
74 COMMUNICATIONS OF THE ACM | JULY 2019 | VOL. 62 | NO. 7

review articles

To handle the complexity and uncer-
tainty present in most real-world prob-
lems, we need AI that is both logical and
statistical, integrating first-order logic
and graphical models. One or the other

FOR MANY YEARS, the two dominant paradigms in
artificial intelligence (AI) have been logical AI and
statistical AI. Logical AI uses first-order logic and
related representa tions to capture complex
relationships and knowledge about the world.
However, logic-based approaches are often too brittle
to handle the uncertainty and noise pres ent in many
applications. Statistical AI uses probabilistic
representations such as probabilistic graphical
models to capture uncertainty. However, graphical
models only represent distributions over
propositional universes and must be customized to
handle relational domains. As a result, expressing
complex concepts and relationships in graphical models
is often difficult and labor-intensive.

Unifying
Logical and
Statistical AI
with
Markov Logic

DOI:10.1145/3241978

Markov logic can be used as a general
framework for joining logical and statistical AI.

BY PEDRO DOMINGOS AND DANIEL LOWD

 key insights
 ˽ Intelligent systems must be able to handle

the complexity and uncertainty of the real
world. Markov logic enables this by unifying
first-order logic and probabilistic graphical
models into a single representation. Many
deep architectures are instances of
Markov logic.

 ˽ A extensive suite of learning and
inference algorithms for Markov logic has
been developed, along with open source
implementations like Alchemy.

 ˽ Markov logic has been applied to natural
language understanding, information
extraction and integration, robotics,
social network analysis, computational
biology, and many other areas.

http://dx.doi.org/10.1145/3241978

JULY 2019 | VOL. 62 | NO. 7 | COMMUNICATIONS OF THE ACM 75

I
M

A
G

E
 B

Y
 G

U
Z

E
L

 K
H

U
Z

H
I

N
A

by itself cannot provide the minimum
functionality needed to support the full
range of AI applications. Further, the
two need to be fully integrated, and are
not simply provided alongside each oth-
er. Most applications require simulta-
neously the expressiveness of first-order
logic and the robustness of probability,
not just one or the other. Unfortunately,
the split between logical and statistical
AI runs very deep. It dates to the earliest
days of the field, and continues to be
highly visible today. It takes a different
form in each subfield of AI, but it is om-
nipresent. Table 1 shows examples of
this. In each case, both the logical and
the statistical approaches contribute
something important. This justifies the
abundant research on each of them, but
also implies that ultimately a combina-
tion of the two is required.

Markov logic7 is a simple yet powerful
generalization of first-order logic and
probabilistic graphical models, which
allows it to build on and integrate the
best approaches from both logical and
statistical AI. A Markov logic network
(MLN) is a set of weighted first-order for-
mulas, viewed as templates for con-
structing Markov networks. This yields a
well-defined probability distribution in
which worlds are more likely when they
satisfy a higher-weight set of ground for-
mulas. Intuitively, the magnitude of the
weight corresponds to the relative
strength of its formula; in the infinite-
weight limit, Markov logic reduces to
first-order logic. Weights can be set by
hand or learned automatically from
data. Algorithms for learning or revising
formulas from data have also been
developed. Inference algorithms for

Markov logic combine ideas from prob-
abilistic and logical inference, such as
Markov chain Monte Carlo, belief propa-
gation, satisfiability, and resolution.

Markov logic has already been used to
efficiently develop state-of-the-art mod-
els for many AI problems, such as collec-
tive classification, link prediction,
ontology mapping, knowledge base
refine ment, and semantic parsing in
application areas such as the Web,
social networks, molecular biology,
information extraction, and others.
Markov logic makes solving new prob-
lems easier by offering a simple frame-
work for representing well-defined
probability distributions over uncer-
tain, relational data. Many existing
approaches can be described by a few
weighted formulas, and multiple
approaches can be combined by

76 COMMUNICATIONS OF THE ACM | JULY 2019 | VOL. 62 | NO. 7

review articles

Deep learning methods9 have led to
competitive or dominant approaches in
a growing number of problems. Deep
learning fits complex, nonlinear func-
tions directly from data. For domains
where we know something about the
problem structure, MLNs and other
graphical models make it easier to cap-
ture background knowledge about the
domain, sometimes specifying competi-
tive models without having any training
data at all. Due to their complementary
strengths, combining deep learning
with graphical models is an ongoing
area of research.

First-Order Logic
A first-order knowledge base (KB) is a set
of sentences or formulas in first-order
logic. Formulas are constructed using
four types of symbols: constants, vari-
ables, functions, and predicates.
Constant symbols represent objects in
the domain of interest (for example,
people: Anna, Bob, and Chris). Variable
symbols range over the objects in the
domain. Function symbols (MotherOf)
represent mappings from tuples of
objects to objects. Predicate symbols
represent relations among objects in
the domain (Friends) or attributes of
objects (Smokes). An interpretation speci-
fies which objects, functions, and rela-
tions in the domain are represented by
which symbols.

A term is any expression representing
an object in the domain. It can be a con-
stant, a variable, or a function applied to
a tuple of terms. For example, Anna, x,
and GreatestCommonDivisor(x, y) are
terms. An atomic formula or atom is a
predicate symbol applied to a tuple of
terms (for example, Friends(x,
MotherOf(Anna))). Formulas are recur-
sively constructed from atomic formu-
las using logical connectives and
quantifiers. If F1 and F2 are formulas,
the following are also formulas: ¬F1
(negation), which is true if F1 is false; F1 ∧
F2 (conjunction), which is true if both F1
and F2 are true; F1 ∨ F2 (disjunction),
which is true if F1 or F2 is true; F1 ⇒ F2
(implication), which is true if F1 is false or
F2 is true; F1 ⇔ F2 (equivalence), which is
true if F1 and F2 have the same truth value;
∀x F1 (universal quantification), which is
true if F1 is true for every object x in the
domain; and ∃x F1 (existential quantifi-
cation), which is true if F1 is true for at
least one object x in the domain.

including all of the relevant formulas.
Many algorithms, as well as sample
datasets and applications, are available
in the open source Alchemy system17
(alchemy.cs.washington.edu).

In this article, we describe Markov
logic and its algorithms, and show
how they can be used as a general
framework for combining logical and
statistical AI. Before presenting back-
ground and details on Markov logic,
we first discuss how it relates to other
methods in AI.

Markov logic is the most widely used
approach to unifying logical and statis-
tical AI, but this is an active research
area, and there are many others (see
Kimmig et al.14 for a recent survey with
many examples). Most approaches can
be roughly categorized as either extend-
ing logic programming languages (for
example, Prolog) to handle uncer-
tainty, or extending probabilistic
graphical models to handle relational
structure. Many of these model classes
can also be represented efficiently as
MLNs (see Richardson and Domingos32
for a discussion of early approaches to
statistical relational AI and how they
relate to Markov logic). In recent years,
most work on statistical relational AI
has assumed a parametric factor (par-
factor)29 representation which is simi-
lar to the weighted formulas in an
MLN. Probabilistic soft logic (PSL)1

uses weighted formulas like Markov
logic, but with a continuous relaxation
of the variables in order to reason effi-
ciently. In some cases, PSL can be
viewed as Markov logic with a particular
choice of approximate inference algo-
rithm. One limitation of PSL’s degree-
of-satisfaction semantics is that more
evidence does not always make an event
more likely; many weak sources of evi-
dence do not combine to produce
strong evidence, even when the sources
are independent.

Probabilistic programming28 is
an other paradigm for defining and rea-
soning with rich, probabilistic models.
Probabilistic programming is a good fit
for problems where the data is gener-
ated by a random process, and the pro-
cess can be described as the execution
of a procedural program with random
choices. Not every domain is well-suited
to this approach; for example, we may
wish to describe or predict the behavior
of people in a social network without
modeling the complete evolution of that
network. Inference methods for proba-
bilistic programming languages work
backwards from the data to reason about
the processes that generate the data
and compute conditional probabilities
of other events. Probabilistic graphical
models perform similar reasoning, but
typically have more structure to exploit
for reasoning at scale.

Table 1. Examples of logical and statistical AI.

Field Logical approach Statistical approach

Knowledge representation First-order logic Graphical models

Automated reasoning Satisfiability testing Markov chain Monte
Carlo

Machine learning Inductive logic programming Neural networks

Planning Classical planning Markov decision
processes

Natural language processing Definite clause grammars Probabilistic
context-free
grammars

Table 2. Example of a first-order knowledge base and MLN.

English First-order logic Weight

“Friends of friends are friends.” ∀x∀y∀z Fr(x, y) ∧ Fr(y, z) ⇒ Fr(x, z) 0.7
“Friendless people smoke.” ∀x (¬(∃y Fr(x, y)) ⇒ Sm(x)) 2.3
“Smoking causes cancer.” ∀x Sm(x) ⇒ Ca(x) 1.5
“If two people are friends, then
 either both smoke or neither does.”

∀x∀y Fr(x, y) ⇒ (Sm(x) ⇔ Sm(y)) 1.1

Fr() is short for Friends(), Sm() for Smokes(), and Ca() for Cancer().

JULY 2019 | VOL. 62 | NO. 7 | COMMUNICATIONS OF THE ACM 77

review articles

Parentheses may be used to enforce pre-
cedence. A positive literal is an atomic for-
mula; a negative literal is a negated atomic
formula. The formulas in a KB are implic-
itly conjoined, and thus a KB can be
viewed as a single large formula. A ground
term is a term containing no variables. A
ground atom is an atomic formula all of
whose arguments are ground terms. A
grounding of a predicate or formula is a
replacement of all of its arguments by con-
stants (or functions all of whose argu-
ments are constants or other functions,
recursively, but we consider only the
case of constants in this article).

A possible world (along with an inter-
pretation) assigns a truth value to each
possible ground atom.

A formula is satisfiable if and only
if there is at least one world in which it
is true.

Determining if a formula is satisfi-
able is only semidecidable. Because of
this, knowledge bases are often con-
structed using a restricted subset of
first-order logic with more desirable
properties.

Table 2 shows a simple KB. Notice
that although these formulas may be
typically true in the real world, they
are not always true. In most domains, it
is very difficult to come up with non-
trivial formulas that are always true,
and such formulas capture only a frac-
tion of the relevant knowledge. Thus,
despite its expressiveness, pure first-
order logic has limited applicability to
practical AI problems.

Many ad hoc extensions to address
this have been proposed. In the more
limited case of propositional logic, the
problem is well solved by probabilistic
graphical models such as Markov net-
works, as we describe next. We will later
show how to generalize these models to
the first-order case.

Markov Networks
A Markov network (also known as
Markov random field) represents a joint
probability distribution over variables
X = {X1, X2, …, Xn} as a product of factors
(also known as potential functions):

 (1)

where each φC is a nonnegative, real-
valued function defined over variables
XC ⊂ X and Z is a normalization con-
stant known as the partition function.

For convenience, we also define Φ(x) as
the unnormalized probability distribu-
tion, the product of all potential func-
tions. A Markov network can be
represented as a graph with one node
per variable and an undirected edge
between any two variables that appear
together in the same factor.

Markov networks are often conve-
niently represented as log-linear models,
with each potential function replaced
by an exponentiated weighted sum of
features of the state, leading to

() ()

= =
∑1

exp j j
j

P X x w f x
Z

 (2)

A feature may be any real-valued func-
tion of the state. We will focus on
binary features, fj (x) ∈  {0, 1}, typi-
cally indicating if the variables are in
some particular state or satisfy some
logical expression.

Markov networks have been suc-
cessfully applied to many problems in
AI, such as stereo vision, natural lan-
guage translation, information extrac-
tion, machine reading, social network
analysis, and more. However, Markov
networks only represent probabil-
ity distributions over propositional
domains with a fixed set of variables.
There is no standard language for
extending Markov networks to vari-
able-sized domains, such as social net-
works over different numbers of people
or documents with different numbers
of words. As a result, applying Markov
networks to these problems is a labor-
intensive process requiring custom
implementations.

Markov Logic
A first-order KB can be seen as a set of
hard constraints on the set of possible
worlds: if a world violates even one for-
mula, it has zero probability. The basic

idea in Markov logic is to soften these
constraints: when a world violates one
formula in the KB, it is less probable,
but not impossible. The fewer formulas
a world violates, the more probable it is.
Each formula has an associated weight
(for example, see Table 2) that reflects
how strong a constraint it is: the higher
the weight, the greater the difference in
log probability between a world that sat-
isfies the formula and one that does not,
other things being equal.

Definition 1.32 A Markov logic network
(MLN) L is a set of pairs (Fi, wi), where Fi is a
formula in first-order logic and wi is a real
number. Together with a finite set of con-
stants C = {c1, c2, …, c|C|}, it defines a
Markov network ML, C (Equations 1 and 2)
as follows:

ML, C contains one random variable
for each possible grounding of each atom
appearing in L. The value of the variable
is true if the ground atom is true and
false otherwise.

ML, C contains one feature for each pos-
sible grounding of each formula Fi in L.
The value of this feature is 1 if the ground
formula is true and 0 otherwise. The
weight of the feature is the wi associated
with Fi in L.

In the graph corresponding to ML, C,
there is a node for each grounding of
each atom, and an edge appears between
two nodes if the corresponding ground
atoms appear together in at least one
grounding of one formula in L.

For example, an MLN containing the
formulas ∀x Smokes(x) ⇒ Cancer(x)
(smoking causes cancer) and ∀x∀y
Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y))
(friends have similar smoking habits)
applied to the constants Anna and Bob (or
A and B for short) yields the ground
Markov network in Figure 1. Its features

Figure 1. Ground Markov network obtained by applying an MLN containing the formulas
∀x Smokes(x) ⇒ Cancer(x) and ∀x∀y Friends(x, y) ⇒ (Smokes(x) ⇔ Smokes(y)) to the
constants Anna(A) and Bob(B).

Cancer(A)

Smokes(A)Friends(A,A)

Friends(B,A)

Smokes(B)

Friends(A,B)

Cancer(B)

Friends(B,B)

78 COMMUNICATIONS OF THE ACM | JULY 2019 | VOL. 62 | NO. 7

review articles

P(S(A) |R(A)) → 1, recovering the logi-
cal entailment.

Bayesian networks, Markov networks,
and many other propositional models
frequently used in machine learning
and data mining can be stated quite
concisely as MLNs, and combined and
extended simply by adding the corre-
sponding formulas.32 Most significantly,
Markov logic facilitates the modeling of
multi-relational data, where objects are
not independent but are related in
diverse and complex ways. Such repre-
sentations are important for social net-
works, biological networks, natural
language understanding, and more.
Boltzmann machines and the deep
 models based on them are special
cases of Markov networks.

MLN weights can be normalized glob-
ally, as in undirected graphical models,
or locally, as in directed ones. The latter
option enables MLNs to handle vari-
able numbers of objects and irrelevant
objects similar to directed first-order
formalisms (counter to Russell’s34 claim;
see also Domingos6). In practice, even
globally normalized MLNs are quite
robust to these variations, largely
because the number of relations per
object usually varies much less than the
number of objects, and because factors
from irrelevant objects cancel out in
conditional probabilities.

When working with Markov logic,
we typically make three assumptions
about the logical representation: dif-
ferent constants refer to different
objects (unique names), the only
objects in the domain are those repre-
sentable using the constant and func-
tion symbols (domain closure), and
the value of each function for each
tuple of arguments is always a known
constant (known functions). These
assumptions ensure the number of pos-
sible worlds is finite and that the
Markov logic network will give a well-
defined probability distribution. These
assumptions are quite reasonable in
most practical applications, and
greatly simplify the use of MLNs. We
will make these assumptions in most
of the remainder of this article, but
Markov logic can be generalized to
domains where they do not hold, such
as those with infinite objects or con-
tinuous random variables.36,37 Open-
world reasoning methods discussed
by Russell34 can also be applied to

include Smokes(Anna) ⇒ Cancer(Anna).
Notice that, although the two formulas
are false as universally quantified logical
statements, as weighted features of an
MLN they capture valid statistical regu-
larities, and in fact represent a standard
social network model. Notice also that
nodes and links in the social networks
are both represented as nodes in the
Markov network; arcs in the Markov net-
work represent probabilistic dependen-
cies between nodes and links in
the social network (for example, Anna’s
smoking habits depend on her friends’
smoking habits).

An MLN can be viewed as a template
for constructing Markov networks.
From Definition 1 and Equations 1 and
2, the probability distribution over pos-
sible worlds x specified by the ground
Markov network ML, C is given by

() ()
=

= = ∑

1

1
exp

F

i i
i

P X x w n x
Z

 (3)

where F is the number of formulas in
the MLN and ni (x) is the number of
true groundings of Fi in x. As formula
weights increase, an MLN increas-
ingly resembles a purely logical KB,
becoming equivalent to one in the
limit of all infinite weights. When the
weights are positive and finite, and all
formulas are simultaneously satisfi-
able, the satisfying solutions are the
modes of the distribution represented
by the ground Markov network. Most
importantly, Markov logic allows
contradictions between formulas,
which it resolves simply by weighing
the evidence on both sides.

It is interesting to see a simple
example of how Markov logic general-
izes first-order logic. Consider an
MLN containing the single formula ∀x
R(x) ⇒ S(x) with weight w, and C = {A}.
This leads to four possible worlds:
{¬R(A), ¬S(A)}, {¬R(A), S(A)}, {R(A),
¬S(A)}, and {R(A), S(A)}. From
Equation 3 we obtain that P({R(A),
¬S(A)}) = 1/(3ew + 1) and the probabil-
ity of each of the other three worlds is
ew/(3ew + 1). (The denominator is the
partition function Z; see Markov
Networks.) Thus, if w > 0, the effect of
the MLN is to make the world that is
inconsistent with ∀x R(x) ⇒ S(x) less
likely than the other three. From the
probabilities here we obtain that
P(S(A) |R(A)) = 1/(1 + e−w). When w → ∞,

A first-order
knowledge base
can be seen as
a set of hard
constraints on
the set of possible
worlds. The basic
idea in Markov logic
is to soften these
constraints.

JULY 2019 | VOL. 62 | NO. 7 | COMMUNICATIONS OF THE ACM 79

review articles

Markov logic, as Bayesian networks can
be translated into MLNs.

Inference
Given an MLN model, the questions of
interest are answered by performing
inference on it. (For example, “What are
the topics of these Web pages, given the
words on them and the links between
them?”) Because an MLN acts as a tem-
plate for a Markov network, we can
always apply standard Markov network
inference methods on the instantiated
network. However, methods that also
exploit the logical structure in an MLN
can yield tremendous savings in mem-
ory and time. We first provide an over-
view of inference in Markov networks,
and then describe how these methods
can be adapted to take advantage of the
MLN structure.

Markov network inference. The
main inference problem in Markov
networks is computing the probability
of a set of query variables Q given some
evidence E:

() ()
()

()
()

,

,

,
|

, ,

, ,
q eh

eq h

P q e
P Q q E e

P e

q e h Z

q e h Z
′

′ ′

= = =

Φ ′
= =

Φ ′ ′
∑

∑

(4)

where H = X − Q − E denotes the remain-
ing nonquery, nonevidence variables, Φ
is the unnormalized product of poten-
tials from Equation 1, and Zq, e and Ze are
the partition functions of reduced
Markov networks, where the query and
evidence variables have been fixed to
constants. Thus, if we can compute par-
tition functions, then we can answer
arbitrary probabilistic queries.

In general, computing Z or answer-
ing other queries in a Markov network
is #P-complete. When the Markov net-
work has certain structural properties,
such as a tree or tree-like structure,
inference can be done in polynomial
time. For network structures with many
variables and loops, exact inference is
usually intractable and approximate
inference algorithms are used instead.
The two most common approaches to
approximation are to generate random
samples through some random pro-
cess that converges to the true distribu-
tion, or to solve a relaxed problem that
captures as many constraints from the
original as possible. Examples of the
former approach include Markov chain

Monte Carlo (MCMC) and importance
sampling, and examples of the latter
include loopy belief propagation and
variational methods.

Any of these methods could be used
to perform inference in an MLN after
instantiating the ground network, and
many of them have. However, inference
remains challenging in Markov net-
works and even more challenging in
MLNs, which are often very large and
have many loops. Next we will discuss
on one of the most promising infer-
ence methods to date, which can take
advantage of logical structure, perform
exact inference when tractable, and be
relaxed to perform approximate infer-
ence when necessary.

Weighted model counting.
Comput ing the partition function in a
Markov network can be reduced to a
weight ed model counting (WMC)
problem. Weig hted model counting
finds the total weight of all satisfying
assignments to a logical formula F.
Following Chavira and Darwiche,2 we
focus on literal-weighted model count-
ing, in which each literal is assigned a
real-valued weight and the weight of
an assignment is the product of the
weights of its literals.

To represent Z as a WMC problem,
we need each assignment x to receive
weight Φ(x). Suppose each potential φi
(x) evaluates to a constant Θi when a
logical expression Fi is satisfied and 1
otherwise. (If the Markov network is not
already in this form, we can convert it
efficiently.) To define the WMC prob-
lem, for each potential φi, we introduce
a literal Ai with weight Θi. We also intro-
duce a logical formula, Ai ⇔ Fi, so that Ai
is only true when Fi is satisfied. Thus,
the product of the weights of the Ai liter-
als is exactly the product of the original
potential functions.

WMC algorithms can then be used to
solve the problem and compute Z. One
approach is recursive decomposition, in
which we break the WMC problem into
two subproblems, one where some vari-
able xi is fixed to true and one where xi is
fixed to false. This requires exponential
time in the worst case, but WMC algo-
rithms can often exploit problem struc-
ture to solve it much faster in practice.
Another approach is to compile the
model into a logical form where WMC is
tractable, such as d-DNNF, and build an
arithmetic circuit based on it.2 Once

compiled, the arithmetic circuit can be
reused for multiple queries.

Probabilistic theorem proving. WMC
is a natural approach to inference in
MLNs, as MLNs already use a logical
representation for their features. How-
ever, MLNs have additional structure to
exploit: each formula is instantiated
many times with different combinations of
constants. For example, suppose we are
modeling a social network in which each
pair of people is either friends or not.
Before introducing any information
about the individuals, the probability
that any two people are friends must be
the same as any other pair. Lifted infer-
ence exploits these symmetries to reason
efficiently, even on very large domains.29

Probabilistic theorem proving (PTP)8
applies this idea to perform lifted
weighted model counting, so that many
equivalent groundings of the same for-
mula can be counted at once without
instantiating them. As in the proposi-
tional case, lifted WMC can also be per-
formed by compiling the first-order
knowledge base to a (lifted) arithmetic
circuit for repeated querying.5

In some cases, lifted inference lets
us reason efficiently independent of
domain size, so that inferring proba-
bilities over millions of constants and
trillions of ground formulas takes no
longer than reasoning over hundreds.
More often, evidence about individual
constants breaks symmetries, so that
different groundings are no longer
exchangeable. The efficiency gains
from lifting depend on both the struc-
ture of the knowledge base and the
structure of the evidence.

When there is not enough structure
and symmetry to perform inference
exactly, we can replace some of the recur-
sive conditioning steps in PTP with
sampling.8 This leads to an approximate
lifted inference algorithm, where sam-
pling is used to estimate the weighted
count of some of the subformulas.

Learning
Here, we discuss methods for automat-
ically learning weights, refining formu-
las, and constructing new formulas
from data.

Weight learning. In generative
learning, the goal is to learn a joint
pro bability distribution over all
atoms. A standard approach is to
maximize the likelihood of the data

80 COMMUNICATIONS OF THE ACM | JULY 2019 | VOL. 62 | NO. 7

review articles

Either way, we have found it useful to
start by adding all atomic formulas
(single atoms) to the MLN. The weights
of these capture (roughly speaking)
the marginal distributions of the
atoms, allowing the longer formulas to
focus on modeling atom dependen-
cies. To extend this initial model, we
either repeatedly find the best formula
using beam search and add it to the
MLN, or add all “good” formulas of
length l before trying formulas of
length l + 1. Candidate formulas are
formed by adding each predicate
(negated or otherwise) to each current
formula, with all possible combina-
tions of variables, subject to the con-
straint that at least one variable in the
new predicate must appear in the cur-
rent formula. Hand-coded formulas are
also modified by removing predicates.

A wide variety of other methods for
MLN structure learning have been
developed, such as generative learning
with lifted inference,10 discriminative
structure learning,11 gradient boost-
ing,13 and generating formulas using a
Markov network21 or random walks.16
For the special case where MLN for-
mulas define a relational Bayesian net-
work, consistent Bayesian network
structure learning methods can be
extended to consistent structure learn-
ing in the relational setting.35

Applications
MLNs have been used in a wide variety
of applications, often achieving state-
of-the-art performance. Their greatest
strength is their flexibility for defining
rich models in varied domains.

Collective classification. One of the
most common uses of MLNs is for pre-
dicting the labels of interrelated enti-
ties, as in the friends and smoking
example. Applications include labeling
Web pages and predicting protein
function.3 MLNs can also model collec-
tive classification tasks on sequential
data, such as segmenting text for infor-
mation extraction.30

Link prediction. A second common
task is to predict unknown or future
relationships based on known relation-
ships and attributes. Examples include
predicting protein interaction,3 pre-
dicting advising relationships in a com-
puter science department,32 and
predicting work relationships among
directors and actors.20

through gradient-based methods.
Note that we can learn to generalize
from even a single example because
the formula weights are shared across
their many respective groundings.
This is essential when the training
data is a single network, such as the
Web. Given mild assumptions about
the relational dependencies, maxi-
mizing the likelihood (or pseudo-
likelihood) of a sufficiently large
example will recover the parameters
that generated the data.38

For MLNs, the gradient of the log-
likelihood is the difference between
the true formula counts in the data
and the expected counts according to
the model. When learning a generative
probability distribution over all atoms,
even approximating these expecta-
tions tends to be prohibitively expen-
sive or inaccurate due to the large state
space. Instead, we can maximize
pseudo-likelihood, which is the condi-
tional probability of each atom in the
database conditioned on all other
atoms. Computing the pseudo-likeli-
hood and its gradient does not require
inference, and is therefore much
faster. However, the pseudo-likelihood
parameters may lead to poor results
when long chains of inference are
required. In order to combat overfit-
ting, we penalize each weight with a
Gaussian prior, but for simplicity, we
ignore that in what follows.

In many applications, we know a pri-
ori which atoms will be evidence and
which ones will be queried. For these
cases, discriminative learning optimizes
our ability to predict the query atoms Y
given the evidence X. A common
approach is to maximize the conditional
likelihood of Y given X,

() ()1
| exp ,

Y

i i
i Fx

P y x w n x y
Z ∈

=

∑ (5)

where FY is the set of all MLN formulas
with at least one grounding involving a
query atom, and ni (x, y) is the number
of true groundings of the ith formula
involving query atoms. The gradient of
the conditional log-likelihood is

() ()

() ()

() ()

log | ,

| ,

, ,

w i
i

w i
y

i w i

P y x n x y
w

P y x n x y

n x y E n x y

′

∂ =
∂

− ′ ′

 = −

∑ (6)

where the sum is over all possible data-
bases y′, and Pw (y′|x) is P (y′|x) com-
puted using the current weight vector
w = (…, wi, …). In other words, the ith
component of the gradient is simply
the difference between the number of
true groundings of the ith formula in
the data and its expectation according
to the current model.

When computing the expected
counts Ew[ni (x, y′)] is intractable, we
can approximate them using either
the MAP state (that is, the most prob-
able state of y given x) or by averaging
over several samples from MCMC. We
obtain the best results by applying a
version of the scaled conjugate gradi-
ent algorithm. We use a small number
of samples from MCMC to approxi-
mate the gradient and Hessian
matrix, and use the inverse diagonal
Hessian as a preconditioner (see
Lowd and Domingos18 for more
details and results).

MLN weights can also be learned
with a max-margin approach, similar to
structural support vector machines.11

Structure learning. The structure of a
MLN is the set of formulas to which we
attach weights. Although these formulas
are often specified by one or more
experts, such knowledge is not always
accurate or complete. In addition to
learning weights for the provided for-
mulas, we can revise or extend the MLN
structure with new formulas learned
from data. We can also learn the entire
structure from scratch. The inductive
logic programming (ILP) community
has developed many methods for this
purpose.4 ILP algorithms typically
search for rules that have high accu-
racy, or high coverage, among others.
However, because an MLN represents
a probability distribution, much better
results are obtained by using an evalu-
ation function based on pseudo-likeli-
hood.15 Log-likelihood or conditional
log-likelihood are potentially better
evaluation functions, but are much
more expensive to compute.

Most structure learning algorithms
focus on clausal knowledge bases, in
which each formula is a disjunction of
literals (negated or nonnegated
atoms). The classic approach is to
begin with either an empty network or
an existing KB and perform a combi-
natorial search for formulas that
improve the pseudo-likelihood.15

JULY 2019 | VOL. 62 | NO. 7 | COMMUNICATIONS OF THE ACM 81

review articles

Knowledge base mapping, integration,
and refinement. Reasoning about the
world requires combining diverse sources
of uncertain information, such as noisy
KBs. MLNs can easily represent KBs
and soft constraints on the knowledge
they represent: facts and rules in the
knowledge base can be represented
directly as atoms and formulas in the
MLN. Ontology alignment can then be
formulated as a link prediction prob-
lem, predicting which concepts in one
ontology map to which concepts in the
other. MLN formulas enforce structural
similarity, so that related concepts in
one ontology map to similarly related
concepts in the other.23 Similar rules
can be used for knowledge base refine-
ment, automatically detecting and cor-
recting errors in uncertain knowledge
by enforcing consistency among classes
and relations.12

Semantic network extraction (SNE).
A semantic network is a type of KB con-
sisting of a collection of concepts and
relationships among them. The SNE39
system uses Markov logic to define a
probability distribution over semantic
networks. The MLN entities are the
relation and object symbols from
extracted tuples and the cluster
assignments that group them into
concepts and relationships. The MLN
rules state that the truth of an
extracted relationship depends on the
clusters of the objects and relation
involved. SNE uses a specialized bot-
tom-up clustering algorithm to find
the semantic clusters for objects and
relations. This lets SNE scale to dis-
cover thousands of clusters over mil-
lions of tuples in just a few hours.

Semantic parsing. The goal of
semantic parsing is to map sentences
to logical forms representing the same
information. The resulting informa-
tion can be used to build a medical KB
from PubMed abstracts, infer the
meaning of a news article, or answer
questions from an encyclopedia entry.
Unsupervised semantic parsing31
learns to map dependency trees from
sentences to their logical forms with-
out any explicitly annotated data. The
USP system does this by recursively
clustering expressions (lambda
forms) with similar subexpressions.
The MLN for this includes four rules:
one to cluster expressions into “core
forms,” and three to cluster their

arguments into “argument forms” of
some type and number. A clustering is
more probable if expressions in the
same cluster tend to have the same
number of subexpressions as each
other and those subexpressions are in
the same clusters. As with SNE, USP
uses a clustering algorithm to learn
and reason more efficiently.

Extensions
Beyond the capabilities described
here, Markov logic has been extended
in a variety of ways to satisfy addi-
tional properties or accommodate
different domains.

For decision theoretic problems, we
can extend MLNs to Markov logic deci-
sion networks (MLDNs) by attaching a
utility to each formula as well as a
weight.22 The utility of a world is the
sum of the utilities of its satisfied for-
mulas. The optimal decision is the set-
ting of the action predicates that jointly
maximizes expected utility.

Domains with continuous as well as
discrete variables can be handled by
hybrid Markov logic networks (HMLNs).37
HMLNs allow numeric properties of
objects as nodes, in addition to Boolean
ones, and numeric terms as features, in
addition to logical formulas. For exam-
ple, to reason about distances, we can
introduce the numeric property
Distance(x, y). To state that a car should
be centered in a lane, we can add terms
such as:

Car(c)∧LeftLine(l) ∧RightLine(r)
 ⇒ −(Dist(c, l)−Dist(c, r))2

When c is a car, l is the left lane bound-
ary, and r is the right lane boundary, this
term penalizes differences between the
distance to the left and right boundar-
ies. Inference algorithms for HMLNs
combine ideas from satisfiability testing,
slice-sampling MCMC, and numerical
optimization. Weight learning algo-
rithms are straightforward extensions
of ones for MLNs.

Markov logic can be extended to infi-
nite domains using Gibbs measures,
the infinite-dimensional extension of
Markov networks.36 An MLN in an infi-
nite domain is locally finite if each
ground atom appears in a finite num-
ber of ground formulas. Local finite-
ness guarantees the existence of a
probability measure; when the

The goal of
semantic parsing
is to map sentences
to logical forms
representing the
same information.

82 COMMUNICATIONS OF THE ACM | JULY 2019 | VOL. 62 | NO. 7

review articles

The oldest MLN toolkit is
Alchemy,17 currently in version 2.
Compared to other toolkits, Alchemy
offers the widest variety of algorithms,
such as multiple methods for genera-
tive and discriminative weight learn-
ing, structure learning, and marginal
and MAP inference. Tuffy25 offers a
subset of Alchemy’s features but
obtains greater scalability by using a
database to keep track of groundings.
Tuffy is the basis of DeepDive,26 a sys-
tem for information extraction, inte-
gration, and prediction built on
Markov logic. Other implementations
of Markov logic include Markov the-
beast33 and RockIt.27

When applying Markov logic to new
problems, it is usually best to start with
a simple model on a small amount of
data. High-arity predicates and formu-
las may have a large number of ground-
ings, resulting in large models, high
memory use, and slow inference. It is
important to determine which model-
ing choices are most important for
making accurate predictions and how
expensive they are. Lifted inference
techniques or customized grounding
or inference methods can help good
models scale to larger data.

When choosing the MLN structure,
domain knowledge about the relevant
relationships is a good place to start.
When such knowledge is available, it is
usually better to use it than to learn the
structure from scratch. As with other
knowledge engineering problems,
there are often several ways to repre-
sent the same knowledge, and some
representations may work better than
others. For example, a relationship
between smoking and cancer could be
represented as equivalence (Smokes(A)
⇔ Cancer(A)), implication (Smokes(A) ⇒
Cancer(A) and Cancer(A) ⇒ Smokes(A)),
or conjunction (Smokes(A) ∧ Cancer(A)
and ¬Smokes(A) ∧ ¬Cancer(A)).

Conclusion and Directions
for Future Research
Markov logic offers a simple yet powerful
representation for AI problems in many
domains. As it generalizes first-order
logic, Markov logic can easily model the
full relational structure present in many
problems, such as multiple relations and
attributes of different types and arities,
relational concepts such as transitivity,
and background knowledge in first-order

interactions are not too strong, the
measure is unique as well. Nonunique
MLNs may still be useful for model-
ing large systems with strong interac-
tions, such as social networks with
strong word-of-mouth effects. In such
cases, we can analyze the different
“phases” of a nonunique MLN and
define a satisfying measure to reason
about entailment.

Recursive Markov logic networks or
recursive random fields (RRFs)19 extend
MLNs to multiple layers by replacing
the logical formulas with MLNs, which
can themselves have nested MLNs as
features, for as many levels or layers as
necessary. RRFs can compactly repre-
sent distributions such as noisy DNF,
rules with exceptions, and m-of-all
quantifiers. RRFs also allow more flexi-
bility in revising or learning first-order
representations through weight learn-
ing. An RRF can be seen as a type of
deep neural network, in which the node
activation function is exponential and
the network is trained to maximize the
joint likelihood of its input. In other
ways, an RRF resembles a deep
Boltzmann machine, but with no hid-
den variables to sum out.

Tractable Markov logic (TML)24 is a
probabilistic description logic where
inference time is linear for all mar-
ginal, conditional, and MAP queries.
TML defines objects in terms of class
and part hierarchies, and allows
objects to have probabilistic attri-
butes, probabilistic relations between
their subparts, and probabilistic exis-
tence. Tractability is ensured by hav-
ing a direct mapping between the
structure of the KB and the computa-
tion of its partition function: each split
of a class into subclasses corresponds
to a sum, and each split of a part into
subparts corresponds to a product.

Getting Started with Markov Logic
If you would like to try out Markov logic
for yourself, there are several open
source software packages for learning or
reasoning with MLNs. In some cases,
software for learning and reasoning
with Markov networks or conditional
random fields can also be used; how-
ever, the task of translating from an
MLN to a ground Markov network is left
to you, and standard algorithms do not
exploit the structure and symmetries
present in MLNs.

When choosing
the MLN structure,
domain knowledge
about the relevant
relationships is
a good place
to start.

JULY 2019 | VOL. 62 | NO. 7 | COMMUNICATIONS OF THE ACM 83

review articles

logic. And as it generalizes probabilistic
graphical models, Markov logic can effi-
ciently represent uncertainty in the con-
cepts, attributes, relationships, among
others required by most AI applications.

For future research, one of the most
important directions is improving the
efficiency of inference. Lifted inference
algorithms obtain exponential speed-
ups by exploiting relational symme-
tries, but can fail when these
symmetries are broken by evidence or
more complex structures. Tractable
Markov logic guarantees efficient infer-
ence but constrains model structure.
More research is needed to make rea-
soning work well in a wider range of
models. Because most learning meth-
ods rely on inference, this will lead to
more reliable learning methods as well.

A second key direction is enriching
the representation itself. Markov
logic is built on first-order logic,
which is not always the best way to
compactly encode knowledge, even
in logical domains. For example, con-
cepts such as “every person has at
least five friends” are difficult to
express with standard first-order con-
nectives and quantifiers. Markov logic
has been extended to handle decision
theory, continuous variables, and
more. Some new applications may
require new extensions.

We hope that Markov logic will be
of use to AI researchers and practitio-
ners who wish to have the full spec-
trum of logical and statistical
inference and learning techniques at
their disposal, without having to
develop every piece themselves. We
also hope that Markov logic will
inspire development of even richer
representations and more powerful
algorithms to further integrate and
unify diverse AI approaches and
applications. More details on Markov
logic and its applications can be
found in Domingos and Lowd.7

Acknowledgments
This research was partly supported by
ARO grants W911NF-08-1-0242 and
W911NF-15-1-0265, DARPA contracts
FA8750-05-2-0283, FA8750-07-D-0185,
FA8750-16-C-0158, HR0011-06-C-0025,
HR0011-07-C-0060, NBCH-D030010 and
AFRL contract FA8750-13-2-0019, NSF
grants IIS-0534881 and IIS-0803481,
ONR grants N-00014-05-1-0313,

N00014-08-1-0670, N00014-12-1-0312
and N00014-16-1-2697, an NSF
CAREER Award (first author), a Sloan
Research Fellowship (first author),
an NSF Graduate Fellowship (second
author) and a Microsoft Research
Graduate Fellowship (second author).
The views and conclusions contained
in this document are those of the
authors and should not be interpreted
as necessarily representing the official
policies, either expressed or implied,
of ARO, DARPA, AFRL, NSF, ONR, or
the United States Government.

References

1. Bach, S., Broecheler, M., Huang, B., Getoor,
L. Hinge-loss Markov random fields and probabilistic
soft logic. J. Mach. Learn. Res. 18, 109 (2017),
1–67.

2. Chavira, M., Darwiche, A. On probabilistic inference
by weighted model counting. Artif. Intell. 6–7, 172
(2008), 772–799.

3. Davis, J., Domingos, P. Deep transfer via second-order
Markov logic. In Proceedings of the 26th International
Conference on Machine Learning. ACM Press,
Montréal, Canada.

4. De Raedt, L. Logical and Relational Learning. Springer,
Berlin, Germany, 2008.

5. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J.,
De Raedt, L. Lifted probabilistic inference by first-
order knowledge compilation. In Proceedings of
the 22nd International Joint Conference on Artificial
Intelligence (IJCAI) (2011). Barcelona, Spain.

6. Domingos, P., Kersting, K., Mooney, R., Shavlik, J. What
about statistical relational learning? Commun. ACM
58, 12 (2015), 8.

7. Domingos, P., Lowd, D. Markov Logic: An Interface Layer
for AI. Morgan & Claypool, San Rafael, CA, 2009.

8. Gogate, V., Domingos, P. Probabilistic theorem
proving. In Proceedings of the 27th Conference
on Uncertainty in Artificial Intelligence (UAI-11).
AUAI Press, Barcelona, Spain, 2011.

9. Goodfellow, I., Bengio, Y., Courville, A. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

10. Van Haaren, J., Van den Broeck, G., Meert, W., Davis, J.
Lifted generative learning of Markov logic networks.
Mach. Learn, 103 (2015), 27–55.

11. Huynh, T., Mooney, R. Discriminative structure and
parameter learning for Markov logic networks. In
Proceedings of the 25th International Conference on
Machine Learning (2008). ACM Press, Helsinki, Finland,
416–423.

12. Jiang, S., Lowd, D., Dou, D. Ontology matching
with knowledge rules. In Proceedings of the 26th
International Conference on Database and Expert
Systems Applications (DEXA 2015) (2015). Springer,
Valencia, Spain.

13. Khot, T., Natarajan, S., Kersting, K., Shavlik, J. Gradient-
based boosting for statistical relational learning: the
Markov logic network and missing data cases. Mach.
Learn, 100 (2015), 75–100.

14. Kimmig, A., Mihalkova, L., Getoor, L. Lifted graphical
models: a survey. Mach. Learn. (1), 99 (2015), 1–45.

15. Kok, S., Domingos, P. Learning the structure
of Markov logic networks. In Proceedings
of the 22nd International Conference on Machine
Learning (2005). ACM Press, Bonn, Germany, 441–448.

16. Kok, S., Domingos, P. Learning Markov logic networks
using structural motifs. In Proceedings of the 27th
International Conference on Machine Learning (2010).
ACM Press, Haifa, Israel.

17. Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H.,
Lowd, D., Domingos, P. The Alchemy system for
statistical relational AI. Technical Report. Department
of Computer Science and Engineering, University
of Washington, Seattle, WA, 2000. http://alchemy.
cs.washington.edu.

18. Lowd, D., Domingos, P. Efficient weight learning for
Markov logic networks. In Proceedings of the 11th
European Conference on Principles and Practice of
Knowledge Discovery in Databases (2007). Springer,
Warsaw, Poland, 200–211.

19. Lowd, D., Domingos, P. Recursive random fields. In
Proceedings of the 20th International Joint Conference
on Artificial Intelligence (2007). AAAI Press,
Hyderabad, India, 950–955.

20. Mihalkova, L., Huynh, T., Mooney, R.J. Mapping and
revising Markov logic networks for transfer learning.
In Proceedings of the 22nd AAAI Conference on
Artificial Intelligence (2007). AAAI Press, Vancouver,
Canada, 608–614.

21. Mihalkova, L., Mooney, R. Bottom-up learning of
Markov logic network structure. In Proceedings
of the 24th International Conference on Machine
Learning (2007). ACM Press, Corvallis, OR, 625–632.

22. Nath, A., Domingos, P. A language for relational
decision theory. In Proceedings of the International
Workshop on Statistical Relational Learning (2009).
Leuven, Belgium.

23. Niepert, M., Meilicke, C., Stuckenschmidt, H.
A probabilistic-logical framework for ontology
matching. In Proceedings of the 24th AAAI Conference
on Artificial Intelligence (2010). AAAI Press.

24. Niepert, M., Domingos, P. Learning and inference in
tractable probabilistic knowledge bases. In Proceedings
of the 31st Conference on Uncertainty in Artificial
Intelligence (2015). AUAI Press, Brussels, Belgium.

25. Niu, F., Ré, C., Doan, A., Shavlik, J. Tuffy: scaling up
statistical inference in Markov logic networks using an
RDBMS. PVLDB 4 (2011), 373–384.

26. Niu, F., Zhang, C., Ré, C., Shavlik, J. DeepDive: web-
scale knowledge-base construction using statistical
learning and inference. In VLDS, 2012.

27. Noessner, J., Niepert, M., Stuckenschmidt, H. RockIt:
exploiting parallelism and symmetry for MAP inference
in statistical relational models. In Proceedings of the
27th AAAI Conference on Artificial Intelligence (2013).
AAAI Press, Bellevue, WA.

28. Pfeffer, A. Practical Probabilistic Programming.
Manning Publications, 2016

29. Poole, D. First-order probabilistic inference. In
Proceedings of the 18th International Joint Conference
on Artificial Intelligence (2003). Morgan Kaufmann,
Acapulco, Mexico, 985–991.

30. Poon, H., Domingos, P. Joint inference in information
extraction. In Proceedings of the 22nd AAAI
Conference on Artificial Intelligence (2007).
AAAI Press, Vancouver, Canada, 913–918.

31. Poon, H., Domingos, P. Unsupervised semantic
parsing. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing
(2009). ACL, Singapore.

32. Richardson, M., Domingos, P. Markov logic networks.
Mach. Learn. 62 (2006), 107–136.

33. Riedel, S. Improving the accuracy and efficiency of
MAP inference for Markov logic. In Proceedings of the
24th Conference on Uncertainty in Artificial Intelligence
(2008). AUAI Press, Helsinki, Finland, 468–475.

34. Russell, S. Unifying logic and probability. Commun. ACM
58, 7 (2015), 88–97. https://doi.org/10.1145/2699411

35. Schulte, O., Gholami, S. Locally consistent Bayesian
network scores for multi-relational data. In Proceedings
of the 26th International Joint Conference on Artificial
Intelligence (IJCAI-17) (2017). Melbourne, Australia,
2693–2700.

36. Singla, P., Domingos, P. Markov logic in infinite domains.
In Proceedings of the 23rd Conference on Uncertainty in
Artificial Intelligence (2007). AUAI Press, Vancouver,
Canada, 368–375.

37. Wang, J., Domingos, P. Hybrid Markov logic networks.
In Proceedings of the 23rd AAAI Conference on Artificial
Intelligence (2008). AAAI Press, Chicago, IL, 1106–1111.

38. Xiang, R., Neville, J. Relational learning with one
network: An asymptotic analysis. In Proceedings of the
14th International Conference on Artificial Intelligence
and Statistics (2011). 779–788.

39. Kok, S. and Domingos, P. Extracting semantic networks
from text via relational clustering. In Proceedings
of ECML/PKDD-08 (Antwerp, Belgium, Sept. 2008).
Springer, 624–639.

Pedro Domingos (pedrod@cs.washington.edu) is
a professor in the Allen School of Computer Science
and Engineering at the University of Washington,
Seattle, WA, USA.

Daniel Lowd (lowd@cs.uoregon.edu) is an associate
professor in the Department of Computer and Information
Science at the University of Oregon, Eugene, OR, USA.

Copyright held by authors/owners.
Publication rights licenced to ACM.

