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Abstract

If it is to qualify as knowledge, a learner’s output should be accurate, stable and
comprehensible. Learning multiple models can improve significantly on the accu-
racy and stability of single models, but at the cost of losing their comprehensibility
(when they possess it, as do, for example, simple decision trees and rule sets). This
article proposes and evaluates CMM, a meta-learner that seeks to retain most of
the accuracy gains of multiple model approaches, while still producing a single com-
prehensible model. CMM is based on reapplying the base learner to recover the
frontiers implicit in the multiple model ensemble. This is done by giving the base
learner a new training set, composed of a large number of examples generated and
classified according to the ensemble, plus the original examples. CMM is evaluated
using C4.5RULES as the base learner, and bagging as the multiple-model method-
ology. On 26 benchmark datasets, CMM retains on average 60% of the accuracy
gains obtained by bagging relative to a single run of C4.5RULES, while producing
a rule set whose complexity is typically a small multiple (2-6) of C4.5RULES’s, and
also improving stability. Further studies show that accuracy and complexity can be
traded off by varying the number of artificial examples generated.

Keywords: Classification, multiple models, meta-learning, comprehensible models, sta-
bility.



1 Introduction

Data mining seeks to extract useful knowledge from databases. Because of this concern
with knowledge, rather than simply accurate prediction, research in this area places a
high value on algorithms that produce comprehensible output. There are also practical
reasons for this. In many (if not most) applications, it is not enough for a learned model
to be accurate; it also needs to be understood by its human users, if they are to trust
it and deem it acceptable. Also, users often wish to gain insight into a domain, rather
than simply obtain an accurate classifier for it, and this is possible only if they are able
to make sense of the learner’s output. Even when predictive accuracy is the sole goal,
comprehensibility is an important asset for a learner, because it facilitates the process of
interactive refinement that is at the heart of most successful applications.

Because machine learning seeks to capture a broad spectrum of knowledge, from the
commonsense to the expert-level, it has also tended to focus on representations—Ilike
decision trees, rule sets and belief networks—that are more powerful than those tradi-
tionally found in statistics and pattern recognition. This flexibility, while essential to the
field’s goals, has the disadvantage that it allows learners to be overly responsive to the
training data, producing models that can change dramatically with small changes in the
data. This instability undermines their claim to producing knowledge. As Turney and
coauthors found when working on industrial applications of decision tree learning, “the
engineers are disturbed when different batches of data from the same process result in
radically different decision trees. The engineers lose confidence in the decision trees, even
when we can demonstrate that the trees have high predictive accuracy.” [32]. Other re-
searchers have also noted the negative impact of instability on learners’ ability to produce
knowledge [12].

Recently, an approach that mitigates this problem has been the object of much research
(see, for example, [6]). It consists of learning several (say, fifty) different models by means
of variations in the learner or the data, and then combining these models in some way to
make predictions. Different forms of this “multiple models” approach include bagging [3],
boosting [18], stacking [34], Bayesian averaging [4], error-correcting output coding [22],
combiner trees [7], and others. This approach has been found to be quite effective in
practice [14, 29], and also has substantial theoretical foundations [23, 19]. However, the
focus of this line of research has been on reducing instability as a means to improving
accuracy; from the point of view of knowledge acquisition, it in fact represents a setback,
because it gives up the essential goal of output comprehensibility. While (for example) a
single decision tree can easily be understood by a human as long as it is not too large,
fifty such trees, even if individually simple, exceed the capacity of even the most patient
user; and this is aggravated by the fact that, to understand the ensemble’s prediction, it
is necessary in addition to understand (and keep track of) how the trees will interact at
performance time.

Thus, while significant progress has been made towards separately achieving each of the
three goals (accuracy, stability and comprehensibility), the overarching one of attaining
all three simultaneously remains elusive. This article aims to move closer to this ideal—or
at least to further explore the space of trade-offs among the three subgoals—by proposing
a learning method that combines some of the accuracy and stability gains of multiple
models with the comprehensibility of a single model. The proposed approach is described
in the next section. It is then evaluated on a large number of benchmark datasets. The



article concludes with a short review of related work, and an outline of directions for
future research.

2 The CMM Algorithm

2.1 Basic Framework

In classification problems, a model is (implicitly or explicitly) a division of the instance
space into regions, each of which is assigned to one of the possible classes. A learner
is accurate to the extent that the division into class regions it produces, given a set of
training examples, coincides with the “real” one; it is stable to the extent that it produces
the same division into regions given two different training sets from the same domain; and
its output is comprehensible insofar as it states clearly (to a human user) what the class
regions are.

Suppose L is a classification learner that produces models in a comprehensible repre-
sentation (e.g., rule sets), but is also unstable. Then it may be possible to improve its
accuracy and stability by applying it m > 1 times, either to m different training sets!
or with m different versions of L itself?, and combining the resulting m models in some
form. This combination can be carried out at either learning or performance time, but
in either case it effectively results in assigning a class label to each possible instance, and
thus to once again partitioning the instance space into class regions. In other words, once
combined, the multiple models constitute again a single model. However, the class regions
in this new model are, in general, a function of all the individual models and of how they
are combined, and the clear division that might have been present in each one of them is
lost.

This lost comprehensibility can potentially be recovered in the following way. Just
as L can be applied to model the “true” partitioning of the instance space into class
regions, by learning from previously-collected training examples, it can be applied to
model the partitioning produced by the combined models, by learning from a set of
randomly generated examples, whose classes are those predicted by the combined models.
Because L produces models in a comprehensible representation, the resulting “meta-
learned” model will also be comprehensible, as long as it is not too complex. Since the
partitioning produced by combining m models is likely to be more complex than that
produced by each of the component models, the meta-learned model is also likely to
be more complex than them; but not necessarily to such an extent that it is rendered
incomprehensible, especially since it is only an approximation to the exact partitioning
produced by the combined models. On the other hand, because of this fact, the meta-
learned model is also likely to be less accurate than the combined one, especially if the
representational power of the language of combined models is greater than that of the
component model language. However, and crucially, because the accuracy and stability
of learned models tend to increase with training set size (due to decreasing variance [21]),
and the training set size for the meta-learning step can be made as large as desired,
subject to computational resource constraints, it should be possible to obtain a meta-
learned model that is more accurate and stable than the base models.

'Where two different training sets can be composed of the same instances, but with different weights,
as in boosting [18].
2Which, in the limit, can be m different learners, as is typically done in stacking [34].



Table 1: The CMM meta-learning algorithm.

Inputs:
S is the training set,
L is a learning algorithm,
C' is a procedure for combining models,
m is the no. of component models to generate,
n is the no. of new examples to generate.

Procedure CMM (S, L,C,m,n)
For:=1tom

Let S; be a variation of S.

Let M; = Model produced by applying L to S;.
For y =1ton

Let ¥ be a randomly generated example.

Let ¢ be the class assigned to & by Cu,....m,, (7).
Let S = SU{(Z,¢)}.

Let M = Model produced by applying L to S.

Return M.

The procedure just described, which will be called CMM (for “Combined Multiple
Models”), is shown in pseudo-code in Table 1.> Two significant points should be noted.
One is that, to the extent possible, the examples for the meta-learning phase should be
generated from the same distribution as the “true” training examples, since many learners
are sensitive to this distribution, and could be misled by (for example) uniform sampling.
More precisely, if x is an unclassified example and ¢ its class, since the “true” probability
distribution Pr(xz) is usually unknown, it should be estimated as closely as possible. While
many general methods exist for approximately solving this problem (e.g., Parzen windows
[15]), in the implementation described below the approach followed is one of replicating
the way the learner L implicitly models Pr(z). This avoids a mismatch between the bias
of L and that of the probability estimation procedure.

The other point to be noted is that, in CMM, the training set for meta-learning is
composed of the artificially generated examples and the original ones. This recognizes the
fact that the combined model is itself only an approximation to the “true” partitioning of
the instance space into class regions, and thus the meta-learning phase may benefit from
taking into consideration the original examples.

3Instead of variations of S, variations of L may be used. Note that this procedure is quite different
from stacking (Wolpert, 1992), where the final output is a two-level classifier that explicitly includes all
the models produced, plus a meta-classifier to combine their predictions at performance time.



2.2 An Implementation

In order to test and apply the ideas above, an implementation of CMM was carried out
using a specific learner L and a specific multiple-model methodology. C4.5RULES [28]
release 8 was used as the base learner. C4.5RULES produces propositional rule sets,
which we believe to be the most easily understood of all representations currently in use.
C4.5RULES also has the advantage of being widely used, and thus constituting a good
standard for empirical comparisons. In this system, rules are extracted from a previously-
learned decision tree, and are ordered (i.e., if more than one rule applies, the one appearing
first in the ordering prevails). Bagging [3] was used as the multiple-model methodology, on
account of being perhaps the simplest one available, and of its effectiveness with decision
trees being well established [3, 29]. In the bagging procedure, given a training set of size
s, a “bootstrap” replicate of it is constructed by taking s samples with replacement from
the training set. Thus a new training set of the same size is produced, where each of the
original examples may appear once, more than once, or not. On average, for sufficiently
large s, 63% of the original examples will appear in the bootstrap sample. The learner L
is then applied to this training set. This procedure is repeated m times, and the resulting
m models are aggregated by uniform voting (i.e., when a test example is presented, the
class that is predicted by the greatest number of models is predicted; if a tie occurs, the
lowest-ordered class is chosen, as in [3]).4

Examples for meta-learning are generated using the probability distribution implicit
in the rule sets produced by C4.5RULES. Effectively, the number of training examples
classified by each rule, as a fraction of the training set size, is an estimate of the probability
of finding an example in the region covered by that rule, and not covered by any preceding
rules. Given that the m component models thus represent m approximations to the “true”
example distribution, all with equal weight, and that n new examples are required, CMM
generates n/m of these examples from each component rule set. For each individual rule, if
it classified r of the s examples in the bootstrap sample it was induced from, (r/s)-(n/m)
examples covered by it will be generated. For each example, this is done by ensuring that
it satisfies the rule’s preconditions, and beyond that by setting the values of its attributes
according to a uniform distribution (thus leading to a piecewise uniform approximation
to the example distribution). Before being accepted, an example is matched with the
previous rules in the rule set, and if it is covered by any it is regenerated, to ensure that
the current rule does not become under-represented, and the previous rule that matched
it over-represented. This is done up to a maximum number of times, 100 by default.?
Missing values for each attribute are generated in similar proportions to those found in
the original training set.

“Note that, although learning m bootstrap models is m times more computationally expensive than
learning a single model, this does not imply that bagging is infeasible for large databases, since it can
be trivially parallelized with almost 100% efficiency by learning each of the m models on a different
processor.

5The exact value of this parameter is unimportant. It suffices that it make the number of examples
incorrectly generated from a rule smaller than the quantization error implicit in the computation of

(r/s) - (n/m).



80 T T T T T T T

Bagging —<—
C45 —+—
79 r .
S 8¢ .
>
3
g
b 77 -
76 F -
75 1 1 1 1 1 1 1

10 15 20 25 30 35 40 45 50
No. models

Figure 1: Average accuracy of bagging as a function of the number of component models.

3 Empirical Evaluation

The question of whether the approach just outlined will indeed, in any given domain,
retain a significant fraction of bagging’s accuracy and stability gains over a single run of
C4.5RULES, without producing an overly complex model, is one to be answered empiri-
cally. To this end, experiments were carried out using a varied and representative sample
of 26 datasets from the Irvine repository [24].

A value for m (the number of component models) was determined by comparing the
accuracies obtained with m = 10, 25 and 50 on a subset of the datasets. The results
are shown in Figure 1, as averages over all datasets. m = 50 was found to produce
no significant gains over m = 25, but m = 10 led to poor results. This suggests some
atypicality in Breiman’s [3] results on the (artificial) waveform domain, where he studied
the effect of m and found most of the gain in accuracy to be obtained with 10 replicates,
and also suggests that Quinlan [29] might have obtained even better results for bagging if
more replicates had been used. m = 25 was used throughout the studies reported below.

The number n of examples generated randomly for meta-learning was set to 1000. This
value reflects the knowledge that C4.5RULES tends to produce rule sets whose size grows
approximately linearly with training set size [13, 25], and thus that using a very large n is
likely to lead to unnecessarily complex models. Within this constraint, n was chosen to be
larger than any of the dataset sizes present. Given that the randomly generated examples
are added to the original ones, this implies that the training set size for meta-learning
will always be at least twice the size of the original training set.

An experimental methodology similar to that of [3] was followed, with 20 runs instead



of 100, due to the large number of datasets used. In each run, 90% of the examples in
the dataset were randomly chosen for training, and the remainder were used for testing.
Table 2 shows the resulting average accuracies and standard deviations. The results for a
single model are those obtained by running C4.5RULES on the entire unchanged training
set. C4.5/C4.5RULES was applied with its default settings throughout.

Bagging improves accuracy relative to a single run of C4.5RULES in 22 out of the 26
datasets, by 3.5 percentage points on average (2.6% in all 26 datasets). These 22 datasets,
where bagging improves on C4.5RULES, are those where it would make sense to apply
CMM. CMM improves on C4.5RULES in all but four of them. Its average accuracy is
2.1% higher than C4.5RULES’s, i.e., CMM retains on average 60% of bagging’s accuracy
gains, and similarly in all 26 datasets. CMM is more accurate than C4.5RULES with
a confidence of 99.7% according to a sign test, and 99.9% according to a Wilcoxon test
(96% and 99.2%, respectively, on all 26 datasets). In six of the 22 datasets, CMM is more
accurate than bagging.

Output comprehensibility is more difficult to measure than accuracy, since it is ulti-
mately subjective. However, an oft-used operational measure of it is output size, counting
one unit for each antecedent and each consequent of each rule (including the default rule,
with 0 antecedents and 1 consequent). While this measure is necessarily imperfect, its
meaningful use here is facilitated by the fact that two of the outputs being compared
(single model and CMM) are interpreted in exactly the same way, being produced by the
same learner.

The significance of changes in output size is different from that of changes in accuracy,
where in general each percentage point of improvement counts. In this respect, output
size behaves similarly to running time, another complexity measure: its exact value is
arguably of little significance, as long as it stays within given acceptable bounds. Thus a
greater increase in complexity is more acceptable when starting from a lower basis, since
the resulting final complexity will be correspondingly lower.

The output sizes obtained for C4.5RULES, bagging and CMM are shown in Table 3,
along with the ratio between CMM’s size and C4.5RULES’s. The datasets are listed in
increasing order of size (i.e., increasing number of examples). Bagging’s output size, com-
puted as the sum of the component model sizes, obviously underestimates the difficulty
in comprehending the bagged ensemble, and is given here only for indicative purposes.
CMM’s complexity is typically a small multiple of C4.5RULES’s (2-6), with the smaller
multiples occurring for the larger datasets. This is as desired, and leads to CMM’s com-
plexity staying below 250 for almost all domains. Thus, by this measure, CMM can be
considered to produce comprehensible output in almost all cases, assuming C4.5RULES
does. As a further comparison, another widely-used rule learner, CN2 [8], was run on
these datasets. While being on average less accurate than C4.5RULES and CMM, CN2
has an output complexity that is often greater than CMM’s. This is further evidence
that CMM is broadly competitive with single-model rule learners in its ability to produce
comprehensible results.

The output sizes shown for CMM in these datasets may be unnecessarily large, due
to the tendency of C4.5RULES’s output size to grow approximately in step with input
size, and to the fact that 1000 artificial examples are being generated for all domains,
leading to a ratio between the meta-learning and original training set sizes that is quite
large for the smaller datasets (those with tens of examples). It may thus be possible to
substantially optimize CMM’s complexity without seriously affecting accuracy by choosing



Table 2: Empirical results: average accuracies and their standard deviations.

Dataset CMM Bagging Single
Lenses 75.0+£6.8 75.0+£6.8 62.5+7.1
Lung cancer 40.0£7.5 36.7£7.2 31.7£7.0
Soybean (small) | 97.0+£1.6 97.0+1.6 98.0+1.4
Labor 85.8+2.5 90.0£1.9 81.74£2.7
Post-operative 68.9£3.0 66.1£3.3 71.7£3.1
LED 61.5+3.2 61.54+3.2 60.0+2.5
Zoology 94.0+1.8 93.5+1.8 92.0£1.7
Promoters 87.7£1.7 88.6+1.5 87.3£2.5
Echocardiogram | 67.743.2 71.9£3.5 65.842.5
Lymphography | 76.7+2.3 80.0£2.6 75.3£2.8
Iris 94.3+1.1 94.3£1.1 94.7+1.1
Hepatitis 76.24£2.5 79.442.7 T7.542.6
Wine 94.241.0 95.841.0 94.7+1.6
Audiology 771.8+1.5 788+£1.5 T75.2+1.3
Sonar T1.7£2.2 774+£1.6 76.9+£1.6
Glass 73.1£1.5 T774+1.5 TL7£1.7
Breast cancer 70.2+1.8 69.7+1.9 68.44+1.9
Horse colic 86.3£1.6 86.0+1.4 83.8+1.4
Heart disease 81.8+£1.5 80.2+1.7 78.0+£1.7
Solar flare 69.2+1.7 70.0£1.6 T71.1+£1.7
Primary tumor | 43.442.1 46.9£2.3 424424
Liver disease 66.0£1.8 69.6+£1.9 63.7£1.4
Voting records | 95.54+0.7 96.6+0.6 96.440.7
Credit 87.5+1.1 88.3£0.8 86.2+1.1
Pima diabetes 75.5+0.9 76.44+0.9 73.64+0.8
Annealing 96.24+0.5 95.240.6 93.9£0.6
Average 774 78.6 75.9




Table 3: Empirical results: Output sizes and stabilities. “C/S” is the ratio between
CMM’s output size and the single model’s.

Dataset Output size Stability

CMM Bagging Single C/S | CMM Bagging Single
Lenses 17.5 255.2 9.7 1.8 94.1 94.1 90.2
Lung cancer 198.8 354.6 14.8 13.5 | 55.0 58.5 52.9
Soybean (small) | 160.1 268.5 10.2 15.7 | 83.9 85.0 78.2
Labor 39.7 271.0 99 4.0 89.9 93.3 75.1
Post-operative 82.4 688.8 9.1 9.0 8.7 90.7 83.3
LED 202.1 1211.6 471 4.3 | T73.2 73.4 63.5
Zoology 140.8 623.7 294 4.8 92.1 92.5 93.4
Promoters 143.0 538.3 21.8 6.6 | 84.6 87.8 83.7

Echocardiogram | 85.1 729.8 13.1 6.5 | 71.7 79.2 64.4
Lymphography | 213.2 877.5 342 6.2 51.8 65.2 62.0

Iris 17.6 303.5 11.0 1.6 | 96.0 96.9 99.2
Hepatitis 158.2 630.9 29.0 5.4 | T1.8 78.5 71.6
Wine 69.4 399.1 15.0 46| 71.1 79.4 74.6
Audiology 440.3 1973.3 4.2 5.9 | 45.3 53.8 52.4
Sonar 90.6 816.6 35.2 2.6 | 62.2 83.4 75.4
Glass 214.6 1740.5 61.8 3.5 | 67.1 70.5 69.3
Breast cancer 174.1 1933.1 16.8 104 | 75.4 76.0 68.1
Horse colic 52.8 972.5 22.6 2.3 | 8.7 89.6 82.7
Heart disease 177.7 1396.9 48.5 3.7 | 80.2 88.8 75.1
Solar flare 250.1 2070.6 52.8 4.7 | 83.8 87.7 84.7
Primary tumor | 579.0 5029.8 90.3 6.4 | 529 55.9 50.9
Liver disease 116.1 2329.9 53.0 2.2 | 82.1 85.0 70.6
Voting records 74.2 597.1 21.9 34| 904 93.2 94.2
Credit 104.9 2181.2 494 2.1 | 89.7 90.6 81.4
Pima diabetes 82.4 3476.6 389 2.1 83.1 85.4 76.3
Annealing 90.2 1680.7 64.0 1.4 | 88.4 90.8 87.3
Average 156.6 1364.2 35.8 49| T7.6 82.2 75.7




n as a function of dataset size. This is a matter for future research.

Stability was measured following the ideas contained in [32], and taking advantage
of the models produced in the train-test runs carried out. The stability of a system is
defined as the (estimated) probability that models generated by the system from different
training sets will agree on an arbitrary example. For each domain, ne = 1000 unclassified
examples were generated using a uniform distribution in the instance space. For each
system, stability was then computed as:

1 ne nr i1—1
Stab=100% x — agree.;;
¢ ne ; nr nr —1 ; e I !

where nr is the number of train-test runs carried out (and therefore the number of models
produced by the system), and agree.;; is 1 if models M; and M; predicted the same class
for example e, and 0 otherwise. The use of artificial examples obviates the need to
set apart examples from the original dataset for stability testing, further dwindling the
number available for training, and/or leading to unreliable estimates of stability. The use
of a uniform distribution reflects a deeper notion of stability than that implicit in using
some estimate of the dataset’s distribution [32]. Note that, because the different models
are not generated from independent training sets, the empirical measure above will tend
to overestimate stability.

The results are shown in Table 3. On average, bagging is 6% more stable than a single
run of C4.5RULES. CMM is 2% more stable than C4.5RULES, and thus retains a third
of bagging’s stability gains. CMM improves stability in all but five of the 20 datasets
where bagging is more accurate and stable than C4.5RULES. On all 26 datasets, CMM
is more stable than C4.5RULES with a confidence of 91% according to a sign test, and
94% according to a Wilcoxon test. These results are remarkable, in view of the fact that
CMM, like C4.5RULES, produces a single rule set. Taken together with the accuracy
and complexity results, they show that CMM can indeed retain a large part of bagging’s
accuracy and stability gains while still outputting comprehensible rule sets, and thus
brings us closer to the goal of producing models that qualify as knowledge.

The running time of the bagging procedure is proportional to the number of models
being generated, while the time needed to produce the combined model is a function of the
total number of examples. With C4.5RULES and the numbers of models and examples
used in our experiments, the running time of the meta-learning procedure (not including
calls to the learning procedure L) was always lower than that of bagging by more than
an order of magnitude, and therefore not a significant factor.

A summary lesion study was conducted by (1) excluding the original examples from
the meta-learning training set,® and (2) replacing the probability estimation procedure
described in the previous section with a uniform distribution of the examples in instance
space. The results are shown in Table 4. As expected, both changes had a significant
negative impact on accuracy, confirming the utility of the procedures used. CMM was
more accurate than the “all new examples” version in 18 datasets and less in 4, by 2.6%
on average, with a confidence greater than 99% according to a Wilcoxon test. CMM
was more accurate than the “uniform probability” version in 15 datasets and less in 5,
by 1.1% on average, with a confidence greater than 99% according to a Wilcoxon test.

6More precisely, replacing the original examples with an equal number of artificial ones, in order to
maintain a constant training set size.
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Estimating example probabilities from the frequencies in the leaves of the underlying
(pruned) decision trees also decreased accuracy, lending support to the notion that a
good match between the learner’s bias and that of the probability estimation procedure
is important for good results. Disabling the generation of missing values had a large
negative impact in the annealing dataset, where very large numbers of missing values are
present, and a less discernible one in the datasets where fewer such values occur.

C4.5RULES’s pruning parameters during the meta-learning phase can be used to trade
off the accuracy and complexity of CMM’s output. For example, using a confidence level
of 10% instead of the default, or applying the optional Fisher’s exact test with a 10%
confidence level, both resulted in output size reductions in the 10-30% range for almost
all domains, while decreasing average accuracy by only fractions of a percentage point.”
Another parameter that can potentially be used to trade off accuracy and complexity is
n, the number of synthetic examples generated. To investigate this, the experiments were
repeated with n = 500 and n = 2500. The results are shown in Figures 2 to 4, as averages
across all datasets. As expected, complexity increases steadily with training set size, and
average accuracy improves significantly from n = 500 to n = 1000, but not from n = 1000
to n = 2500.% Since, in general, varying n is only useful up to the point where accuracy
asymptotes, the best results may be obtained by empirically estimating this point for each
dataset.? More conveniently, CMM may be used with a base learner whose output size
is insensitive to training set size, once the accuracy asymptote is reached (or at least less
sensitive than C4.5RULES). Experiments with such systems (e.g.,[13, 20]) are an area for
future research.

4 Related Work

The CMM algorithm bears interesting relationships to many pieces of previous research
in inductive learning. Apart from its effect on accuracy, pruning of decision trees and
rule sets can be viewed as an attempt to extract a simpler, more comprehensible model
from an overly complex one. Work by Catlett [5] (Chapter 5), Quinlan [28] (Chapter 5),
Evans and Fisher [16], and Fayyad, Djorgovski and Weir [17] has this flavor. Quinlan [27]
briefly describes merging all branches from multiple decision trees into a single rule set and
extracting the “best” rules, with promising results. Buntine [4] considers the extraction
of a single “good” tree from an option tree (a compact representation of multiple trees)
to be an important problem for future research. Kong and Dietterich [22] make a similar
statement for error-correcting output coding and other multiple-model schemes. Shannon
and Banks [30] have recently proposed a method for combining multiple decision trees into
one, based on measuring distances between them and finding the “median” tree. Their
approach is considerably more complex than CMM, and has not yet been implemented,
or shown to improve on the accuracy and stability of single trees. The high instability of
tree learners may make it very difficult for this method to produce good results. Utans

“In order to ensure a fair comparison with C4.5RULES, these changes were also applied when learning
the single model; while they also produced some reductions in output size at little cost in accuracy, these
reductions were generally smaller than those obtained with CMM.

8Interestingly, the stability of CMM continues to improve even after its accuracy asymptotes.

9However, stability will often continue to improve after accuracy asymptotes, and this may make it
worthwhile to use larger training sets. For example, in the experiments described, with n = 2500 CMM’s
stability gain averaged over all datasets was nearly half of bagging’s, compared to a third for n = 1000.
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Table 4: Lesion study results: average accuracies and their standard deviations. “All
new” shows the result of ignoring the original examples. “Uniform” shows the result of
using a uniform example distribution.

Dataset CMM All new Uniform
Lenses 75.0  75.045.9 75.045.9
Lung cancer 40.0  33.3£6.4 35.0£5.8
Soybean (small) | 97.0  97.0£1.4 97.0+1.4
Labor 85.8  79.242.8 85.8424
Post-operative 68.9  T1.1+£2.8 69.4+3.0
LED 61.5  61.5+2.8 61.0+2.7
Zoology 94.0  92.0£1.6 94.0%+1.6
Promoters 87.7  84.5+1.6 83.6t1.4
Echocardiogram | 67.7  67.3£3.0 66.5+2.2
Lymphography 76.7  75.04£24 TT7.7T£2.5
Iris 94.3  96.3+0.9 94.3+1.0
Hepatitis 76.2  75.6+2.1 76.24+2.6
Wine 94.2  94.240.9 94.7+1.2
Audiology 77.8  67.3£2.1 75.841.3
Sonar 71.7  65.7£1.8 67.1+1.1
Glass 73.1  61.242.5 70.24+1.7
Breast cancer 70.2  66.44+2.1 70.54+1.3
Horse colic 86.3  85.841.2 84.7+1.2
Heart disease 81.8  79.0+1.7 80.0+£1.6
Solar flare 69.2  69.1+1.4 69.4+£1.4
Primary tumor 43.4  40.1£2.0 39.3£2.2
Liver disease 66.0 67.3+1.9 64.9+£1.3
Voting records 95.5  95.6+0.7 95.1+0.7
Credit 87.5  86.240.8 86.7+0.8
Pima diabetes 75.5  75.240.7 T74.54+0.9
Annealing 96.2  85.6+0.9 96.1+0.5
Average 774 74.9 76.3
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[33] combined multiple neural networks into one by averaging parameters, with the goal
of achieving performance-time computational savings; the output still suffers from the
opaqueness of a neural network. Datta and Kibler [11] have sought to develop single-model
classifiers that are more stable than standard machine learning algorithms, but have so
far not attempted to evaluate the comprehensibility of the prototype-based representation
they use.

CMM is an example of a method for extracting comprehensible output from a learned
model (in this case, a bagged ensemble of models). Substantial research has been carried
out for the case where the model is a neural network (e.g., [31, 1]). Algorithms based
on queries to an oracle are also relevant to this problem, and have been the object of
much study in the theoretical community (e.g., [2]). Although oracle-based algorithms
are generally of limited usefulness when learning directly from real data, they can be
applied more easily in the meta-learning phase, using the previously-learned model (or
model ensemble) as the oracle (e.g., [10]). More generally, many forms of active learning
[9], where the learner has some degree of control over the information it obtains from the
environment, are potentially applicable to this problem.

5 Future Work

Several directions for future research are readily apparent, apart from those already men-
tioned in previous sections. One is to use different algorithms as the base learner and
the meta-learner. To be justified, this should result in better performance than either

14



algorithm used alone. An intriguing possibility is that, when models in language £ are
combined, the result may be best expressed in a different language £y (presumably with
L C Lpr). If general conditions under which this is and is not the case can be derived,
they may then be applied to the choice of meta-learner given a base learner.

Ideally, the meta-learning phase would result in models that are as stable and accurate
as the bagged ensemble, while being of similar complexity to the base models. Replacing
the random sampling of instance space currently used with query-based/active learning
techniques may bring this limit closer, while keeping the computational complexity of
the meta-learning phase within acceptable bounds. An alternative (and perhaps less
promising) approach is to explicitly combine the component rule sets, for example by
applying induction to the problem of determining what surface features they have in
common.

Another direction for future research is investigating the conditions under which CMM
can be expected to work (i.e., improve accuracy and stability relative to the base learner,
while losing little or no comprehensibility). Intuitively, if the problem is “easy” (i.e.,
the base learner can find the “best” model or a close one in one pass), there should be
little gain in using multiple models and CMM. On the other hand, if the base learner’s
representation is inappropriate to the domain, it may be impossible to improve accuracy
without corresponding increases in complexity (e.g., if the representation used is one of
rules with tests on single attribute values, and the true frontier is not axis-parallel). Thus,
the greatest gains from using CMM may be obtained in domains where the base learner’s
representation is adequate, but the learner has difficulty finding the “right” model, for
example because of its greedy search procedure or limited choice of rule construction
operators. Careful empirical study should be able to shed some light on this matter.

A Timitation of the work described here is that it uses a somewhat naive notion of
comprehensibility, equating it with simplicity. In reality, many other factors are involved,
and will vary from one user group to another (e.g., [26]). Although arriving at a better
definition of comprehensibility is a difficult task due to the subjective component involved,
much progress should result from seeking a deeper understanding of what makes a model
comprehensible, and using the results to guide algorithms like CMM.

A limitation of the implementation used in this article is that it is only applicable to
domains where there is no relationship between succeeding examples. In datasets that
represent time-varying processes, the random subsampling carried out by bootstrapping
would destroy important information. The study of implementations that avoid this
problem, for example by randomizing the learning algorithm instead of the training set,
is another area for future research.

The meta-learning method described here can be used to (attempt to) render compre-
hensible the output of any learner, by applying rule induction to the models it produces.
For example, it could be used to extract rules from a neural network. It would be inter-
esting to see how it (or variations of it) fare at this task.

6 Conclusion

In the quest to automate knowledge discovery, current learners still have a considerable
way to go, if learned models are viewed as constituting knowledge only if they are si-
multaneously accurate, stable and comprehensible. This article described a method for
taking an unstable learner of comprehensible representations and obtaining one that is
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more stable and accurate, while still producing comprehensible output. The proposed

method, called CMM, is based on learning several models, combining them, and reap-

plying the learner to make explicit the mapping thus produced. Experimental tests have
shown CMM to be a promising approach.
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