
Version Space Algebra and its Application

to Programming by Demonstration

Tessa Lau tlau@cs.washington.edu

Pedro Domingos pedrod@cs.washington.edu

Daniel S. Weld weld@cs.washington.edu

Dept. of Computer Science & Engineering, University of Washington, Box 352350, Seattle, WA 98195-2350 USA

Abstract

Machine learning research has been very
successful at producing powerful, broadly-
applicable classification learners. However,
many practical learning problems do not fit
the classification framework well, and as a re-
sult the initial phase of suitably formulating
the problem and incorporating the relevant
domain knowledge can be very difficult and
time-consuming. Here we propose a frame-
work to systematize and speed this process,
based on the notion of version space alge-
bra. We extend the notion of version spaces
beyond concept learning, and propose that
carefully-tailored version spaces for complex
applications can be built by composing sim-
pler, restricted version spaces. We illustrate
our approach with SMARTedit, a program-
ming by demonstration application for repet-
itive text-editing that uses version space alge-
bra to guide a search over text-editing action
sequences. We demonstrate the system on a
suite of repetitive text-editing problems and
present experimental results showing its ef-
fectiveness in learning from a small number
of examples.

1. Introduction

More often than not, the most difficult and time-
consuming part of developing a machine learning ap-
plication is formulating the problem in terms amenable
to currently-available learners (Langley & Simon,
1995). Machine-learning research has largely focused
on classification, and although many sophisticated
classifiers have been produced, many (perhaps most)
problems are not easily cast in this framework. For ex-
ample, in many domains (e.g., problem solving, vision,
speech recognition, computational biology) the desired

output of the learned function is not a discrete scalar,
but a structured object (e.g., a sequence of actions,
a description of a scene, the text corresponding to a
speech stream, the 3D shape of a protein). As a re-
sult, applying machine learning is largely a “black art,”
with few formalized principles or domain-independent
solutions available. In this paper we begin to address
this problem by extending Mitchell’s (1982) version
space framework to more complex learning problems.
We propose the notion of a version space algebra in
which simple, restricted version spaces are combined
into more complex ones using operations like union
and join. This approach lets the application designer
combine multiple strong biases to achieve a weaker one
that is carefully tailored to the application, and thus
to reduce statistical bias for the least increase in vari-
ance. We also begin to build a library of reusable ver-
sion space components. We apply these components
and the version space algebra in the construction of
the SMARTedit system, a programming by demonstra-
tion application for the text-editing domain. In many
cases, SMARTedit learns generalized macros that au-
tomate repetitive text transformations after just a sin-
gle training example.

Version space algorithms have not been widely ap-
plied in practice, mainly because their extension to
noisy data is non-trivial, and because the boundary-
set representation they use is often not efficient enough
(although see the work of Norton and Hirsh (1992),
Hirsh et al. (1997), and others). We expect that
similar problems will be felt in the broader range of
applications we extend the version space approach to
here. However, the introduction of version spaces was
of enormous value in clarifying the concept learning
problem, and in moving from a phase of building ad
hoc systems with limited uses to the current generation
of powerful, widely-applicable classifiers. The goal of
this paper is to provide a first step in doing the same
for a broader class of learning problems. Moreover, it



may often be the case that some component version
spaces in an application can be efficiently maintained
while others require heuristic search. Combining the
two should produce better results than approaching
the whole problem in an ad hoc manner.

2. Version Space Algebra

In this section, we define our concept of a version space
algebra: a method for composing together many sim-
ple version spaces using algebraic operations such that
the whole is also a version space. We first extend ver-
sion spaces to apply with any partial order (not just
generality, as in Mitchell (1982)). We then define the
union, intersection, join, and transform operators over
these extended version spaces, and describe the condi-
tions under which the combined version space may be
efficiently maintained.

A hypothesis is a function that takes as input an ele-
ment of its domain and produces as output an element
of its range. A hypothesis space is a set of functions
with the same domain and range. The bias deter-
mines which subset of the universe of possible func-
tions is part of the hypothesis space; a stronger bias
corresponds to a smaller hypothesis space. We say
that a training example (i, o), for i ∈ domain(h) and
o ∈ range(h), is consistent with a hypothesis h if and
only if h(i) = o. A version space, VSH,D, consists of
only those hypotheses in hypothesis space H that are
consistent with the sequence D of examples. When a
new example is observed, the version space must be
updated to ensure that it remains consistent with the
new example. We will omit the subscript and refer to
the version space as VS when the hypothesis space and
examples are clear from the context.

In Mitchell’s (1982) original version space approach,
the range of functions was required to be the Boolean
set {0, 1}, and hypotheses in a version space were par-
tially ordered by their generality. (A hypothesis h1 is
more general than another h2 iff the set of examples
for which h1(i) = 1 is a superset of the examples for
which h2(i) = 1.) Mitchell showed that this partial or-
der allows one to represent the version space solely in
terms of its most-general and most-specific boundaries
G and S (i.e., the set G of most general hypotheses
in the version space and the set S of most specific hy-
potheses). The consistent hypotheses are those that lie
between the boundaries (i.e., every hypothesis in the
version space is more specific than some hypothesis in
G and more general than some hypothesis in S). We
say that a version space is boundary-set representable
(BSR) if and only if it can be represented solely by
the S and G boundaries. Hirsh (1991) showed that

the properties of convexity and definiteness are neces-
sary and sufficient for a version space to be BSR.

Mitchell’s approach is appropriate for concept learn-
ing problems, where the goal is to predict whether an
example is a member of a concept. We extend the
approach to any supervised learning problem (i.e., to
learning functions with any range) by allowing arbi-
trary partial orders. We base this proposal on the
observation that the efficient representation of a ver-
sion space by its boundaries only requires that some
partial order be defined on it, not necessarily one that
corresponds to generality. The partial order to be used
in a given version space is provided by the applica-
tion designer, or by the designer of a version space li-
brary. The corresponding generalizations of the G and
S boundaries are the least upper bound and greatest
lower bound of the version space. As in Mitchell’s ap-
proach, the application designer provides an update
function U(VS, d) that shrinks VS to hold only the
hypotheses consistent with example d.

We now introduce a version space algebra using these
extended version spaces. We define an atomic version
space to be a version space as described above, i.e., one
that is defined by a hypothesis space and a sequence of
examples. We define a composite version space to be
a composition of atomic or composite version spaces
using one of the following operators.

Definition 1 (Version space union) Let H1 and
H2 be two hypothesis spaces such that the domain
(range) of functions in H1 equals the domain (range)
of those in H2. Let D be a sequence of training exam-
ples. The version space union, VSH1,D ∪ VSH2,D, is
equal to VSH1∪H2,D.

Hirsh proved that the union of two BSR version spaces
is also BSR if and only if the union is convex and def-
inite. In contrast, we allow unions of version spaces
such that the unions are not necessarily boundary-
set representable, by maintaining component version
spaces separately; thus, we can efficiently represent
more complex hypothesis spaces.

Proposition 1 (Efficiency of union) The time
(space) complexity of maintaining the union is a lin-
ear sum of the time (space) complexity of maintaining
each component version space.

Definition 2 (Version space intersection)
Let H1 and H2 be two hypothesis spaces such that
the domain (range) of functions in H1 equals the do-
main (range) of those in H2. Let D be a sequence
of training examples. The version space intersection,
VSH1,D ∩ VSH2,D, is equal to VSH1∩H2,D.



The considerations made above for the version space
union also apply to the version space intersection.

In order to introduce the next operator, let C(h, D) be
a consistency predicate that is true when hypothesis h

is consistent with the data D, and false otherwise. In
other words, C(h, D) ≡

∧
(i,o)∈D h(i) = o.

Definition 3 (Version space join)

Let D1 ={dj
1}

n

j=1 be a sequence of n training exam-

ples each of the form (i, o) where i ∈ domain(H1) and

o ∈ range(H1), and similarly for D2 = {dj
2}

n

j=1. Let

D be the sequence of n pairs of examples 〈dj
1, d

j
2〉. The

join of two version spaces, VSH1,D1
./ VSH2,D2

, is
the set of ordered pairs of hypotheses {〈h1, h2〉|h1 ∈
VSH1,D1

, h2 ∈ VSH2,D2
,C(〈h1, h2〉, D)}.

Joins provide a powerful way to build complex version
spaces, but a question is raised about whether they
can be maintained efficiently. Let T (VS, d) be the time
required to update VS with example d. Let S(VS) be
the space required to represent the version space VS
(perhaps with boundary sets).

Proposition 2 (Efficiency of join)

Let D1 ={dj
1}

n

j=1 be a sequence of n training examples

each of the form (i, o) where i ∈ domain(H1) and o ∈
range(H1), and let d1 be another training example of

the same type. Define D2 = {dj
2}

n

j=1 and d2 similarly.

Let D be the sequence of n pairs of examples 〈dj
1, d

j
2〉.

If ∀D1, D2 [C(h1, D1) ∧ C(h2, D2) ⇒ C(〈h1, h2〉, D)],
then ∀D1, d1, D2, d2

S(VSH1,D1
./ VSH2,D2

)

= S(VSH1,D1
) + S(VSH2,D2

) + O(1)

T (VSH1,D1
./ VSH2,D2

, 〈d1, d2〉)

= T (VSH1,D1
, d1) + T (VSH2,D2

, d2) + O(1)

In many domain representations, the consistency of a
hypothesis in the join depends only on whether each
individual hypothesis is consistent with its respective
training examples, and not on a dependency between
the two hypotheses in a pair. In this situation we say
there is an independent join in which the consistency
of a pair of hypotheses in the version space join follows
from the consistency of each individual hypothesis rel-
ative to its respective training examples. If the join is
independent, then the hypotheses in the version space
join are exactly the hypotheses in the Cartesian prod-
uct of the two component version spaces, and the join
may be updated by updating each of the two compo-
nent version spaces individually. For instance, given
VS1 containing hypotheses {A, B}, and VS2 contain-
ing {X, Y }, even though A and X are consistent with

their respective data, it is not always the case that
〈A, X〉 is consistent with the joint data. Although we
have not yet formalized the conditions under which
joins may be treated as independent, Section 4 gives
several examples of independent joins in the PBD do-
main.

Note that our union and intersection operations are
both commutative and associative, which follows di-
rectly from the properties of the underlying set oper-
ations. The join operator is neither commutative nor
associative.

Definition 4 (Version space transform) Let τi be
a mapping from elements in the domain of VS1 to el-
ements in the domain of VS2, and τo be a one-to-one
mapping from elements in the range of VS1 to elements
in the range of VS2. Version space VS1 is a transform
of VS2 iff VS1 = {g|∃

f∈VS2

∀i g(i) = τ−1
o (f(τi(i)))}.

Transforms are useful for expressing domain-specific
version spaces in terms of general-purpose ones; see
section 4.3 for examples.

3. Application Design

In order to use the version space algebra to model an
application, the application designer must specify a set
of atomic and composite version spaces and designate
a single target space, as shown in Table 1. The role
of atomic spaces, composite spaces and target space in
version space algebra is analogous to the role of termi-
nal symbols, nonterminal symbols and start symbol in
a context-free grammar. The simplest update function
would examine each hypothesis in the version space
individually, and discard the inconsistent hypotheses.
A more efficient update function represents only the
boundaries of the consistent set, and updates only the
boundaries given each training example. The partial
order is a means to this end. Similarly, the simplest
execution function would separately compute the out-
put for each hypothesis in the version space and as-
sign votes to outputs accordingly, but it may be pos-
sible to find the vote for each output more efficiently;
we show an example in the next section. When nei-
ther approach is feasible, approximate votes may be
computed by sampling from the version space; such
sampling is an area for future research.

4. Programming by Demonstration

Programming by demonstration (PBD) is one possible
component of an adaptive user interface. In a PBD ap-
plication, a user demonstrates how to perform a task,
and the system learns an appropriate representation of



Table 1. Domain description to be provided by the appli-
cation designer in order to use the version space algebra
framework.

For each atomic version space:

1. Definition of the hypothesis space.

2. A partial order on the hypothesis space.

3. An update function that updates the version
space to contain only those hypotheses consis-
tent with a given example.

4. An execution function that computes a vote for
each possible output given an input.

For each composite version space:

1. Formula expressing it in terms of atomic
version spaces, previously-defined composite
spaces, and version-space-algebraic operators.

2. A transformation function that takes an exam-
ple for the composite version space and gener-
ates the corresponding examples for each com-
ponent version space.

3. An execution function that takes the outputs
(votes) of the component spaces’ execution
functions and produces a vote for each possi-
ble output of the composite space.

The target composite version space.
(One of the previously-defined composite spaces.)

the task procedure. The learned task model can then
be executed on the user’s behalf in order to automate
repetitive tasks. In this section, we apply our ver-
sion space algebra to the problem of learning procedu-
ral actions in a text-editing domain, and describe our
SMARTedit (Simple MAcro Recognition Tool) PBD
system that learns programs based on demonstrations
of repetitive text-editing tasks.

In this section, we sketch the SMARTedit user inter-
face, define SMARTedit’s search space in terms of our
version space algebra, and highlight the transforma-
tion and execution functions employed by the system.

4.1 The SMARTedit User Interface

SMARTedit implements an editor that supports a sub-
set of the Emacs command language. As the user
is editing a file, when she notices that she is about
to perform a repetitive task, she invokes the SMART
recorder by clicking on a button in the user interface.
SMARTedit then records the sequence of states that

result from the user’s editing commands, and learns
functions that map from one state to another.

When the user has completed one instance of the
repetitive task, she clicks another button to indicate
that she has completed a single demonstration. At this
point, SMARTedit initializes the version space using
the recorded state sequence as the first training exam-
ple. SMARTedit updates the version space lazily as
the user provides training examples, which allows it to
consider infinite version spaces that are only instan-
tiated on receipt of a positive training example.

The learner is able to make useful predictions after
just a single training example. When the user enters
another state where the same repetitive task must be
performed, she invokes the learned procedure step by
step. The system chooses the most likely function in
the version space, executes it, and presents the result-
ing state to the user. If the system’s guess was incor-
rect, the user may press a button to switch to the next
most likely state, and so on. At any point, she may
choose to undo SMARTedit’s last action, or override
the system and perform edits manually. When the user
chooses a state (either by selecting one of SMART-
edit’s choices or by performing the action manually),
this state is interpreted as another example and used
to update the version spaces appropriately.

4.2 Version Space Decomposition

We represent procedural knowledge as a function from
one application state to another. In the text editing
domain, the state is an ordered triple (T, L, P ), where
T is the contents of the text editing buffer, L = (R, C)
the row and column location of the insertion cursor,
and P the contents of the clipboard. After an action is
performed (e.g., inserting a string at the current cursor
position), the resultant state incorporates the changes
made by that action.

At the highest level, our composite version space de-
scribes a set of functions mapping one text-editing pro-
gram state to another. The set of functions in the ver-
sion space represents all text-editing transformations
we are able to learn. The goal of the learner is to in-
duce a function from one state to another by generaliz-
ing from training examples (in the form of a sequence
of states demonstrating the desired state changes). We
compose the target version space out of smaller, com-
ponent version spaces. Figure 1 shows the hierarchy of
version spaces corresponding to the target function in
the text-editing domain. Although we have presented
it here as a tree for clarity, the complete version space
has an equivalent representation as a formula in our
algebraic notation.



The target space Program represents the class of all
functions learnable in our domain. It is composed of
an independent join of a fixed number of Action version
spaces. (In practice, the number is determined lazily
as the length of the first training example. Variable-
length action sequences are a topic for future research.)
Each Action function represents a simple command a
user might perform in a text editor, such as moving the
insertion cursor, inserting and deleting text at the cur-
rent cursor location, and manipulating the clipboard
(selecting text and copying it to and from the clip-
board).

The leaf nodes in the version space hierarchy are the
atomic version spaces. The ConstInt hypothesis space
includes all functions of the form f(int : x) = C for
some integer constant C. We choose the partial order
by the value of C; if f(x) = C1 and g(y) = C2, then
f ≺ g iff C1 < C2. The ConstInt version space is
trivially maintained; after two or more examples, the
version space collapses to one or zero hypotheses. The
LinearInt hypothesis space includes all functions of the
form f(int : x) = x + C, for some integer constant C.
Its partial order and update function are analogous to
ConstInt.

The AbsRow and AbsCol version spaces transform the
ConstInt atomic version spaces from integer functions
into functions on row or column values (i.e., into func-
tions that change the cursor position to an absolute
row or column). Similarly, the RelRow and RelCol ver-
sion spaces transform LinearInt atomic version spaces
into row and column functions (by changing the cur-
sor position relative to its previous location). The Row

composite version space consists of the union of Abs-

Row and RelRow version spaces, and likewise for the
Column version space. The RowCol version space is the
independent join of the Row and Column version spaces
with a consistency predicate that is always true.

Besides row and column positioning, our domain rep-
resentation supports positioning the cursor relative to
the next occurrence of a string. If the cursor is po-
sitioned after (before) a string, we say that the user
was finding the next prefix (suffix) match. Suppose
the user has moved the cursor to the end of the next
occurrence of the string “PBD”. From the system’s
point of view, the user may have been searching for
the prefix “PBD”, the prefix “BD”, or the prefix “D”.
The FindPrefix and FindSuffix version spaces represent
these types of string-searching hypotheses.

More formally, the PrefStr and SuffStr hypothesis
spaces include all functions of the form f() = T for
some constant string T . We choose the partial order
of PrefStr according to a string prefix relationship in

Action Action Action

Program

...

Move

Location

Insert

ConstStr

ConstInt ConstInt LinearIntLinearInt

AbsRow AbsCol RelColRelRow

RowCol

Location

FindSuffixFindPrefix

Row Column SuffStr PrefStr

Paste

DeleteSel

Copy
SelectTo

DeleteTo

Location

Figure 1. Version space structure for the text-editing do-
main. The upper tree shows the complete version space
for a Program, expressed in terms of Action version spaces
(middle tree). Action version spaces are in turn expressed
in terms of Location version spaces (bottom tree). Itali-
cized text denotes an atomic version space, while regular
text denotes a composite version space.

the string T ; if f() = T1 and g() = T2, then f ≺ g iff T1

is a proper prefix of T2. (SuffStr is defined similarly.)
For clarity, we omit the function symbol and simply
refer to the function as the string it produces. The
least upper bound (LUB) and greatest lower bound
(GLB) boundaries of the PrefStr version space are ini-
tialized to be S and C respectively, where S is a token
representing the set of all strings of length K (some
constant greater than the maximum text buffer size)
and C is a token representing the set of all strings of
unit length. When the first example is seen, the LUB
becomes the singleton set containing the contents of
the text buffer following the cursor (a string), and the
GLB becomes the singleton set {“c”}, where c is the
character immediately following the cursor. After the
first example the LUB and GLB will always contain
at most one string each. Given a new training exam-
ple in which the string T follows the cursor, and the
LUB contains the string S, the LUB is updated to
contain the longest common prefix of S and T . The
GLB remains unchanged if the character immediately
following the cursor is again c; otherwise the version
space collapses to the null set.



The FindPrefix version space transforms each hypoth-
esis in the SuffStr version space into a function from
a state to a cursor position. For each function in
the SuffStr version space, we create a corresponding
function in FindPrefix that locates the first occurrence
of this string, and returns the cursor position at the
end of the matching occurrence. FindSuffix trans-
forms PrefStr analagously, finding the beginning of
each matching occurrence.

The various types of cursor-positioning functions are
unioned together as the single Location version space,
which is in turn transformed by many of the actions.
For instance, the Move version space transforms Lo-

cation to provide functions from one state to a new
state with a different cursor location. The DeleteTo

(SelectTo) version space transforms a Location version
space to represent functions that delete (select) from
the input cursor location to a new location, and out-
put a new state in which the text between the two
positions has been deleted (selected).

4.3 Transformation and Execution

The transformation functions for the composite ver-
sion spaces are straightforward; they convert between
state-state functions and functions over more primi-
tive data types such as integers and tuples of integers.
Although a complete description of the transformation
functions used in SMARTedit is beyond the scope of
this paper, we highlight two of the transformations
used in our system.

The transformation function for the top-level Program

space takes a sequence of states s0, s1, ..., sn and con-
structs n examples of the form 〈si−1, si〉, such that the
ith tuple is used to update the ith Action version space.
The RowCol transformation function takes a pair of in-
put/output cursor locations ((ri, ci), (ro, co)) and con-
structs the input/output examples (ri, ro) and (ci, co)
that are appropriate for its component version spaces.
Other version space transformations are straightfor-
wardly defined.

A version space may be executed on a new input state
in order to produce one or more output states. In gen-
eral, executing a version space on an input i means
letting each hypothesis h in it cast a vote for its out-
put h(i), and then choosing the output with the most
votes. If possible, it is desirable to collect the votes
without explicitly enumerating the hypotheses. For
the purposes of the PBD application, we are interested
in the ranked list of output states, with a preference for
output states that are supported by larger numbers of
hypotheses. In order to compute the output states for
a given input state, the input state is propagated down

to the atomic version spaces at the leaves of the tree
using the same transformation function used to up-
date the version space. The outputs of the leaves are
then propagated up through the version space, using
the transformation functions to convert them to the
proper type. The set of outputs for the target space
are then ranked according to the number of hypothe-
ses that voted for each output, and the highest-ranked
state is presented to the user as previously described.

The execution of the FindSuffix version space bears
mentioning. The underlying Prefix version space rep-
resents a set of strings, the longest of which is the
string in the LUB, the others being some prefix of the
string in the LUB. The execution maps each string in
Prefix to the cursor location corresponding to its first
occurrence in the text file following the location of the
cursor. We can perform this search efficiently in time
O(st) where s is the length of the string and t is the
length of the text file, by comparing the string against
the text starting at every position in the text file fol-
lowing the cursor position. The algorithm is as follows:
find the first location where the first k1 characters of
the text and search string match. Cast k1 votes for this
location, one for each of the prefixes which matched.
Continue searching from this occurrence for a match
of at least length k2 > k1, casting k2 − k1 votes for
the next match. Repeat until all prefixes have been
matched or the end of text is reached, and return the
set of output locations and their votes as the result
of the execution. FindPrefix is handled in a similar
fashion.

5. Experimental Results

We have applied the SMARTedit system to a repre-
sentative collection of repetitive text-editing scenarios.
Each scenario is a collection of training examples; a
training example is a sequence of (T, L, P ) states. Fig-
ure 2 lists the scenarios we used to evaluate SMART-
edit, along with the total number of instances in each,
and the number of instances the system needed to see
before making the correct prediction on all remaining
instances (i.e., applying the correct transformation to
them). In some cases, the system succeeds after just a
single example.

The columns scenario operates on a text file containing
data in whitespace-separated columns. The task in
this scenario consists of moving the first column to
the end of the line. The typical sequence of actions
involved in this task is to select the text in the first
column, copy it to the clipboard, delete the selection,
move the cursor to the end of the line, and paste the
contents of the clipboard.



Scenario Total # Exs. # Train Exs.
U1 U2 U3

columns 8 2 2 2
boldface 4 1 1 1
addressbook 6 2 2 2
grades 7 1 1 1
commentstyle 5 1 2 2
HTML-to-LATEX 7 2 2 2

Figure 2. List of scenarios used to test the SMARTedit sys-
tem, total number of examples in each, and number of
training examples (for each of three users) required by the
system to induce a procedure that makes the correct pre-
dictions on the remaining examples.

The boldface scenario has the user take a paragraph of
text containing the word “SMARTedit” and boldface
each occurrence of that word by surrounding it with
the HTML tags <B> and </B>.

The addressbook scenario operates on a text file con-
taining a list of addresses, one per line. The task is to
convert each address into a multi-line format suitable
for printing on a mailing label by inserting carriage
returns at appropriate locations in the address. This
scenario is a simplified version of an example used to
illustrate the TELS system (Mo, 1989).

The grades scenario operates on a text file containing
a list of students and their grades in a class. The
task in this scenario is to delete the student name that
appears at the end of the line, leaving only the list
of grades. The commentstyle scenario operates on a
text file containing source code in the C programming
language. The task in this scenario is to convert all C-
style comments into C++-style comments (assuming
all comments occur on a single line). The HTML-to-

LATEX scenario escapes the angle brackets in HTML
formatting tags using LATEX’s $ math mode notation.

These results show that SMARTedit is capable of
learning procedures for a variety of text-editing tasks
after only a small number of demonstrated examples.

6. Related Work

Our version space algebra is related to Hirsh’s work on
version spaces. For example, Hirsh (1991) studied the
algebra of boundary-set representable version spaces.
We have extended his work beyond concept learning by
allowing any partial order, defining the join operator,
and allowing non-BSR unions and intersections.

A different extension of version spaces has been pro-
posed by VanLehn and Ball (1987), for inducing

context-free grammars from examples. Since general-
ity is undecidable for context-free grammars, VanLehn
and Ball approximate the generality relation using an
alternative partial order.

Several prior systems have addressed programming by
demonstration (Cypher, 1993) in the text-editing do-
main. The TELS system (Mo, 1989) learns programs
given demonstrations of action sequences; TELS uses
a collection of domain-specific heuristics to determine
when two actions may be generalized. The Editing by
Example system (Nix, 1985) took a different approach
and induced a text-editing program using only the ini-
tial and final state of the transformation sequence; the
system is able to learn a restricted subset of regular
expressions.

The Cima system (Maulsby & Witten, 1997) employs
a disjunctive rule learner to learn the arguments to
an action. Although many knowledge representations
suffice for classifying training data into positive and
negative examples, they may be useless in acting on a
novel example. Cima solved this problem by heuristi-
cally preferring rules that more fully describe its be-
havior on an unseen example. In contrast, SMART-
edit’s version space algebra approach makes the search
bias explicit.

Work on automatic induction of wrappers for informa-
tion resources (Kushmerick, 1997; Ashish & Knoblock,
1997) also generates procedural knowledge. In partic-
ular, the LR wrapper class described by Kushmerick
(1997) defines a family of procedures, each of which
is equivalent to a sequence of text-editing commands
that, for each of the k attributes to be extracted:
moves to the next attribute, selects the attribute’s
text, and copies it to the clipboard.

Lesh and Etzioni (1995) used version spaces for goal
recognition. In the BOCE system, each observed ac-
tion caused the version space of goals to be updated
to contain only goals consistent with the observed ac-
tions. The primary difference between BOCE and
SMARTedit is that BOCE assumes that actions are
modeled explicitly as having preconditions and effects
in a STRIPS style; this representation allows BOCE
to directly connect actions with their potential target
goals. In contrast, SMARTedit learns action sequences
themselves, rather than goals.

Langley and Simon (1995) discuss the difficulty of
formulating a problem in a representation amenable
to classification, identify several domains where non-
classification learning may be applied, and describe a
number of early attempts to do so.



7. Conclusion

We have described our version space algebra and ap-
plied it to the domain of programming by demonstra-
tion. We make the following contributions:

• We have generalized version spaces to learning
input-output mappings of any kind, including out-
puts that are structured objects, not just Boolean
values.

• We have developed a framework for application
design using a version space algebra that provides
union, intersection, join, and transformation op-
erators to construct complex version spaces out of
simpler ones.

• We have begun construction of a library of
reusable component version spaces that may be
applied to a variety of domains.

• Using our framework and library, we have built a
programming by demonstration (PBD) system for
the text-editing domain and evaluated its perfor-
mance on several different repetitive text-editing
problems.

Directions for future work include: extending the
version space library; empirically evaluating alterna-
tive domain encodings; extending the algebra with
useful new operators and studying their properties;
combining boundary-represented version spaces with
heuristically-searched ones; searching automatically
through the space of version spaces to find the best
structure for a domain; extending our algorithms to
cope with noisy data probabilistically, including speci-
fying prior probabilities on hypotheses; sampling from
version spaces for efficient execution; and investigating
the problems (including credit assignment) that arise
when the parsing of an example into sub-examples is
not given a priori. We also plan to enrich our domain
model in order to learn more complex text transfor-
mation functions.

Acknowledgements

This research was funded in part by the Office of Naval
Research Grant N00014-98-1-0147, by National Sci-
ence Foundation Grants IRI-9303461 and IIS-9872128,
and by a Microsoft Fellowship. We thank Corin Ander-
son, Pat Langley, Steve Wolfman, and the anonymous
reviewers for their feedback.

References

Ashish, N., & Knoblock, C. (1997). Semi-automatic
wrapper generation for Internet information sources.

Proceedings of the Second IFCIS International Con-
ference on Cooperative Information Systems (pp.
160–169). Los Alamitos, CA: IEEE-CS Press.

Cypher, A. (Ed.). (1993). Watch what I do: Pro-
gramming by demonstration. Cambridge, MA: MIT
Press.

Hirsh, H. (1991). Theoretical underpinnings of ver-
sion spaces. Proceedings of the Twelfth International
Joint Conference on Artificial Intelligence (pp. 665–
670). San Francisco, CA: Morgan Kaufmann.

Hirsh, H., Mishra, N., & Pitt, L. (1997). Version spaces
without boundary sets. Proceedings of the Four-
teenth National Conference on Artificial Intelligence
(pp. 491–496). Menlo Park, CA: AAAI Press.

Kushmerick, N. (1997). Wrapper induction for infor-
mation extraction. Doctoral dissertation, Depart-
ment of Computer Science & Engineering, Univer-
sity of Washington, Seattle, WA.

Langley, P., & Simon, H. A. (1995). Applications of
machine learning and rule induction. Communica-
tions of the ACM, 38, 54–64.

Lesh, N., & Etzioni, O. (1995). A sound and fast
goal recognizer. Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence
(pp. 1704–1710). San Francisco, CA: Morgan Kauf-
mann.

Maulsby, D., & Witten, I. H. (1997). Cima: an inter-
active concept learning system for end-user applica-
tions. Applied Artificial Intelligence, 11, 653–671.

Mitchell, T. (1982). Generalization as search. Artificial
Intelligence, 18, 203–226.

Mo, D. H. (1989). Learning text editing procedures
from examples. Master’s thesis, Department of
Computer Science, University of Calgary, Calgary,
AB.

Nix, R. P. (1985). Editing by example. ACM Trans-
actions on Programming Languages and Systems, 7,
600–621.

Norton, S. W., & Hirsh, H. (1992). Classifier learning
from noisy data as probabilistic evidence combina-
tion. Proceedings of the Tenth National Conference
on Artificial Intelligence (pp. 141–146). Menlo Park,
CA: AAAI Press.

VanLehn, K., & Ball, W. (1987). A version space ap-
proach to learning context-free grammars. Machine
Learning, 2, 39–74.


