clause 
because all of its groundings are instantiated. The constraint 
x ≠ B is added because the assignment R(B) = True satisfies 
all groundings in which x = B.

Definition 3. The partition  of ΣA,S is called a 
lifted split of atom A for CNF C under substitution constraints 
S if every part  satisfies the following two properties: (i) all 
truth assignments in  have the same number of true 
atoms; (ii) for all pairs σj, , C|σj is identical to C|σk.

Proposition 3. If  is a lifted split of A for C 
under S, then

where , ti, and fi are the number of true and 
false atoms in σ respectively, and Si is S augmented with the 
substitution constraints required to form C|σ.

Again, we can derive rules for identifying a lifted split 
by using the counting arguments in de Salvo Braz8 and the 
generalized binomial rule in Jha et al.15 We omit the details 
for lack of space. In the worst case, lifted splitting defaults 
to splitting on a ground atom. In most inference problems, 
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in propositional inference that can be ported to LWMC 
include pure literals, clause learning, clause indexing, and 
random restarts.2, 3, 23

Caching/Memoization In a typical inference, LWMC will 
be called many times on the same subproblems. The solu-
tions of these can be cached when they are computed, and 
reused when they are encountered again. (Notice that a 
cache hit only requires identity up to renaming of variables 
and constants.) This can greatly reduce the time complex-
ity of LWMC, but at the cost of increased space complexity. 
If the results of all calls to LWMC are cached (full caching), 
in the worst case LWMC will use exponential space. In prac-
tice, we can limit the cache size to the available memory and 
heuristically prune elements from it when it is full. Thus, by 
changing the cache size, LWMC can explore various time/
space tradeoffs. Caching in LWMC corresponds to both cach-
ing in model counting23 and recursive conditioning4 and to 
memoization of common subproofs in theorem proving.

Knowledge-Based Model Construction KBMC first uses 
logical inference to select the subset of the PKB that is rele-
vant to the query, and then propositionalizes the result and 
performs standard probabilistic inference on it.25 A similar 
effect can be obtained in PTP by noticing that in Equation 
2 factors that are common to Z(K ∪ {(Q, 0)}) and Z(K) cancel 
out and do not need to be computed. Thus we can modify 
Algorithm 3 as follows: (i) simplify the PKB by unit propa-
gation starting from evidence atoms, etc.; (ii) drop from the 
PKB all formulas that have no path of unifiable literals to 
the query; (iii) pass to LWMC only the remaining formulas, 
with an initial S containing the substitutions required for 
the unifications along the connecting path(s).

We now state two theorems (proofs are provided in the 
extended version of the paper) which compare the efficiency 
of PTP and first-order variable elimination (FOVE).8, 18

Theorem 4. PTP can be exponentially more efficient than FOVE.

Theorem 5. LWMC with full caching has the same worst-case 
time and space complexity as FOVE.

De Salvo Braz’s FOVE8 and lifted BP24 completely shatter 
the PKB in advance. This may be wasteful because many of 
those splits may not be necessary. In contrast, LWMC splits 
only as needed.

PTP yields new algorithms for several of the inference 
problems in Figure 1. For example, ignoring weights and 
replacing products by conjunctions and sums by disjunctions 
in Algorithm 5 yields a lifted version of DPLL for first-order 
theorem proving.

Of the standard methods for inference in graphical 
models, propositional PTP is most similar to recursive 
conditioning4 and AND/OR search9 with context-sensitive 
decomposition and caching, but applies to arbitrary PKBs, 
not just Bayesian networks. Also, PTP effectively performs 
formula-based inference13 when it splits on one of the auxil-
iary atoms introduced by Algorithm 2.

PTP realizes some of the benefits of lazy inference for 
relational models10 by keeping in lifted form what lazy infer-
ence would leave as default.

the PKB will contain many hard ground unit clauses (the evi-
dence). Splitting on the corresponding ground atoms then 
reduces to a single recursive call to LWMC for each atom. 
In general, the atom to split on in Algorithm 5 should be 
chosen with the goal of yielding lifted decompositions in 
the recursive calls (e.g., using lifted versions of the proposi-
tional heuristics23).

Notice that the lifting schemes used for decomposition 
and splitting in Algorithm 5 by no means exhaust the space of 
possible probabilistic lifting rules. For example, Jha et al.15 
and Milch et al.16 contain examples of other lifting rules. 
Searching for new probabilistic lifted inference rules, and 
positive and negative theoretical results about what can be 
lifted, looks like a fertile area for future research.

The theorem below follows from Theorem 2 and the argu-
ments above.

Theorem 3. Algorithm LWMC(C, 0/, W) correctly computes the 
weighted model count of CNF C under literal weights W.

5.4. Extensions and discussion
Although most probabilistic logical languages do not include 
existential quantification, handling it in PTP is desirable for 
the sake of logical completeness. This is complicated by the 
fact that skolemization is not sound for model counting 
(skolemization will not change satisfiability but can change 
the model count), and so cannot be applied. The result of 
conversion to CNF is now a conjunction of clauses with uni-
versally and/or existentially quantified variables (e.g., [∀x∃y 
(R(x,  y) ∨ S(y) )] ∧ [∃u∀v∀wT(u,  v,  w)]). Algorithm 5 now 
needs to be able to handle clauses of this form. If no univer-
sal quantifier appears nested inside an existential one, this 
is straightforward, since in this case an existentially quanti-
fied clause is just a compact representation of a longer one. 
For example, if the domain is {A, B, C}, the unit clause ∀x∃y 
R(x, y) represents the clause ∀x (R(x, A) ∨ R(x, B) ∨ R(x, C) ). 
The decomposition and splitting steps in Algorithm 5 are 
both easily extended to handle such clauses without loss 
of lifting (and the base case does not change). However, if 
universals appear inside existentials, a first-order clause 
now corresponds to a disjunction of conjunctions of propo-
sitional clauses. For example, if the domain is {A, B}, ∃x∀y 
(R(x, y) ∨ S(x, y) ) represents (R(A, A) ∨ S(A, A) ) ∧ (R(A, B) ∨ 
S(A, B) ) ∨ (R(B, A) ∨ S(B, A) ) ∧ (R(B, B) ∨ S(B, B) ). Whether 
these cases can be handled without loss of lifting remains 
an open question.

Several optimizations of the basic LWMC procedure in 
Algorithm 5 can be readily ported from the algorithms PTP 
generalizes. These optimizations can tremendously improve 
the performance of LWMC.

Unit Propagation When LWMC splits on atom A, the 
clauses in the current CNF are resolved with the unit 
clauses A and ¬A. This results in deleting false atoms, which 
may produce new unit clauses. The idea in unit propaga-
tion is to in turn resolve all clauses in the new CNF with 
all the new unit clauses, and continue to do this until no 
further unit resolutions are possible. This often produces 
a much smaller CNF, and is a key component of DPLL 
that can also be used in LWMC. Other techniques used 
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6. APPROXIMATE INFERENCE
LWMC lends itself readily to Monte Carlo approximation, by 
replacing the sum in the splitting step with a random choice of 
one of its terms, calling the algorithm many times, and averag-
ing the results. This yields the first lifted sampling algorithm.

We first apply this importance sampling approach21 to 
WMC, yielding the MC-WMC algorithm. The two algorithms 
differ only in the last line. Let Q(A|C, W) denote the importance 
or proposal distribution over A given the current CNF C and 
literal weights W. Then we return  MC-WMC(C| A;  W) 
with probability Q(A|C, W), or  MC-WMC(C|¬A; W) oth-
erwise. By importance sampling theory21 and by the law of 
total expectation, it is easy to show that:

Theorem 6. If Q(A|C, W) satisfies WMC(C|A; W) > 0 ⇒ Q(A|C, W) 
> 0 for all atoms A and its true and false assignments, then the 
expected value of the quantity output by MC-WMC(C, W) equals 
WMC(C, W). In other words, MC-WMC(C, W) yields an unbiased 
estimate of WMC(C, W).

An estimate of WMC(C, W) is obtained by running MC- 
WMC(C, W) multiple times and averaging the results. By lin-
earity of expectation, the running average is also unbiased. It 
is well known that the accuracy of the estimate is inversely pro-
portional to its variance.21 The variance can be reduced by either 
running MC-WMC more times or by choosing Q that is as close 
as possible to the posterior distribution P (or both). Thus, for 
MC-WMC to be effective in practice, at each point, given the cur-
rent CNF C, we should select Q(A|C, W) that is as close as possi-
ble to the marginal probability distribution of A w.r.t. C and W.

In presence of hard formulas, MC-WMC suffers from the 
rejection problem12: it may return a zero. We can solve this 
problem by either backtracking when a sample is rejected or by 
generating samples from the backtrack-free distribution.12

Next, we present a lifted version of MC-WMC, which is 
obtained by replacing the (last line of the) lifted splitting 
step in LWMC by the following lifted sampling step:

independent and identical random variables and m random 
samples (r1,1, . . . , r1,m) of R1, the expected value of the product 
of the random variables equals E[R1]k and  is an 
asymptotically unbiased estimate of E[R1]k. Therefore, the 
following theorem immediately follows from Theorem 6.

Theorem 7. If  satisfies WMC(C|σ; Si, W ) >	 0 ⇒	
		for all elements  of the lifted split of A for C under 

S, then MC-LWMC(C, S, W) yields an asymptotically unbiased 
estimate of WMC(C, W).

Because of the lifted decomposition and sampling steps, 
the time and space complexity of MC-LWMC is much smaller 
than that of MC-WMC. As a result, given a time bound the 
estimate returned by MC-LWMC will be based on a much 
larger sample size than the one returned by MC-WMC. 
Since variance goes down (and the accuracy goes up) as we 
increase the sample size, MC-LWMC has smaller variance 
(and is potentially more accurate) than MC-WMC.

7. EXPERIMENTS
7.1. Exact inference
We implemented PTP in C++ and ran all our experiments on 
a Linux machine with a 2.33 GHz Intel Xeon processor and 
2GB of RAM. We used a constraint solver based on forward 
checking to implement the substitution constraints. We 
used the following heuristics for splitting. At any point, we 
prefer an atom which yields the smallest number of recur-
sive calls to LWMC (i.e., an atom that yields maximum lift-
ing). We break ties by selecting an atom that appears in the 
largest number of ground clauses; this number can be com-
puted using the constraint solver. If it is the same for two or 
more atoms, we break ties randomly.

We compare the performance of PTP and FOVE8 on a 
link prediction PKB (additional experimental results on ran-
domly generated PKBs are presented in the full version of 
the paper). Link prediction is the problem of determining 
whether a link exists between two nodes in a network and 
is an important problem in many domains such as social 
network analysis and Web mining. We experimented with 
a simple link prediction PKB consisting of two clauses: 
GoodProf(x) ∧ GoodStudent(y) ∧ Advises(x, y) ⇒ 
FutureProf(y) and Coauthor(x, y) ⇒ Advises(x, y). The 
PKB has two types of objects: professors (x) and students 
(y). Given data on a subset of papers and “goodness” of pro-
fessors and students, the task is to be predict who advises 
whom and who is likely to be a professor in the future.

We evaluated the performance of FOVE and PTP along two 
dimensions: (i) the number of objects and (ii) the amount of 
evidence. We varied the number of objects from 10 to 1000 
and the number of evidence atoms from 10% to 80%.

Figure 2a shows the impact of increasing the number of 
evidence atoms on the performance of the two algorithms 
on a link prediction PKB with 100 objects. FOVE runs out of 
memory (typically after around 20 minutes of runtime) after 
the percentage of evidence atoms rises above 40%. PTP solves 
all the problems and is also much faster than FOVE (notice 
the log-scale on the y-axis). Figure 2b shows the impact of 
increasing the number of objects on a link prediction PKB 

return  MC-LWMC(C|σ, Si, W)

 where  is sampled from Q, and ni, ti, fi, σ, and Si are as 
in Proposition 3.

In the lifted sampling step, we construct a distribution Q 
over the lifted split and sample an element  from it. Then 
we weigh the sampled element w.r.t. Q and call the algorithm 
recursively on the CNF conditioned on .

Notice that in the lifted sampling algorithm, A is a first-
order atom and the distribution  is defined in a lifted 
manner. Moreover, since each  represents a subset of 
truth assignments to the groundings of A, given a ground 
assignment , the probability of sampling σ is 

. Therefore, ignoring the decomposition 
step, MC-LWMC is equivalent to MC-WMC that uses QG to 
sample a truth assignment to the groundings of A. In the 
decomposition step, given a set of identical and disjoint 
CNFs, we simply sample just one of the CNFs and raise our 
estimate to the appropriate count. The correctness of this 
step follows from the fact that given a set {R1, . . . , Rk} of k 
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The results, averaged over 10 runs, are shown in Figure 3a 
and b. The figures show how the log-likelihood of the data var-
ies with time for the four inference algorithms used. We see that 
MC-LWMC has the lowest negative log-likelihood of all algo-
rithms by a large margin. It significantly dominates MC-WMC in 
about 2 min of runtime and is substantially superior to both lifted 
BP and MC-SAT (notice the log scale). This shows the advantages 
of approximate PTP over lifted BP and ground inference.

8. CONCLUSION
Probabilistic theorem proving (PTP) combines theorem 
proving and probabilistic inference. This paper proposed 
an algorithm for PTP based on reducing it to lifted weighted 
model counting, and showed both theoretically and empiri-
cally that it has significant advantages compared to previous 
lifted probabilistic inference algorithms. An implementa-
tion of PTP is available in the Alchemy 2.0 system (available 
at https://code.google.com/p/alchemy-2/).

Directions for future research include: extension of PTP to 
infinite, non-Herbrand first-order logic; new lifted inference 
rules; theoretical analysis of liftability; porting to PTP more 
speedup techniques from logical and probabilistic inference; 
lifted splitting heuristics; better handling of existentials; 
variational PTP algorithms; better importance distributions; 
approximate lifting; answering multiple queries simultane-
ously; applications; etc.

Figure 2. (a) Impact of increasing the amount of evidence on the 
time complexity of FOVE and PTP in the link prediction domain. 
The number of objects in the domain is 100. (b) Impact of increasing 
the number of objects on the time complexity of FOVE and PTP in the 
link prediction domain, with 20% of the atoms set as evidence.
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Figure 3. Negative log-likelihood of the data as a function of time 
for lifted BP, MC-SAT, MC-WMC, and MC-LWMC on (a) the entity 
resolution (Cora) and (b) the collective classification domains.

with 20% of the atoms set as observed. We see that FOVE is 
unable to solve any problems after the number of objects is 
increased beyond 100 because it runs out of memory. PTP, 
on the other hand, solves all problems in less than 100s.

7.2. Approximate inference
In this subsection, we compare the performance of MC- 
LWMC, MC-WMC, lifted belief propagation,24 and MC-SAT19 
on two domains: entity resolution (Cora) and collective clas-
sification. The Cora dataset contains 1295 citations to 132 
different research papers. The inference task here is to detect 
duplicate citations, authors, titles, and venues. The collective 
classification dataset consists of about 3000 query atoms.

Since computing the exact posterior marginals is infea-
sible in these domains, we used the following evaluation 
method. We partitioned the data into two equalsized sets: 
evidence set and test set. We then computed the probability 
of each ground atom in the test set given all atoms in the evi-
dence set using the four inference algorithms. We measure 
the error using negative log-likelihood of the data according 
to the inference algorithms (the negative log-likelihood is a 
sampling approximation of the K–L divergence to the data-
generating distribution, shifted by its entropy).
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