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To handle the complexity and uncer-
tainty present in most real-world prob-
lems, we need AI that is both logical and 
statistical, integrating first-order logic 
and graphical  models. One or the other 

FOR MANY YEARS,  the two dominant paradigms in 
artificial intelligence (AI) have been logical AI and 
statistical AI. Logical AI uses first-order logic and 
related representa tions to capture complex 
relationships and knowledge about the world. 
However, logic-based approaches are often too brittle 
to handle the uncertainty and noise pres ent in many 
applications. Statistical AI uses probabilistic 
representations such as probabilistic graphical 
models to capture uncertainty. However, graphical 
models only represent distributions over 
propositional universes and must be customized to 
handle relational domains. As a result, expressing 
complex concepts and relationships in graphical models 
is often difficult and labor-intensive.
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Markov logic can be used as a general 
framework for joining logical and statistical AI.
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 key insights
 ˽ Intelligent systems must be able to handle 

the complexity and uncertainty of the real 
world. Markov logic enables this by unifying 
first-order logic and probabilistic graphical 
models into a single representation. Many 
deep architectures are instances of  
Markov logic.

 ˽ A extensive suite of learning and 
inference algorithms for Markov logic has 
been developed, along with open source 
implementations like Alchemy.

 ˽ Markov logic has been applied to natural 
language understanding, information 
extraction and integration, robotics, 
social network analysis, computational 
biology, and many other areas.
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by itself cannot provide the minimum 
functionality needed to support the full 
range of AI applications. Further, the 
two need to be fully integrated, and are 
not simply provided alongside each oth-
er. Most applications require simulta-
neously the expressiveness of first-order 
logic and the robustness of probability, 
not just one or the other. Unfortunately, 
the split between logical and statistical 
AI runs very deep. It dates to the earliest 
days of the field, and continues to be 
highly visible today. It takes a different 
form in each subfield of AI, but it is om-
nipresent. Table 1 shows examples of 
this. In each case, both the logical and 
the statistical approaches contribute 
something important. This justifies the 
abundant research on each of them, but 
also implies that ultimately a combina-
tion of the two is required.

Markov logic7 is a simple yet powerful 
generalization of first-order logic and 
probabilistic graphical models, which 
allows it to build on and integrate the 
best approaches from both logical and 
statistical AI. A Markov logic network 
(MLN) is a set of weighted first-order for-
mulas, viewed as templates for con-
structing Markov networks. This yields a 
well-defined probability distribution in 
which worlds are more likely when they 
satisfy a higher-weight set of ground for-
mulas. Intuitively, the magnitude of the 
weight corresponds to the relative 
strength of its formula; in the infinite-
weight limit, Markov logic reduces to 
first-order logic. Weights can be set by 
hand or learned automatically from 
data. Algorithms for learning or revising 
formulas from data have also been 
developed. Inference algorithms for 

Markov logic combine ideas from prob-
abilistic and logical inference, such as 
Markov chain Monte Carlo, belief propa-
gation, satisfiability, and resolution.

Markov logic has already been used to 
efficiently develop state-of-the-art mod-
els for many AI problems, such as collec-
tive classification, link prediction,  
ontology mapping, knowledge base 
refine ment, and semantic parsing in 
application areas such as the Web, 
social networks, molecular biology, 
information extraction, and others. 
Markov logic makes solving new prob-
lems easier by offering a simple frame-
work for representing well-defined 
probability distributions over uncer-
tain, relational data. Many existing 
approaches can be described by a few 
weighted formulas, and multiple 
approaches can be combined by 
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Deep learning methods9 have led to 
competitive or dominant approaches in 
a growing number of problems. Deep 
learning fits complex, nonlinear func-
tions directly from data. For domains 
where we know something about the 
problem structure, MLNs and other 
graphical models make it easier to cap-
ture background knowledge about the 
domain, sometimes specifying competi-
tive models without having any training 
data at all. Due to their complementary 
strengths, combining deep learning 
with graphical models is an ongoing 
area of research.

First-Order Logic
A first-order knowledge base (KB) is a set 
of sentences or formulas in first-order 
logic. Formulas are constructed using 
four types of symbols: constants, vari-
ables, functions, and predicates. 
Constant symbols represent objects in 
the domain of interest (for example, 
people: Anna, Bob, and Chris). Variable 
symbols range over the objects in the 
domain. Function symbols (MotherOf) 
represent mappings from tuples of 
objects to objects. Predicate symbols 
represent relations among objects in 
the domain (Friends) or attributes of 
objects (Smokes). An interpretation speci-
fies which objects, functions, and rela-
tions in the domain are represented by 
which symbols.

A term is any expression representing 
an object in the domain. It can be a con-
stant, a variable, or a function applied to 
a tuple of terms. For example, Anna, x, 
and GreatestCommonDivisor(x, y) are 
terms. An atomic formula or atom is a 
predicate symbol applied to a tuple of 
terms (for example, Friends(x, 
MotherOf(Anna) ) ). Formulas are recur-
sively constructed from atomic formu-
las using logical connectives and 
quantifiers. If F1 and F2 are formulas, 
the following are also formulas: ¬F1 
(negation), which is true if F1 is false; F1 ∧ 
F2 (conjunction), which is true if both F1 
and F2 are true; F1 ∨ F2 (disjunction), 
which is true if F1 or F2 is true; F1 ⇒ F2 
(implication), which is true if F1 is false or 
F2 is true; F1 ⇔ F2 (equivalence), which is 
true if F1 and F2 have the same truth value; 
∀x F1 (universal quantification), which is 
true if F1 is true for every object x in the 
domain; and ∃x F1 (existential quantifi-
cation), which is true if F1 is true for at 
least one object x in the domain. 

including all of the relevant formulas. 
Many algorithms, as well as sample 
datasets and applications, are available 
in the open source Alchemy system17 
(alchemy.cs.washington.edu).

In this article, we describe Markov 
logic and its algorithms, and show 
how they can be used as a general 
framework for combining logical and 
statistical AI. Before presenting back-
ground and details on Markov logic, 
we first discuss how it relates to other 
methods in AI.

Markov logic is the most widely used 
approach to unifying logical and statis-
tical AI, but this is an active research 
area, and there are many others (see 
Kimmig et al.14 for a recent survey with 
many examples). Most approaches can 
be roughly categorized as either extend-
ing logic programming languages (for 
example, Prolog) to handle uncer-
tainty, or extending probabilistic 
graphical models to handle relational 
structure. Many of these model classes 
can also be represented efficiently as 
MLNs (see Richardson and Domingos32 
for a discussion of early approaches to 
statistical relational AI and how they 
relate to Markov logic). In recent years, 
most work on statistical relational AI 
has assumed a parametric factor (par-
factor)29 representation which is simi-
lar to the weighted formulas in an 
MLN. Probabilistic soft logic (PSL)1 

uses weighted formulas like Markov 
logic, but with a continuous relaxation 
of the variables in order to reason effi-
ciently. In some cases, PSL can be 
viewed as Markov logic with a particular 
choice of approximate inference algo-
rithm. One limitation of PSL’s degree-
of-satisfaction semantics is that more 
evidence does not always make an event 
more likely; many weak sources of evi-
dence do not combine to produce 
strong evidence, even when the sources 
are independent.

Probabilistic programming28 is 
an other paradigm for defining and rea-
soning with rich, probabilistic models. 
Probabilistic programming is a good fit 
for problems where the data is gener-
ated by a random process, and the pro-
cess can be described as the execution 
of a procedural program with random 
choices. Not every domain is well-suited 
to this approach; for example, we may 
wish to describe or predict the behavior 
of people in a social network without 
modeling the complete evolution of that 
network. Inference methods for proba-
bilistic programming languages work 
backwards from the data to reason about 
the processes that generate the data 
and compute conditional probabilities 
of other events. Probabilistic graphical 
models perform similar reasoning, but 
typically have more structure to exploit 
for reasoning at scale.

Table 1. Examples of logical and statistical AI.

Field Logical approach Statistical approach

Knowledge representation First-order logic Graphical models

Automated reasoning Satisfiability testing Markov chain Monte 
Carlo

Machine learning Inductive logic programming Neural networks

Planning Classical planning Markov decision 
processes

Natural language processing Definite clause grammars Probabilistic 
context-free
grammars

Table 2. Example of a first-order knowledge base and MLN.

English First-order logic Weight

“Friends of friends are friends.” ∀x∀y∀z Fr(x, y) ∧ Fr(y, z) ⇒ Fr(x, z) 0.7
“Friendless people smoke.” ∀x (¬(∃y Fr(x, y) ) ⇒ Sm(x) ) 2.3
“Smoking causes cancer.” ∀x Sm(x) ⇒ Ca(x) 1.5
“If two people are friends, then  
 either both smoke or neither does.”

∀x∀y Fr(x, y) ⇒ (Sm(x) ⇔ Sm(y) ) 1.1

Fr() is short for Friends(), Sm() for Smokes(), and Ca() for Cancer().
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Parentheses may be used to enforce pre-
cedence. A positive literal is an atomic for-
mula; a negative literal is a negated atomic 
formula. The formulas in a KB are implic-
itly conjoined, and thus a KB can be 
viewed as a single large formula. A ground 
term is a term containing no variables. A 
ground atom is an atomic formula all of 
whose arguments are ground terms. A 
grounding of a predicate or formula is a 
replacement of all of its arguments by con-
stants (or functions all of whose argu-
ments are constants or other functions, 
recursively, but we consider only the 
case of constants in this article).

A possible world (along with an inter-
pretation) assigns a truth value to each 
possible ground atom.

A formula is satisfiable if and only 
if there is at least one world in which it 
is true.

Determining if a formula is satisfi-
able is only semidecidable. Because of 
this, knowledge bases are often con-
structed using a restricted subset of 
first-order logic with more desirable 
properties.

Table 2 shows a simple KB. Notice 
that although these formulas may be 
typically true in the real world, they 
are not always true. In most domains, it 
is very difficult to come up with non-
trivial formulas that are always true, 
and such formulas capture only a frac-
tion of the relevant knowledge. Thus, 
despite its expressiveness, pure first-
order logic has limited applicability to 
practical AI problems.

Many ad hoc extensions to address 
this have been proposed. In the more 
limited case of propositional logic, the 
problem is well solved by probabilistic 
graphical models such as Markov net-
works, as we describe next. We will later 
show how to generalize these models to 
the first-order case.

Markov Networks
A Markov network (also known as 
Markov random field) represents a joint 
probability distribution over variables 
X = {X1, X2, …, Xn} as a product of factors 
(also known as potential functions):

 (1)

where each φC is a nonnegative, real-
valued function defined over variables 
XC ⊂ X and Z is a normalization con-
stant known as the partition function. 

For convenience, we also define Φ(x) as 
the unnormalized probability distribu-
tion, the product of all potential func-
tions. A Markov network can be 
represented as a graph with one node 
per variable and an undirected edge 
between any two variables that appear 
together in the same factor.

Markov networks are often conve-
niently represented as log-linear models, 
with each potential function replaced 
by an exponentiated weighted sum of 
features of the state, leading to

( ) ( )
 

= =   
∑1

exp j j
j

P X x w f x
Z

 (2)

A feature may be any real-valued func-
tion of the state. We will focus on 
binary features, fj (x) ∈  {0, 1}, typi-
cally indicating if the variables are in 
some particular state or satisfy some 
logical expression.

Markov networks have been suc-
cessfully applied to many problems in 
AI, such as stereo vision, natural lan-
guage translation, information extrac-
tion, machine reading, social network 
analysis, and more. However, Markov 
networks only represent probabil-
ity distributions over propositional 
domains with a fixed set of variables. 
There is no standard language for 
extending Markov networks to vari-
able-sized domains, such as social net-
works over different numbers of people 
or documents with different numbers 
of words. As a result, applying Markov 
networks to these problems is a labor-
intensive process requiring custom 
implementations.

Markov Logic
A first-order KB can be seen as a set of 
hard constraints on the set of possible 
worlds: if a world violates even one for-
mula, it has zero probability. The basic 

idea in Markov logic is to soften these 
constraints: when a world violates one 
formula in the KB, it is less probable, 
but not impossible. The fewer formulas 
a world violates, the more probable it is. 
Each formula has an associated weight 
(for example, see Table 2) that reflects 
how strong a constraint it is: the higher 
the weight, the greater the difference in 
log probability between a world that sat-
isfies the formula and one that does not, 
other things being equal.

Definition 1.32 A Markov logic network 
(MLN) L is a set of pairs (Fi, wi), where Fi is a 
formula in first-order logic and wi is a real 
number. Together with a finite set of con-
stants C = {c1, c2, …, c|C|}, it defines a 
Markov network ML, C (Equations 1 and 2) 
as follows:

ML, C contains one random variable 
for each possible grounding of each atom 
appearing in L. The value of the variable 
is true if the ground atom is true and 
false otherwise.

ML, C contains one feature for each pos-
sible grounding of each formula Fi in L. 
The value of this feature is 1 if the ground 
formula is true and 0 otherwise. The 
weight of the feature is the wi associated 
with Fi in L.

In the graph corresponding to ML, C, 
there is a node for each grounding of 
each atom, and an edge appears between 
two nodes if the corresponding ground 
atoms appear together in at least one 
grounding of one formula in L.

For example, an MLN containing the 
formulas ∀x Smokes(x) ⇒ Cancer(x) 
(smoking causes cancer) and ∀x∀y 
Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y) ) 
(friends have similar smoking habits) 
applied to the constants Anna and Bob (or 
A and B for short) yields the ground 
Markov network in Figure 1. Its features 

Figure 1. Ground Markov network obtained by applying an MLN containing the formulas  
∀x Smokes(x) ⇒ Cancer(x) and ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y) ) to the  
constants Anna(A) and Bob(B).

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)



78    COMMUNICATIONS OF THE ACM    |   JULY 2019  |   VOL.  62  |   NO.  7

review articles

P(S(A) |R(A) ) → 1, recovering the logi-
cal entailment.

Bayesian networks, Markov networks, 
and many other propositional models 
frequently used in machine learning 
and data mining can be stated quite 
concisely as MLNs, and combined and 
extended simply by adding the corre-
sponding formulas.32 Most significantly, 
Markov logic facilitates the modeling of 
multi-relational data, where objects are 
not independent but are related in 
diverse and complex ways. Such repre-
sentations are important for social net-
works, biological networks, natural 
language understanding, and more. 
Boltzmann machines and the deep 
 models based on them are special 
cases of Markov networks.

MLN weights can be normalized glob-
ally, as in undirected graphical models, 
or locally, as in directed ones. The latter 
option enables MLNs to handle vari-
able numbers of objects and irrelevant 
objects similar to directed first-order 
formalisms (counter to Russell’s34 claim; 
see also Domingos6). In practice, even 
globally normalized MLNs are quite 
robust to these variations, largely 
because the number of relations per 
object usually varies much less than the 
number of objects, and because factors 
from irrelevant objects cancel out in 
conditional probabilities.

When working with Markov logic, 
we typically make three assumptions 
about the logical representation: dif-
ferent constants refer to different 
objects (unique names), the only 
objects in the domain are those repre-
sentable using the constant and func-
tion symbols (domain closure), and 
the value of each function for each 
tuple of arguments is always a known 
constant (known functions). These 
assumptions ensure the number of pos-
sible worlds is finite and that the 
Markov logic network will give a well-
defined probability distribution. These 
assumptions are quite reasonable in 
most practical applications, and 
greatly simplify the use of MLNs. We 
will make these assumptions in most 
of the remainder of this article, but 
Markov logic can be generalized to 
domains where they do not hold, such 
as those with infinite objects or con-
tinuous random variables.36,37 Open-
world reasoning methods discussed 
by Russell34 can also be applied to 

include Smokes(Anna) ⇒ Cancer(Anna). 
Notice that, although the two formulas 
are false as universally quantified logical 
statements, as weighted features of an 
MLN they capture valid statistical regu-
larities, and in fact represent a standard 
social network model. Notice also that 
nodes and links in the social networks 
are both represented as nodes in the 
Markov network; arcs in the Markov net-
work represent probabilistic dependen-
cies between nodes and links in  
the social network (for example, Anna’s 
smoking habits depend on her friends’ 
smoking habits).

An MLN can be viewed as a template 
for constructing Markov networks. 
From Definition 1 and Equations 1 and 
2, the probability distribution over pos-
sible worlds x specified by the ground 
Markov network ML, C is given by

( ) ( )
=

 
= =   ∑

1

1
exp

F

i i
i

P X x w n x
Z

 (3)

where F is the number of formulas in 
the MLN and ni (x) is the number of 
true groundings of Fi in x. As formula 
weights increase, an MLN increas-
ingly resembles a purely logical KB, 
becoming equivalent to one in the 
limit of all infinite weights. When the 
weights are positive and finite, and all 
formulas are simultaneously satisfi-
able, the satisfying solutions are the 
modes of the distribution represented 
by the ground Markov network. Most 
importantly, Markov logic allows 
contradictions between formulas, 
which it resolves simply by weighing 
the evidence on both sides.

It is interesting to see a simple 
example of how Markov logic general-
izes first-order logic. Consider an 
MLN containing the single formula ∀x 
R(x) ⇒ S(x) with weight w, and C = {A}. 
This leads to four possible worlds: 
{¬R(A), ¬S(A)}, {¬R(A), S(A)}, {R(A), 
¬S(A)}, and {R(A), S(A)}. From 
Equation 3 we obtain that P({R(A), 
¬S(A)}) = 1/(3ew + 1) and the probabil-
ity of each of the other three worlds is 
ew/(3ew + 1). (The denominator is the 
partition function Z; see Markov 
Networks.) Thus, if w > 0, the effect of 
the MLN is to make the world that is 
inconsistent with ∀x R(x) ⇒ S(x) less 
likely than the other three. From the 
probabilities here we obtain that 
P(S(A) |R(A) ) = 1/(1 + e−w). When w → ∞,  

A first-order  
knowledge base  
can be seen as  
a set of hard 
constraints on  
the set of possible 
worlds. The basic 
idea in Markov logic 
is to soften these 
constraints. 
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Markov logic, as Bayesian networks can 
be translated into MLNs.

Inference
Given an MLN model, the questions of 
interest are answered by performing 
inference on it. (For example, “What are 
the topics of these Web pages, given the 
words on them and the links between 
them?”) Because an MLN acts as a tem-
plate for a Markov network, we can 
always apply standard Markov network 
inference methods on the instantiated 
network. However, methods that also 
exploit the logical structure in an MLN 
can yield tremendous savings in mem-
ory and time. We first provide an over-
view of inference in Markov networks, 
and then describe how these methods 
can be adapted to take advantage of the 
MLN structure.

Markov network inference. The 
main inference problem in Markov 
networks is computing the probability 
of a set of query variables Q given some 
evidence E:

( ) ( )
( )

( )
( )

,

,

,
|

, ,

, ,
q eh

eq h

P q e
P Q q E e

P e

q e h Z
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Φ ′
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where H = X − Q − E denotes the remain-
ing nonquery, nonevidence variables, Φ 
is the unnormalized product of poten-
tials from Equation 1, and Zq, e and Ze are 
the partition functions of reduced 
Markov networks, where the query and 
evidence variables have been fixed to 
constants. Thus, if we can compute par-
tition functions, then we can answer 
arbitrary probabilistic queries.

In general, computing Z or answer-
ing other queries in a Markov network 
is #P-complete. When the Markov net-
work has certain structural properties, 
such as a tree or tree-like structure, 
inference can be done in polynomial 
time. For network structures with many 
variables and loops, exact inference is 
usually intractable and approximate 
inference algorithms are used instead. 
The two most common approaches to 
approximation are to generate random 
samples through some random pro-
cess that converges to the true distribu-
tion, or to solve a relaxed problem that 
captures as many constraints from the 
original as possible. Examples of the 
former approach include Markov chain 

Monte Carlo (MCMC) and importance 
sampling, and examples of the latter 
include loopy belief propagation and 
variational methods.

Any of these methods could be used 
to perform inference in an MLN after 
instantiating the ground network, and 
many of them have. However, inference 
remains challenging in Markov net-
works and even more challenging in 
MLNs, which are often very large and 
have many loops. Next we will discuss 
on one of the most promising infer-
ence methods to date, which can take 
advantage of logical structure, perform 
exact inference when tractable, and be 
relaxed to perform approximate infer-
ence when necessary.

Weighted model counting. 
Comput ing the partition function in a 
Markov network can be reduced to a 
weight ed model counting (WMC) 
problem. Weig hted model counting 
finds the total weight of all satisfying 
assignments to a logical formula F. 
Following Chavira and Darwiche,2 we 
focus on literal-weighted model count-
ing, in which each literal is assigned a 
real-valued weight and the weight of 
an assignment is the product of the 
weights of its literals.

To represent Z as a WMC problem, 
we need each assignment x to receive 
weight Φ(x). Suppose each potential φi 
(x) evaluates to a constant Θi when a 
logical expression Fi is satisfied and 1 
otherwise. (If the Markov network is not 
already in this form, we can convert it 
efficiently.) To define the WMC prob-
lem, for each potential φi, we introduce 
a literal Ai with weight Θi. We also intro-
duce a logical formula, Ai ⇔ Fi, so that Ai 
is only true when Fi is satisfied. Thus, 
the product of the weights of the Ai liter-
als is exactly the product of the original 
potential functions.

WMC algorithms can then be used to 
solve the problem and compute Z. One 
approach is recursive decomposition, in 
which we break the WMC problem into 
two subproblems, one where some vari-
able xi is fixed to true and one where xi is 
fixed to false. This requires exponential 
time in the worst case, but WMC algo-
rithms can often exploit problem struc-
ture to solve it much faster in practice. 
Another approach is to compile the 
model into a logical form where WMC is 
tractable, such as d-DNNF, and build an 
arithmetic circuit based on it.2 Once 

compiled, the arithmetic circuit can be 
reused for multiple queries.

Probabilistic theorem proving. WMC 
is a natural approach to inference in 
MLNs, as MLNs already use a logical  
representation for their features. How-
ever, MLNs have additional structure to 
exploit: each formula is instantiated 
many times with different combinations of 
constants. For example, suppose we are 
modeling a social network in which each 
pair of people is either friends or not. 
Before introducing any information 
about the individuals, the probability 
that any two people are friends must be 
the same as any other pair. Lifted infer-
ence exploits these symmetries to reason 
efficiently, even on very large domains.29

Probabilistic theorem proving (PTP)8 
applies this idea to perform lifted 
weighted model counting, so that many 
equivalent groundings of the same for-
mula can be counted at once without 
instantiating them. As in the proposi-
tional case, lifted WMC can also be per-
formed by compiling the first-order 
knowledge base to a (lifted) arithmetic 
circuit for repeated querying.5

In some cases, lifted inference lets 
us reason efficiently independent of 
domain size, so that inferring proba-
bilities over millions of constants and 
trillions of ground formulas takes no 
longer than reasoning over hundreds. 
More often, evidence about individual 
constants breaks symmetries, so that 
different groundings are no longer 
exchangeable. The efficiency gains 
from lifting depend on both the struc-
ture of the knowledge base and the 
structure of the evidence.

When there is not enough structure 
and symmetry to perform inference 
exactly, we can replace some of the recur-
sive conditioning steps in PTP with 
sampling.8 This leads to an approximate 
lifted inference algorithm, where sam-
pling is used to estimate the weighted 
count of some of the subformulas.

Learning
Here, we discuss methods for automat-
ically learning weights, refining formu-
las, and constructing new formulas 
from data.

Weight learning. In generative 
learning, the goal is to learn a joint 
pro bability distribution over all 
atoms. A standard approach is to 
maximize the likelihood of the data 
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Either way, we have found it useful to 
start by adding all atomic formulas 
(single atoms) to the MLN. The weights 
of these capture (roughly speaking) 
the marginal distributions of the 
atoms, allowing the longer formulas to 
focus on modeling atom dependen-
cies. To extend this initial model, we 
either repeatedly find the best formula 
using beam search and add it to the 
MLN, or add all “good” formulas of 
length l before trying formulas of 
length l + 1. Candidate formulas are 
formed by adding each predicate 
(negated or otherwise) to each current 
formula, with all possible combina-
tions of variables, subject to the con-
straint that at least one variable in the 
new predicate must appear in the cur-
rent formula. Hand-coded formulas are 
also modified by removing predicates.

A wide variety of other methods for 
MLN structure learning have been 
developed, such as generative learning 
with lifted inference,10 discriminative 
structure learning,11 gradient boost-
ing,13 and generating formulas using a 
Markov network21 or random walks.16 
For the special case where MLN for-
mulas define a relational Bayesian net-
work, consistent Bayesian network 
structure learning methods can be 
extended to consistent structure learn-
ing in the relational setting.35

Applications
MLNs have been used in a wide variety 
of applications, often achieving state-
of-the-art performance. Their greatest 
strength is their flexibility for defining 
rich models in varied domains.

Collective classification. One of the 
most common uses of MLNs is for pre-
dicting the labels of interrelated enti-
ties, as in the friends and smoking 
example. Applications include labeling 
Web pages and predicting protein 
function.3 MLNs can also model collec-
tive classification tasks on sequential 
data, such as segmenting text for infor-
mation extraction.30

Link prediction. A second common 
task is to predict unknown or future 
relationships based on known relation-
ships and attributes. Examples include 
predicting protein interaction,3 pre-
dicting advising relationships in a com-
puter science department,32 and 
predicting work relationships among 
directors and actors.20

through  gradient-based methods. 
Note that we can learn to generalize 
from even a single example because 
the formula weights are shared across 
their many respective groundings. 
This is essential when the training 
data is a single network, such as the 
Web. Given mild assumptions about 
the relational dependencies, maxi-
mizing the likelihood (or pseudo- 
likelihood) of a sufficiently large 
example will recover the parameters 
that generated the data.38

For MLNs, the gradient of the log-
likelihood is the difference between 
the true formula counts in the data 
and the expected counts according to 
the model. When learning a generative 
probability distribution over all atoms, 
even approximating these expecta-
tions tends to be prohibitively expen-
sive or inaccurate due to the large state 
space. Instead, we can maximize 
pseudo-likelihood, which is the condi-
tional probability of each atom in the 
database conditioned on all other 
atoms. Computing the pseudo-likeli-
hood and its gradient does not require 
inference, and is therefore much 
faster. However, the pseudo-likelihood 
parameters may lead to poor results 
when long chains of inference are 
required. In order to combat overfit-
ting, we penalize each weight with a 
Gaussian prior, but for simplicity, we 
ignore that in what follows.

In many applications, we know a pri-
ori which atoms will be evidence and 
which ones will be queried. For these 
cases, discriminative learning optimizes 
our ability to predict the query atoms Y 
given the evidence X. A common 
approach is to maximize the conditional 
likelihood of Y given X,

( ) ( )1
| exp ,

Y

i i
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P y x w n x y
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where FY is the set of all MLN formulas 
with at least one grounding involving a 
query atom, and ni (x, y) is the number 
of true groundings of the ith formula 
involving query atoms. The gradient of 
the conditional log-likelihood is
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where the sum is over all possible data-
bases y′, and Pw (y′|x) is P (y′|x) com-
puted using the current weight vector 
w = (…, wi, …). In other words, the ith 
component of the gradient is simply 
the difference between the number of 
true groundings of the ith formula in 
the data and its expectation according 
to the current model.

When computing the expected 
counts Ew[ni (x, y′)] is intractable, we 
can approximate them using either 
the MAP state (that is, the most prob-
able state of y given x) or by averaging 
over several samples from MCMC. We 
obtain the best results by applying a 
version of the scaled conjugate gradi-
ent algorithm. We use a small number 
of samples from MCMC to approxi-
mate the gradient and Hessian 
matrix, and use the inverse diagonal 
Hessian as a preconditioner (see 
Lowd and Domingos18 for more 
details and results).

MLN weights can also be learned 
with a max-margin approach, similar to 
structural support vector machines.11

Structure learning. The structure of a 
MLN is the set of formulas to which we 
attach weights. Although these formulas 
are often specified by one or more 
experts, such knowledge is not always 
accurate or complete. In addition to 
learning weights for the provided for-
mulas, we can revise or extend the MLN 
structure with new formulas learned 
from data. We can also learn the entire 
structure from scratch. The inductive 
logic programming (ILP) community 
has developed many methods for this 
purpose.4 ILP algorithms typically 
search for rules that have high accu-
racy, or high coverage, among others. 
However, because an MLN represents 
a probability distribution, much better 
results are obtained by using an evalu-
ation function based on pseudo-likeli-
hood.15 Log-likelihood or conditional 
log-likelihood are potentially better 
evaluation functions, but are much 
more expensive to compute.

Most structure learning algorithms 
focus on clausal knowledge bases, in 
which each formula is a disjunction of 
literals (negated or nonnegated 
atoms). The classic approach is to 
begin with either an empty network or 
an existing KB and perform a combi-
natorial search for formulas that 
improve the pseudo-likelihood.15 
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Knowledge base mapping, integration, 
and refinement. Reasoning about the 
world requires combining diverse sources 
of uncertain information, such as noisy 
KBs. MLNs can easily represent KBs 
and soft constraints on the knowledge 
they represent: facts and rules in the 
knowledge base can be represented 
directly as atoms and formulas in the 
MLN. Ontology alignment can then be 
formulated as a link prediction prob-
lem, predicting which concepts in one 
ontology map to which concepts in the 
other. MLN formulas enforce structural 
similarity, so that related concepts in 
one ontology map to similarly related 
concepts in the other.23 Similar rules 
can be used for knowledge base refine-
ment, automatically detecting and cor-
recting errors in uncertain knowledge 
by enforcing consistency among classes 
and relations.12

Semantic network extraction (SNE). 
A semantic network is a type of KB con-
sisting of a collection of concepts and 
relationships among them. The SNE39  
system uses Markov logic to define a 
probability distribution over semantic 
networks. The MLN entities are the 
relation and object symbols from 
extracted tuples and the cluster 
assignments that group them into 
concepts and relationships. The MLN 
rules state that the truth of an 
extracted relationship depends on the 
clusters of the objects and relation 
involved. SNE uses a specialized bot-
tom-up clustering algorithm to find 
the semantic clusters for objects and 
relations. This lets SNE scale to dis-
cover thousands of clusters over mil-
lions of tuples in just a few hours.

Semantic parsing. The goal of 
semantic parsing is to map sentences 
to logical forms representing the same 
information. The resulting informa-
tion can be used to build a medical KB 
from PubMed abstracts, infer the 
meaning of a news article, or answer 
questions from an encyclopedia entry. 
Unsupervised semantic parsing31 
learns to map dependency trees from 
sentences to their logical forms with-
out any explicitly annotated data. The 
USP system does this by recursively 
clustering expressions (lambda 
forms) with similar subexpressions. 
The MLN for this includes four rules: 
one to cluster expressions into “core 
forms,” and three to cluster their 

arguments into “argument forms” of 
some type and number. A clustering is 
more probable if expressions in the 
same cluster tend to have the same 
number of subexpressions as each 
other and those subexpressions are in 
the same clusters. As with SNE, USP 
uses a clustering algorithm to learn 
and reason more efficiently.

Extensions
Beyond the capabilities described 
here, Markov logic has been extended 
in a variety of ways to satisfy addi-
tional properties or accommodate 
different domains.

For decision theoretic problems, we 
can extend MLNs to Markov logic deci-
sion networks (MLDNs) by attaching a 
utility to each formula as well as a 
weight.22 The utility of a world is the 
sum of the utilities of its satisfied for-
mulas. The optimal decision is the set-
ting of the action predicates that jointly 
maximizes expected utility.

Domains with continuous as well as 
discrete variables can be handled by  
hybrid Markov logic networks (HMLNs).37  
HMLNs allow numeric properties of 
objects as nodes, in addition to Boolean 
ones, and numeric terms as features, in 
addition to logical formulas. For exam-
ple, to reason about distances, we can 
introduce the numeric property 
Distance(x, y). To state that a car should 
be centered in a lane, we can add terms 
such as:

Car(c)∧LeftLine(l) ∧RightLine(r)  
 ⇒ −(Dist(c, l)−Dist(c, r) )2

When c is a car, l is the left lane bound-
ary, and r is the right lane boundary, this 
term penalizes differences between the 
distance to the left and right boundar-
ies. Inference algorithms for HMLNs 
combine ideas from satisfiability testing, 
slice-sampling MCMC, and numerical 
optimization. Weight learning algo-
rithms are straightforward extensions 
of ones for MLNs.

Markov logic can be extended to infi-
nite domains using Gibbs measures, 
the infinite-dimensional extension of 
Markov networks.36 An MLN in an infi-
nite domain is locally finite if each 
ground atom appears in a finite num-
ber of ground formulas. Local finite-
ness guarantees the existence of a 
probability measure; when the 

The goal of 
semantic parsing  
is to map sentences 
to logical forms 
representing the 
same information. 
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The oldest MLN toolkit is 
Alchemy,17 currently in version 2. 
Compared to other toolkits, Alchemy 
offers the widest variety of algorithms, 
such as multiple methods for genera-
tive and discriminative weight learn-
ing, structure learning, and marginal 
and MAP inference. Tuffy25 offers a 
subset of Alchemy’s features but 
obtains greater scalability by using a 
database to keep track of groundings. 
Tuffy is the basis of DeepDive,26 a sys-
tem for information extraction, inte-
gration, and prediction built on 
Markov logic. Other implementations 
of Markov logic include Markov the-
beast33 and RockIt.27

When applying Markov logic to new 
problems, it is usually best to start with 
a simple model on a small amount of 
data. High-arity predicates and formu-
las may have a large number of ground-
ings, resulting in large models, high 
memory use, and slow inference. It is 
important to determine which model-
ing choices are most important for 
making accurate predictions and how 
expensive they are. Lifted inference 
techniques or customized grounding 
or inference methods can help good 
models scale to larger data.

When choosing the MLN structure, 
domain knowledge about the relevant 
relationships is a good place to start. 
When such knowledge is available, it is 
usually better to use it than to learn the 
structure from scratch. As with other 
knowledge engineering problems, 
there are often several ways to repre-
sent the same knowledge, and some 
representations may work better than 
others. For example, a relationship 
between smoking and cancer could be 
represented as equivalence (Smokes(A) 
⇔ Cancer(A) ), implication (Smokes(A) ⇒ 
Cancer(A) and Cancer(A) ⇒ Smokes(A) ), 
or conjunction (Smokes(A) ∧ Cancer(A) 
and ¬Smokes(A) ∧ ¬Cancer(A) ).

Conclusion and Directions  
for Future Research
Markov logic offers a simple yet powerful 
representation for AI problems in many 
domains. As it generalizes first-order 
logic, Markov logic can easily model the 
full relational structure present in many 
problems, such as multiple relations and 
attributes of different types and arities, 
relational concepts such as transitivity, 
and background knowledge in first-order 

interactions are not too strong, the 
measure is unique as well. Nonunique 
MLNs may still be useful for model-
ing large systems with strong interac-
tions, such as social networks with 
strong word-of-mouth effects. In such 
cases, we can analyze the different 
“phases” of a nonunique MLN and 
define a satisfying measure to reason 
about entailment.

Recursive Markov logic networks or 
recursive random fields (RRFs)19 extend 
MLNs to multiple layers by replacing 
the logical formulas with MLNs, which 
can themselves have nested MLNs as 
features, for as many levels or layers as 
necessary. RRFs can compactly repre-
sent distributions such as noisy DNF, 
rules with exceptions, and m-of-all 
quantifiers. RRFs also allow more flexi-
bility in revising or learning first-order 
representations through weight learn-
ing. An RRF can be seen as a type of 
deep neural network, in which the node 
activation function is exponential and 
the network is trained to maximize the 
joint likelihood of its input. In other 
ways, an RRF resembles a deep 
Boltzmann machine, but with no hid-
den variables to sum out.

Tractable Markov logic (TML)24 is a 
probabilistic description logic where 
inference time is linear for all mar-
ginal, conditional, and MAP queries. 
TML defines objects in terms of class 
and part hierarchies, and allows 
objects to have probabilistic attri-
butes, probabilistic relations between 
their subparts, and probabilistic exis-
tence. Tractability is ensured by hav-
ing a direct mapping between the 
structure of the KB and the computa-
tion of its partition function: each split 
of a class into subclasses corresponds 
to a sum, and each split of a part into 
subparts corresponds to a product.

Getting Started with Markov Logic
If you would like to try out Markov logic 
for yourself, there are several open 
source software packages for learning or 
reasoning with MLNs. In some cases, 
software for learning and reasoning 
with Markov networks or conditional 
random fields can also be used; how-
ever, the task of translating from an 
MLN to a ground Markov network is left 
to you, and standard algorithms do not 
exploit the structure and symmetries 
present in MLNs.

When choosing 
the MLN structure, 
domain knowledge 
about the relevant 
relationships is  
a good place  
to start.
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logic. And as it generalizes probabilistic 
graphical models, Markov logic can effi-
ciently represent uncertainty in the con-
cepts, attributes, relationships, among 
others required by most AI applications.

For future research, one of the most 
important directions is improving the 
efficiency of inference. Lifted inference 
algorithms obtain exponential speed-
ups by exploiting relational symme-
tries, but can fail when these 
symmetries are broken by evidence or 
more complex structures. Tractable 
Markov logic guarantees efficient infer-
ence but constrains model structure. 
More research is needed to make rea-
soning work well in a wider range of 
models. Because most learning meth-
ods rely on inference, this will lead to 
more reliable learning methods as well.

A second key direction is enriching 
the representation itself. Markov 
logic is built on first-order logic, 
which is not always the best way to 
compactly encode knowledge, even 
in logical domains. For example, con-
cepts such as “every person has at 
least five friends” are difficult to 
express with standard first-order con-
nectives and quantifiers. Markov logic 
has been extended to handle decision 
theory, continuous variables, and 
more. Some new applications may 
require new extensions.

We hope that Markov logic will be 
of use to AI researchers and practitio-
ners who wish to have the full spec-
trum of logical and statistical 
inference and learning techniques at 
their disposal, without having to 
develop every piece themselves. We 
also hope that Markov logic will 
inspire development of even richer 
representations and more powerful 
algorithms to further integrate and 
unify diverse AI approaches and 
applications. More details on Markov 
logic and its applications can be 
found in Domingos and Lowd.7
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