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Abstract: Learning-based 3D object reconstruction enables single- or few-shot
estimation of 3D object models. For robotics, this holds the potential to allow
model-based methods to rapidly adapt to novel objects and scenes. Existing 3D re-
construction techniques optimize for visual reconstruction fidelity, typically mea-
sured by chamfer distance or voxel IOU. We find that when applied to realis-
tic, cluttered robotics environments, these systems produce reconstructions with
low physical realism, resulting in poor task performance when used for model-
based control. We propose ARM, an amodal 3D reconstruction system that in-
troduces (1) a stability prior over object shapes, (2) a connectivity prior, and (3)
a multi-channel input representation that allows for reasoning over relationships
between groups of objects. By using these priors over the physical properties
of objects, our system improves reconstruction quality not just by standard vi-
sual metrics, but also performance of model-based control on a variety of robotics
manipulation tasks in challenging, cluttered environments. Code is available at
github.com/wagnew3/ARM.
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1 Introduction

Manipulating previously unseen objects is a critical functionality for robots to ubiquitously function
in unstructured environments. One solution to this problem is to use methods that do not rely on
explicit 3D object models, such as model-free reinforcement learning [1, 2]. However, quickly
generalizing learned policies across wide ranges of tasks and objects remains an open problem. On
the other hand, obtaining detailed 3D object models can enable robots to physically reason about
interactions with them to accomplish robotic tasks. For example, CAD models [3] have extensively
been used to detect the 6D pose of objects [4, 5, 6], facilitating many different kinds of manipulation
tasks. Such 3D models can also be integrated with high-fidelity physics simulators [7, 8] to provide
accurate simulations for planning and learning, enabling model-based methods to generate high-
level and/or low-level plans in order to accomplish long-horizon tasks [9, 10, 11]. Unfortunately,
these techniques can not be extended to unseen objects without building new models on the fly.

Generalizing interactive robotics problems to previously unseen objects using robust 3D reconstruc-
tion is the primary focus of this paper. Rather than rely on a large database of models that have
been laboriously hand-crafted or captured using a 3D scanner, we instead focus on techniques that
can reconstruct meshes using observations of unseen objects in the robot’s environment. While
SLAM methods can reconstruct highly accurate models given many views [12], it can be challeng-
ing for these methods to separate objects in clutter and generate faithful reconstructions from a small
number of observations. The computer vision community has recently made significant progress in
addressing these limitations using neural networks to estimate 3D models from single or few images
[13, 14, 15, 16]. In this work, we investigate the use of such methods to solve robotic manipulation
tasks involving previously unseen objects (instances and classes).

Unfortunately, we find that directly applying state-of-the-art unseen object reconstruction techniques
[14] to cluttered environments frequently fails to reconstruct objects in regions occluded by distrac-
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Figure 1: Comparison of physical behaviors of reconstructions from different algorithms. The base-
line reconstruction of the light purple occluded mustard bottle is unstable and topples over, while
our reconstruction is stable.

tor objects, leading to physically unstable models and poor performance in downstream manipu-
lation problems. This is due to these methods optimizing reconstruction metrics such as Cham-
fer distance, which are not necessarily relevant for manipulation tasks that utilize the resulting 3D
model. Thus, our key insight is to adapt such systems to produce high physical fidelity, improving
manipulation success rates for unseen objects.

We accomplish this by encouraging the reconstruction network to provide physically realistic out-
puts. First, we assume that the scene and its objects are stable prior to manipulation, which motivates
us to design a novel loss function that penalizes unstable reconstructions. This encourages the net-
work to reconstruct stable scenes (see Figure 1 for an example). Second, as mentioned above, cur-
rent reconstruction methods struggle to adequately predict occluded portions of objects. This leads
to disconnected objects which are not physically realistic. Thus, we design another loss function to
penalize disconnectedness of predicted 3D models. Furthermore, both of our novel loss functions
are differentiable which allows for end-to-end training. To our knowledge, we are the first to add
physical priors on 3D reconstruction. Finally, we introduce a multi-channel voxel representation
that allows reasoning over the spatial extent of other objects during the reconstruction phase, and we
empirically show that this benefits performance.

We integrate our proposed loss functions into a modular framework to provide Amodal 3D Recon-
structions for Robotic Manipulation (ARM). We use the state-of-the-art method, GenRE [14], as our
reconstruction method, however we are free to choose any method in place of GenRE as our frame-
work is modular. To evaluate our method, we introduce a challenging clutttered 3D reconstruction
benchmark. We empirically demonstrate that ARM improves the reconstruction quality by 28% on
this task, and manipulation success rates on unseen objects on a range of challenging tasks including
grasping, pushing, and rearrangement by 42% over GenRE.

2 Related Work

3D Reconstruction. 3D reconstruction is a challenging problem that has been studied for decades.
Recently, learning-based methods have provided significant progress when focusing on reconstruct-
ing single objects in isolation [17, 18]. Recently, Gkioxari et al. [13] introduces graph neural net-
works to refine mesh predictions. Kulkarni et al. [19] introduces pairwise object relations and a
refinement procedure to improve object pose and shape estimation. Additionally, reconstructing
previously unseen classes compounds the difficulty of the problem [20, 21, 14].

Amodal 3D reconstruction is the problem of reconstructing partially visible objects, which is still a
relatively unexplored task [22]. Kundu et al. [23] approaches this problem by learning class-specific
shape priors from large datasets of CAD models. Kulkarni et al. [19] study amodal reconstruction
of scenes from single RGB images, while Sucar et al. [24] handles occlusion by using multiple
RGBD views. However, because robot manipulation settings are our desired environment, we re-
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Figure 2: A visual representation of our modular framework.

quire not only amodal reconstruction of objects, but also the ability to deliver physically realistic
reconstructions which warrants more informed loss functions including stability and connectivity.

Exploiting Physics for Scene Understanding Some works have investigated the use of physics
to better inform reconstructions by encouraging physical plausibility. In particular, [25, 26] use a
stability prior and Chen et al. [27] use collision and support priors to fit 3D bounding boxes around
objects. Our work introduces a differentiable and efficiently computable stability prior to allow
generation of stable 3D meshes, rather than just 3D bounding boxes. Additionally, our connectivity
prior promotes better reconstruction in occluded regions.

3D Reconstruction in Robotics While applying 3D reconstruction to robotics provides an appeal-
ing solution to manipulation, few works have investigated this. Such reconstructions can be used
to synthesize grasps for single objects using analytic and/or learning-based solutions [28, 29, 30].
Sucar et al. [24] considers grasp synthesis in tabletop scenes with multiple objects of known classes,
but does not consider highly cluttered scenes. Most similar to our work, [31, 32] compute grasps for
reconstructed objects in cluttered scenes. However, they do not take advantage of physics, which
reduces the physical realism. Our work attempts to solve a wider range of manipulation tasks while
incorporating physical notions of stability and connectivity to improve performance.

3 Amodal 3D Reconstruction

3.1 System Architecture

In this section we describe the architecture of our ARM framework, which consists of four stages.
1) We first apply an instance segmentation network to the input RGB-D image. 2) For each object
we detect, we pre-process its point cloud to compute its four channel voxel input representation,
defined below. 3) ARM uses this representation to perform 3D shape estimation with a deep net-
work, followed by post-processing. 4) Lastly, we obtain mesh representations which we employ for
manipulation planning. Our framework is visually summarized in Figure 2.

Instance Segmentation ARM takes as input a RGB image, I ∈ Rh×w×3, and an organized point
cloud, P ∈ Rh×w×3 computed by backprojecting a depth image with camera intrinsics. This is
passed to an instance segmentation network S which outputs instance masks L = S(I,D) ∈ Lh×w,
where L = {0, . . . ,K} and K is the number of detected object instances. We use UOIS-Net [33]
as S which produces high quality segmentations for unseen objects.

Four Channel Voxel Input Computation We introduce a four-channel voxel representation to
enable ARM to reason about the spatial extent of other objects during reconstruction. For each
object o ∈ L, we compute a voxel occupancy grid Fo ∈ {0, 1}d

3×4 augmented with the surrounding
objects’ occupancies, as well as with voxel visibilities with respect to the camera. Let F i

o denote the
ith channel of Fo. F 1

o is the voxel grid of object o alone, which is computed by voxelizing Po, the
point cloud segmented with the instance mask for o. F 2

o contains all other objects in L except for
o. F 3

o consists of a mask of empty voxels, and F 4
o contains unobserved voxels. Note that F 3

o , F
4
o

are computed using the camera extrinsics and intrinsics. Fo is centered at the center of mass of
object o and has side length kδo, where δo is the maximum distance between points in Po. In our
implementation, k = 4 to allow filling of occluded regions. Finally, we translate Fo so the table
occupies the z = 0 plane in our voxel grid.
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Figure 3: Impact of stability and connectivity objectives. Left: occupancy probabilities of an esti-
mated shape, in greyscale. Adding the stability objective makes the object stable, and adding the
connectivity objective fills in the gap between the shape and inferred base.

3D Shape Estimation and Scene Reconstruction. For each object o ∈ L, we use Fo as input
to a 3D reconstruction network C which outputs the probability of o’s presence at each voxel as
C(Fo) = Vo ∈ [0, 1]d

3

. We use GenRe-Oracle [14] as our 3D reconstruction network. GenRe-
Oracle is a modfication of GenRe that uses depth, rather than RGB data. GenRe-Oracle projects
observed pointclouds onto a sphere, inpaints them using a CNN, backprojects to a 3D voxel grid,
and then refines the voxel grid using a 3D encoder-decoder architecture. Finally, we use marching
cubes [34] after thresholding Vo to transform the output voxel probabilities into a mesh.

We post-process the meshes in order to make them suitable for physics simulation. First, we remove
intersections between meshes to prevent inconsistent behavior in simulation, removing from the
larger of the intersecting meshes. We then compute an approximate convex decomposition of each
mesh using V-HACD [35].

Manipulation Planning We pose the task of manipulation planning in the form of an MDP
consisting of an action space a ∈ A, a state space s ∈ S, a stochastic transition function
G(s′, s, a) = P (s′|s, a), and a single RGB-D view of the corresponding environment. We solve
this MDP by reconstructing every object in the view, instantiating a simulation of the environment
from the robot viewpoint with the reconstructed objects, and then using a physics simulator [8]
to approximate the transition function G. We use MPPI [11] to plan a sequence of actions in the
simulator, and execute this plan in the real environment.

3.2 Loss Functions

GenRE [14] uses a weighted combination of cross entropy and a surface loss between reconstructed
and ground truth voxels during training. However, in robotic settings, optimizing these losses alone
are not sufficient to solve the downstream task of robotic manipulation, as we show in Section 4.4.
This results in reconstructions with poor physical fidelity during the planning phase, often due to
instability of poor reconstruction of occluded regions. We tackle this issue by designing auxiliary
differentiable loss functions based on two physical priors: 1) objects are stable prior to manipulation,
and 2) objects are a single connected component. Figure 3 gives an overview of these loss functions.

3.2.1 Stability Loss

Our stability loss provides a prior over object shape, even in occluded regions, by reasoning about
hidden supports objects may have. An object is in static equilibrium if the net forces acting upon it
are equal to zero [36]. This means that the center of mass is within the base of support of an object.
Technically, the center of mass must be behind a pivot point (where the object rests on another
object) along every direction s perpendicular to the force of gravity ~g.

We first define some notation here. Recall that Vo parameterizes a multivariate Bernoulli distribution
over binarized voxel grids. For sample v ∼ Vo, we define M(v) to be the center of mass of v.
Furthermore, let i ∈ d3 index the voxel grid, and S = {s : s ⊥ ~g} be the set of directions
perpendicular to ~g. Then, for each s ∈ S, let is and Ms(v) be the projections of i and M(v) onto
the plane defined by s and ~g that passes through the origin. We denote Hs(i) as the set of voxels
belonging to other objects that support i in direction s, which can happen when i is directly above
or leaning against such voxels. Finally, Vō is the probabilities of other objects output by the 3D
reconstruction network.
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Given this notation, we can define our stability loss to be the probability that v is stable. Let E(v)
be the event that v is stable. Then our stability objective is defined as

P (E(v)) =
∏
s∈S

(1− us) (1)

us =
∏
i∈d3

[
1− Vo(i)P

(
is > Ms(v)

)
hs(i)

]
, hs(i) = 1−

∏
i′∈Hs(i)

(
1− Vō(i′)

)
(2)

us is the probability that v is unstable in direction s. It is the probability that every voxel i is
unstable; that is i either doesn’t exist, doesn’t support v along direction s, or isn’t supported (hs(i)).
Eq. (1) is intractable, so in order to take the gradient we introduce independence assumptions and the
approximation that a voxel i exists only if V (i) ≥ 0.5 to derive an efficiently computable derivative
of object stability with respect to each object voxel:

d logP (E(v))

dVo(i)
=
∑
s∈S

−u′s
1− us

(3)

u′s = −P
(
is > Ms(v)

)
ĥs(i)

∏
io∈d3,io 6=i

[
1− P

(
iso > Ms(v)

)
1{V (io) ≥ 0.5}ĥs(io)

]
(4)

ĥs(io) = 1−
∏

ib∈Hs(i)

[
1− 1{Vō(ib) ≥ 0.5}

]
(5)

This gradient captures several intuitive properties of stability. If an object has even a single voxel
supporting it in a particular direction then it is stable. For a direction s, if a single supported voxel
io exists, then u′s is close to zero, and the magnitude of the derivative in that direction will be small.
Vice versa, when no supporting voxel is present, u′s is close to 1 and the magnitude is nontrivial.
This captures the idea that when supporting voxels are present, the effect on stability is small, but
when no supporting voxels are present, the effect is large. Importantly, this prior is shape agnostic:
it is not biased towards making an object stable by adding a base under existing voxels, for example,
but rather only increases the probability of any voxel that would make the object stable, minimizing
reconstruction deviation from the learned shape prior. A full derivation can be found in appendix A.

3.2.2 Connectivity Loss

Our connectivity loss imposes a prior on object shape even in occluded regions by allowing the
network to infer connections between disjoint parts of observed objects. This complements the
stability objective which frequently infers occluded bases of objects. We define v to be connected
if for every pair of existent voxels a, b, there exists a path t = {i0, i1, . . . } between a and b. The
probability that a path t exists in v is P (t) =

∏
i∈t Vo(i). Let T (a, b) be the set of all possible paths

between a and b, C(v) be the event that v is connected, and C(a, b) be the event that there is a path
between a and b. Then we define our connectivity objective as

P (C(v)) =
∏

a,b∈d3,a6=b

[
Vo(a)Vo(b)P (C(a, b)) + 1− Vo(a)Vo(b)

]
(6)

The derivative of this equation is intractable because it requires considering every path t between
every vertex pair (a, b). To resolve this, we note that relative to the most likely path t∗ between a
and b, most paths have small probability. Thus, for any other voxel c, we may ignore low probability
paths passing through c when calculating their contribution to the connectivity of a and b and only
consider the most likely path from a to b passing through c. With this approximation, our per-voxel
derivative of Eq. (6) is

d logP (C(v))

dVo(c)
=

∑
a,b∈d3,a6=b 6=c

Vo(a)Vo(b)
d

dVo(c)P (C(a, b))

Vo(a)Vo(b)P (C(a, b)) + 1− Vo(a)Vo(b)
(7)
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Figure 4: (left) Chamfer distances on held-out objects, broken down by observation occlusion.
(right) Average stability of reconstructed objects. Error bars are a 90% confidence interval.

where P (C(a, b)) = P
(⋃

t∈T (a,b) t
)
≈ P (t∗ ∪ tc), t∗ is the path from a to b with the highest

probability of existing, and tc is the path from a to b that includes c with the highest probability of
existing. This approximation preserves several desirable properties of the exact gradient. First, it
only encourages connecting the object by reinforcing the most likely paths, rather than the physically
shortest paths. By considering each most likely path from a to b that passes through c, it also
produces dense connections, rather than only amplifying the shortest path between a to b, which
would often result in shapes connected by single voxel width paths.

4 Experiments

4.1 Implementation Details

We implement ARM using UOIS-Net [33] for instance segmentation, and the GenRE depth back-
bone [14] for 3D reconstruction. We use MuJoCo [8] as a physics simulator for our reconstructed
environment. To train ARM, we create a large dataset of cluttered tabletop scenes in MuJoCo us-
ing ShapeNet [37] tables and objects. We divide the ShapeNet objects into training and test sets,
containing 4803 and 3368 unique objects respectively. For each scene, we drop between 5 and 20
randomly selected objects onto a table to ensure cluttered scenes and stacked objects with complex
stability relationships. We render several views with randomized camera positions, using a custom
OpenGL renderer to produce realistic images. Each network is trained with ADAM for approx-
imately 100,000 iterations with a batch size of 16. Stability and connectivity loss gradients are
only applied on occluded voxels, as all other voxels are observed to be either empty or occupied.
Additional implementation and training details are in Appendix C.

4.2 Baselines

Our main baseline that we compare against is GenRE-Oracle [14], which we denote as baseline. In
order to test the most direct way of using the information about observed occupied and unoccupied
voxels encoded in the four channel representation, we introduce a simple modification to GenRE
to give baseline+ray carving where we remove all observed empty voxels after reconstruction. Ad-
ditionally, in order to test their significance, we train two ablations of our method, ARM-C, ARM
without the connectivity prior and ARM-C-S, ARM without the connectivity or stability prior.

4.3 Reconstruction Quality

We quantitatively compare the visual reconstruction quality of ARM to our baselines on reconstruc-
tion of cluttered scenes generated with held-out test objects and ground truth segmentations in Fig-
ure 4 (left). ARM outperforms the baseline at all occlusion levels, improving Chamfer loss by 28%
overall. This improvement is especially pronounced on highly occluded objects, where the stability
and connectivity objectives combined allow ARM to estimate occluded bases and fill gaps between
those bases and the observed parts of objects. However, low Chamfer distance alone is not sufficient
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Figure 5: Qualitative reconstruction results. ARM is able to infer both bases and occluded object
regions.

for accurate simulation; reconstructed objects must also exhibit similar physics to the ground truth.
In Figure 4 (right), we measure scene stability by placing each reconstructed scene into a physics
engine, simulating forward for five seconds with gravity as the only force, and measuring the L2

displacement of the reconstructed object centers. As a simple yet effective baseline for stability, we
consider baseline+E, where we extrude the reconstructed mesh (from baseline) down to the table to
ensure mesh stability. Both the baseline and ARM-C-S frequently reconstruct unstable objects that
fall or tumble. Adding the stability prior improves object stability to near that of the ground truth
meshes. Note that ground truth meshes move a small amount because Mujoco considers only one
point of contact between each pair of mesh geometries, which can cause meshes to slowly move.

In Figure 5, we provide qualitative reconstruction results. The baseline and ARM-C-S only recon-
struct the visible portions of occluded meshes at the top, producing reconstructions that will tumble
over as soon as simulation begins. ARM-C reconstructs the bases to produce stable meshes, but still
leaves large voids in the middle of reconstructions which frequently cause manipulation to fail. On
the other hand, ARM is able to both reconstruct bases and effectively reason about occluded regions,
producing a tapered reconstruction for the yellow wine glass in the top row, but filling in a cylinder
for the blue tin can in the fifth row.

4.4 Robot Manipulation

Robot Manipulation Tasks To evaluate the efficacy of our method on robot manipulation tasks,
we create a suite of robotics manipulation tasks across a range of challenging objects in cluttered
scenes. We consider three important robot tasks: grasping, pushing, and rearrangement, which
entails grasping and pushing/pulling. In each task, the robot first creates a 3D reconstruction of the
environment from an RGBD observation. It then plans a trajectory with the 3D reconstruction, and
finally executes the trajectory in the ground truth environment. We execute each task on 14 different
target objects from the YCB dataset [3] and 12 from a set of challenging, highly non-convex objects
downloaded from online 3D repositories, all previously unseen during training (see Figure 5 for
examples). For each task and target object we consider 10 occlusion intervals, or fraction of the
target manipulation object visible to the robot, from [0, 0.1) to [0.9, 1), and no occlusion. For each
task, target object, and occlusion interval, we generate three scenes by randomly placing unseen
YCB objects until the occlusion of target manipulation object is within the desired range, for total
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Figure 6: (left) Success rates on manipulation tasks using models generated by different reconstruc-
tion algorithms. (middle) Manipulation success rate vs. target object occlusion. Visibilities are
binned in increments of 0.1, so 0.0 includes all visibilities in [0,0.1). (right) Task success vs. target
object stability. Error bars are a 90% confidence interval.

of 2574 tasks. To isolate the effects of different 3D reconstruction algorithms, we use ground truth
instance segmentations. More details on our cluttered robot manipulation benchmark are available
in Appendix D.

Robot Task Performance Figure 6 (left) shows average task success rates on the manipulation
tasks for each of the methods. ARM achieves the best performance across all tasks, improving
the baseline and the extrusion baseline by 42% and 25% respectively. In Figure 6 (middle), we
break down performance by target object occlusion, and find that while ARM and the baseline
perform similarly at very low levels of occlusion, at almost all levels of visibility below 80% ARM
performs the best. Notably, while the baseline success rate on 10% visible objects is only about 25%
the success rate on completely unoccluded objects, ARM’s success rate on 10% visible objects is
75% its success rate on unoccluded objects, showing that our stability and connectivity priors are
less prone to performance degradation in the face of occlusion, which is due to our stability and
connectivity priors. While ARM gives significant improvements over the baseline, this task suite
is still quite challenging: most tasks involve high levels of target object occlusion, and even poor
reconstructions of self-occluded object regions can cause manipulation failure. Lastly, we analyze
the impact of object stability on performance in Figure 6 (right), where we plot task success vs.
target object stability, showing a correlation between task success and object stability.

5 Conclusion

We have shown that directly applying 3D object reconstruction methods in cluttered robotic environ-
ments can produce reconstructions with low physical fidelity, which often leads to unsuccessful task
execution. We proposed a modular framework, ARM, that includes a stability prior, a connectivity
prior, and a multi-channel input representation to deliver more physically faithful reconstructions.
ARM generates 3D reconstructions that are not only better by standard visual loss metrics, but
more importantly they allow for significantly better robot task performance in challenging cluttered
scenes. We hope our reconstruction system will enable further model-based learning and control
applications. While ARM enables significant improvements over the baseline on reconstruction and
manipulation of occluded objects, performance on highly occluded objects is still far from that of
the ground truth. To enable further research on this challenging task, we will publicly release our
large, high-quality cluttered dataset and robot evaluation benchmarks.
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