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Abstract
A sequence of random variables is exchangeable
if its joint distribution is invariant under variable
permutations. We introduce exchangeable vari-
able models (EVMs) as a novel class of proba-
bilistic models whose basic building blocks are
partially exchangeable sequences, a generaliza-
tion of exchangeable sequences. We prove that a
family of tractable EVMs is optimal under zero-
one loss for a large class of functions, includ-
ing parity and threshold functions, and strictly
subsumes existing tractable independence-based
model families. Extensive experiments show that
EVMs outperform state of the art classifiers such
as SVMs and probabilistic models which are
solely based on independence assumptions.

1. Introduction
Conditional independence is a crucial notion that facili-
tates efficient inference and parameter learning in proba-
bilistic models. Its logical and algorithmic properties as
well as its graphical representations have led to the advent
of graphical models as a discipline within artificial intel-
ligence (Koller & Friedman, 2009). The notion of finite
(partial) exchangeability (Diaconis & Freedman, 1980a),
on the other hand, has not yet been explored as a ba-
sic building block for tractable probabilistic models. A
sequence of random variables is exchangeable if its dis-
tribution is invariant under variable permutations. Simi-
lar to conditional independence, partial exchangeability, a
generalization of exchangeability, can reduce the complex-
ity of parameter learning and is a concept that facilitates
high tree-width graphical models with tractable inference.
For instance, the graphical models (a)-(c) with Bernoulli
variables in Figure 1 depict typical low tree-width models
based on the notion of (conditional) independence. Graph-
ical models (d)-(f) have high tree-width but are tractable
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if we assume the variables with identical shades to be ex-
changeable. We will see that EVMs are especially ben-
eficial for high-dimensional and sparse domains such as
text and collaborative filtering problems. While there exists
work on tractable models, with a majority focusing on low
tree-width graphical models, a framework for finite partial
exchangeability as a basic building block of tractable prob-
abilistic models seems natural but does not yet exist.

(a)

(b)

(d)

(c)

(f)

(e)

Figure 1. Illustration of low tree-width models exploiting in-
dependence (a)-(c) and exchangeable variable models (EVMs)
exploiting finite exchangeability (variable nodes with identical
shades are exchangeable) (d)-(f).

We propose exchangeable variable models (EVMs), a
novel family of probabilistic models for classification and
probability estimation. While most probabilistic models
are built on the notion of conditional independence and
its graphical representation, EVMs have finite partially ex-
changeable sequences as basic components. We show that
EVMs can represent complex positive and negative corre-
lations between large sets of variables with few parameters
and without sacrificing tractable inference. The parame-
ters of EVMs are estimated under the maximum-likelihood
principle and we assume the examples to be independent
and identically distributed. We develop methods for effi-
cient probabilistic inference, maximum-likelihood estima-
tion, and structure learning.

We introduce the mixtures of EVMs (MEVMs) family of
models which is strictly more expressive than the naive
Bayes family of models but as efficient to learn. MEVMs
represent classifiers that are optimal under zero-one loss
for a large class of Boolean functions including parity and
threshold functions. Extensive experiments show that ex-
changeable variable models, when combined with the no-
tion of conditional independence, are effective both for



Exchangeable Variable Models

classification and probability estimation. The MEVM clas-
sifier significantly outperforms state of the art classifiers on
numerous high-dimensional and sparse data sets. MEVMs
also outperform several tractable graphical model classes
on typical probability estimation problems while being or-
ders of magnitudes more efficient.

2. Background
We begin by reviewing the statistical concepts of finite ex-
changeability and finite partial exchangeability.

2.1. Finite Exchangeability

Finite exchangeability is best understood in the context of
a finite sequence of binary random variables such as a finite
number of coin tosses. Here, finite exchangeability means
that it is only the number of heads that matters and not
their particular order. Since exchangeable variables are not
necessarily independent, finite exchangeability can model
highly correlated variables, a graphical representation of
which would be the fully connected graph with high tree-
width (see Figure 1(d)). However, as we will later see, the
number of parameters and the complexity of inference re-
mains linear in the number of variables.

Definition 2.1 (Exchangeability). Let X1, ..., Xn be a
sequence of random variables with joint distribution P
and let S(n) be the group of all permutations acting on
{1, ..., n}. We say that X1, ..., Xn is exchangeable if
P (X1, ..., Xn) = P (Xπ(1), ..., Xπ(n)) for all π ∈ S(n).

In this paper, we are concerned with exchangeable vari-
ables and iid examples. The literature has mostly focused
on exchangeability of an infinite sequence of random vari-
ables. In this case, one can express the joint distribution as
a mixture of iid sequences (de Finetti, 1938). However, for
finite sequences of exchangeable variables this representa-
tion is inadequate – while finite exchangeable sequences
can be approximated with de Finetti style mixtures of iid
sequences, these approximations are not suitable for finite
sequences of random variables not extendable to an infinite
exchangeable sequence (Diaconis & Freedman, 1980b).
Moreover, negative correlations can only be modeled in the
finite case. There are interesting connections between the
automorphisms of graphical models and finite exchange-
ability (Niepert, 2012). An alternative approach to ex-
changeability considers its relationship to sufficiency (Dia-
conis & Freedman, 1980a; Lauritzen et al., 1984) which is
at the core of our work.

2.2. Finite Partial Exchangeability

The assumption that all variables of a probabilistic model
are exchangeable is often too strong. Fortunately, finite ex-
changeability can be generalized to the concept of finite
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Figure 2. A finite sequence of exchangeable variables can be pa-
rameterized as a unique mixture of urn processes. Each such urn
process is a series of draws without replacement.

partial exchangeability using the notion of a statistic.
Definition 2.2 (Partial Exchangeability). Let X1, ..., Xn

be a sequence of random variables with distribution P , let
Val(Xi) be the domain ofXi, and let T be a finite set. The
sequence X1, ..., Xn is partially exchangeable with respect
to the statistic T : Val(X1)× ...×Val(Xn)→ T if

T (x) = T (x′) implies P (x) = P (x′),

where x and x′ are assignments to the sequence of random
variables X1, ..., Xn.

The following theorem states that the joint distribution of a
sequence of random variables, which is partially exchange-
able with respect to a statistic T , is a unique mixture of
uniform distributions.
Theorem 2.3. (Diaconis & Freedman, 1980a) Let
X1, ..., Xn be a sequence of random variables with distri-
bution P , let T be a finite set, and let T : Val(X1)× ...×
Val(Xn) → T be a statistic. Moreover, let St = {x ∈
Val(X1) × ... ×Val(Xn) | T (x) = t}, let Ut be the uni-
form distribution on St, and let wt = P (St). If X1, ..., Xn

is partially exchangeable with respect to T , then

P (x) =
∑
t∈T

wtUt(x). (1)

The theorem provides an implicit description of the distri-
butions Ut. The challenge for specific families of random
variables lies in finding a statistic T with respect to which a
sequence of variables is partially exchangeable and an effi-
cient algorithm to compute the probabilities Ut(x). For the
case of exchangeable sequences of discrete random vari-
ables and, in particular, exchangeable sequences of binary
random variables, an explicit description does exist and is
well-known in the statistics literature (Diaconis & Freed-
man, 1980a; Stefanescu & Turnbull, 2003).
Example 2.4. Let X1, X2, X3 be three exchangeable bi-
nary variables with joint distribution P . Then, the se-
quence X1, X2, X3 is partially exchangeable with respect
to the statistic T : {0, 1}3 → T = {0, 1, 2, 3} with
T (x = (x1, x2, x3)) = x1 + x2 + x3. Thus, we can write

P (x) =
∑
t∈T

wtUt(x),
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where wt = P (T (x) = t), Ut(x) = [[T (x) = t]]
(
3
t

)−1
,

and [[·]] is the indicator function. Hence, the distribution
can be parameterized as a unique mixture of four urn pro-
cesses, where T ’s value is the number of black balls. Fig-
ure 2 illustrates the mixture model. The generative process
is as follows. First, choose one of the four urns according
to the mixing weightswt; then draw three consecutive balls
from the chosen urn without replacement.

3. Exchangeable Variable Models
We propose exchangeable variable models (EVMs) as a
novel family of tractable probabilistic models for classifica-
tion and probability estimation. While probabilistic graph-
ical models are built on the notion of (conditional) inde-
pendence and its graphical representation, EVMs are built
on the notion of finite (partial) exchangeability. EVMs
can model both negative and positive correlations in what
would be high tree-width graphical models without losing
tractability of probabilistic inference.

The basic components of EVMs are tuples (X, T ) where
X is a sequence of discrete random variables partially ex-
changeable with respect to the statistic T with values T .

3.1. Probabilistic Inference

We can relate finite partial exchangeability to tractable
probabilistic inference (see also (Niepert & Van den
Broeck, 2014)). We assume that for every joint assignment
x, P (x) can be computed in time poly(|X|).
Proposition 3.1. Let X be partially exchangeable with
respect to the statistic T with values T , let |T | =
poly(|X|), and let, for any partial assignment e, St,e :=
{x | T (x) = t and x ∼ e} , where x ∼ e denotes that x
and e agree on the variables in their intersection (Koller &
Friedman, 2009). If we can in time poly(|X|),

(1) for every e and every t ∈ T , decide if there exists an
x ∈ St,e and, if so, construct such an x,

then the complexity of MAP inference, that is, comput-
ing argmaxy P (y, e) for any partial assignment e, is
poly(|X|). If, in addition, we can in time poly(|X|),

(2) for every e and every t ∈ T , compute |St,e|,

then the complexity of marginal inference, that is, comput-
ing P (e) for any partial assignment e, is poly(|X|).

Proposition 3.1 generalizes to probabilistic models where
P (x) can only be computed up to a constant factor Z such
as undirected graphical models. Please note that computing
conditional probabilities is tractable whenever conditions
(1) and (2) are satisfied. We say a statistic is tractable if
either of the conditions is fulfilled.

Proposition 3.1 provides a theoretical framework for de-
veloping tractable non-local potentials. For instance, for n
exchangeable Bernoulli variables, the complexity of MAP
and marginal inference is polynomial in n. This follows
from the statistic T satisfying conditions (1) and (2) and
since |T | = n + 1. Related work on cardinality-based po-
tentials has mostly focused on MAP inference (Gupta et al.,
2007; Tarlow et al., 2010). Finite exchangeability also
speaks to marginal inference via the tractability of com-
puting Ut(e) = |St,e|−1. EVMs can model unary poten-
tials using singleton sets of exchangeable variables. While
not all instances of finite partial exchangeability result in
tractable probabilistic models there exist several examples
satisfying conditions (1) and (2) which go beyond finite ex-
changeability. In the supplementary material, in addition to
the proofs of all theorems and propositions, we present ex-
amples of tractable statistics that are different from those
associated with cardinality-based potentials (Gupta et al.,
2007; Tarlow et al., 2010; 2012; Bui et al., 2012).

3.2. Parameter Learning

The parameters of finite sequences of partially exchange-
able variables are the mixture weights of the parameteriza-
tion given in Equation 1 of Theorem 2.3. Estimating the
parameters of these basic components of EVMs is a cru-
cial task. We derive the maximum-likelihood estimates for
these mixture weight vectors.
Theorem 3.2. Let X1, ..., Xn be a sequence of random
variables with joint distribution P , let T be a statistic
with distinct values t0, ..., tk, and let X1, ..., Xn be par-
tially exchangeable with respect to T . The ML estimates
for N examples, x(1), ...,x(N), are MLE[(w0, ..., wk)] =(
c0
N , ...,

ck

N

)
, where ci =

∑N
j=1[[T

(
x(j)

)
= ti]].

Hence, the statistical parameters to be estimated are iden-
tical to the statistical parameters of a multinomial distribu-
tion with |T | distinct categories.

3.3. Structure Learning

Let X̂ be a sequence of random variables and let
x̂(1), ..., x̂(N) be N iid examples drawn from the data-
generating distribution. In order to learn the structure of
EVMs we need to address two problems.

Problem 1: Find subsequences X ⊆ X̂ that are exchange-
able with respect to a given tractable statistic T . This
identifies individual EVM components (X, T ) for which
tractable inference and learning is possible. We may utilize
different tractable statistics for different components.

Problem 2: Construct graphical models whose potentials
are the previously learned tractable EVM components. In
order to preserve tractability of the global model, we have
to restrict the class of possible graphical structures.
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We now present approaches to these two problems that
learn expressive EVMs while maintaining tractability.

Let us first address Problem 1. We focus on EVMs with
finitely exchangeable components. Fortunately, there exist
several necessary conditions for finite exchangeability (see
Definition 2.1) of a sequence of random variables.

Proposition 3.3. The following statements are necessary
conditions for exchangeability of a finite sequence of ran-
dom variables X1, ..., Xn. For all i, j, i′, j′ ∈ {1, ..., n}
with i 6= j and i′ 6= j′

(1) E(Xi) = E(Xj);

(2) Var(Xi) = Var(Xj); and

(3) Cov(Xi, Xj) = Cov(Xi′ , Xj′) ≥ −Var(Xi)
(n−1) .

The necessary conditions can be exploited to assess
whether a sequence of variables is finitely exchangeable.
In order to learn EVM components (X, T ) we assume that
a sequence of variables is exchangeable unless a statisti-
cal test contradicts some or all of the necessary conditions
for finite exchangeability. For instance, if a statistical test
deemed the expectations E(X) and E(X ′) for two vari-
ables X and X ′ identical, we could assume X and X ′ to
be exchangeable. If we wanted the statistical test for finite
exchangeability to be more specific and less sensitive, we
would also require conditions (2) and/or (3) to hold. Please
note the analogy to structure learning with conditional in-
dependence tests. Instead of identifying (conditional) inde-
pendencies we identify finite exchangeability among ran-
dom variables. For a sequence of identically distributed
variables the assumption of exchangeability is weaker than
that of independence. Testing whether two discrete vari-
ables have identical mean and variance is efficient algorith-
mically. Of course, the application of the necessary con-
ditions for finite exchangeability is only one possible ap-
proach to learning the components of EVMs.

Let us now turn to Problem 2. To ensure tractability, the
global graphical structure has to be restricted to tractable
classes such as chains and trees. Here, we focus on mixture
models where, conditioned on the values of the latent vari-
able, X̂ is partitioned into exchangeable blocks (see Fig-
ure 3). Hence, for each value y of the latent variable, we
perform the statistical tests of Problem 1 with estimates of
the conditional expectations E(X | y). We introduce this
class of EVMs in the next section and leave more complex
structures to future work.

In the context of longitudinal studies and repeated-
measures experiments, where an observation is made at
different times and under different conditions, there ex-
ist several models taking into account the correlation be-
tween these observations and assuming identical or similar

X2 X4X3X1

C ... ...

X2 X4X3X1

C

X2 X4X3X1

C

Figure 3. The combination of exchangeable and independent
variables leads to a spectrum of models. On the one end is the
model where, conditioned on the class, all variables are indepen-
dent (but possibly not identically distributed; left). On the other
end is the model where, conditioned on the class, all variables are
exchangeable (but possibly correlated; right). The partition of the
variables into exchangeable blocks can vary with the class value.

covariance structure for subsets of the variables (Jennrich
& Schluchter, 1986). These compound symmetry models,
however, do not make the assumption of exchangeability
and, therefore, do not generally facilitate tractable infer-
ence. Nevertheless, finite exchangeability can be seen as
a form of parameter tying, a method that has also been
applied in the context of hidden Markov models, neural
networks (Rumelhart et al., 1986) and, most notably, sta-
tistical relational learning (Getoor & Taskar, 2007). Col-
lective graphical models (Sheldon & Dietterich, 2011)
(CGMs) and high-order potentials (Tarlow et al., 2010;
2012) (HOPs) are models based on non-local potentials.
Proposition 3.3 can be applied for learning the structure of
novel tractable instances of CGMs and HOPs.

4. Exchangeable Variable Models for
Classification and Probability Estimation

We are now in the position to design model families that
combine the notions of (partial) exchangeability with that
of (conditional) independence. Instead of specifying a
structure that solely models the (conditional) independence
characteristics of the probabilistic model, EVMs also spec-
ify sequences of variables that are (partially) exchangeable.
The previous results provide the necessary tools to learn
both the structure and parameters of partially exchangeable
sequences and to perform tractable probabilistic inference.

The possibilities for building families of exchangeable vari-
able models (EVMs) are vast. Here, we focus on a family
of mixtures of EVMs generalizing the widely used naive
Bayes model. The family of probabilistic models is there-
fore also related to research on extending the naive Bayes
classifier (Domingos & Pazzani, 1997; Rennie et al., 2003).
The motivation behind this novel class of EVMs is that it
facilitates both tractable maximum-likelihood learning and
tractable probabilistic inference.

In line with existing work on mixture models, we derive the
maximum-likelihood estimates for the fully observed set-
ting, that is, when there are no examples with missing class
labels. We also discuss the expectation maximization (EM)
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algorithm for the case where the data is partially observed,
that is, when examples with missing class labels exist.

Definition 4.1 (Mixture of EVMs). The mixture of EVMs
(MEVM) model consists of a class variable Y with k pos-
sible values, a set of binary attributes X̂ = {X1, ..., Xn}
and, for each y ∈ {1, ..., k}, a set Xy specifying a par-
tition of the attributes into blocks of exchangeable se-
quences. The structure of the model, therefore, is defined
by X = {Xi}ki=1, the set of attribute partitions, one for
each class value. The model has the following parameters:

1. A parameter p(y) for every y ∈ {1, ..., k} specifying
the prior probability of seeing class value y.

2. A parameter q(X)(` | y) for every y ∈ {1, ..., k}, ev-
ery X ∈ Xy , and every ` ∈ {0, 1, ..., |X|}. The value
of q(X)(` | y) is the probability of the exchangeable
sequence X ⊆ X̂ having an assignment with ` num-
ber of 1s, conditioned on the class label being y.

Let nX(x̂) be the number of 1s in the joint assignment x̂
projected onto the variable sequence X ⊆ X̂. The proba-
bility for every y, x̂ = (x1, ..., xn) is then defined as

P(y, x̂) = p(y)
∏

X∈Xy

q(X)(nX(x̂) | y)
(
|X|

nX(x̂)

)−1

.

Hence, conditioned on the class, the attributes are parti-
tioned into mutually independent and disjoint blocks of ex-
changeable sequences. Figure 3 illustrates the model fam-
ily with the naive Bayes model being positioned on one
end of the spectrum. Here, Xy = {{X1}, ..., {Xn}} for
all y ∈ {1, ..., k}. On the other end of the spectrum is the
model that assumes full exchangeability conditioned on the
class. Here, Xy = {{X1, ..., Xn}} for all y ∈ {1, ..., k}.
For binary attributes, the number of free parameters is
k + kn − 1 for each member of the MEVM family. The
following theorem provides the maximum-likelihood esti-
mates for these parameters.

Theorem 4.2. The maximum-likelihood estimates for a
MEVM with attributes X̂, structure X = {Xi}ki=1, and a
sequence of examples

(
y(i), x̂(i)

)
, 1 ≤ i ≤ N, are

p(y) =
∑N
i=1[[y

(i) = y]]
N

and, for each y and each X ∈ Xy ,

q(X)(` | y) =
∑N
i=1[[y

(i) = y and nX

(
x̂(i)
)

= `]]∑N
i=1[[y(i) = y]]

.

We utilize MEVMs for classification problems by learn-
ing the parameters and computing the MAP state of the

Algorithm 1 Expectation Maximization for MEVMs
Input: The number of classes k. Training examples
〈x̂(i) = (x(i)

1 , ..., x
(i)
n )〉, 1 ≤ i ≤ N . A parameter speci-

fying a stopping criterion.
Initialization: Assign bN/kc random examples to each
mixture component. For each class value y ∈ {1, ..., k},
partition the n variables into exchangeable sequences
X (0)
y , and compute p(0)(y) and q

(0)
(X)(` | y) for each

X ∈ X (0)
y and 0 ≤ ` ≤ |X| using Theorem 4.2.

Iterate: until stopping criterion is met
1. For i = 1, ..., N and y = 1, ..., k compute

δ(y | i) =
P(t−1)

(
y, x̂(i)

)∑k
j=1 P(t−1)

(
j, x̂(i)

) .
2. For each y ∈ {1, ..., k}, partition the variables

into blocks of exchangeable sequences X (t)
y .

3. Update parameters for both X (t−1)
y and X (t)

y :

p(t)(y) =
∑N
i=1 δ(y | i)
N

,

q
(t)
(X)(` | y) =

∑N
i=1[[nX

(
x̂(i)
)

= `]] δ(y | i)∑N
i=1 δ(y | i)

.

4. Select the new block structure according to the
maximum log-likelihood on training examples.

Output: Structure and parameter estimates.

class variable conditioned on assignments to the attribute
variables. For probability estimation the class is latent and
we can apply Algorithm 1. The expectation maximization
(EM) algorithm is initialized by assigning random exam-
ples to the mixture components. In each EM iteration, the
examples are fractionally assigned to the components, and
the block structure and parameters are updated. Finally,
either the previous or current structure is chosen based on
the maximum likelihood. For the structure learning step
we can, for instance, apply conditions from Proposition 3.3
where we use the conditional expectations E(Xj | y), es-
timated by

∑N
i=1 x

(i)
j δ(y | i)/N , for the statistical tests to

construct Xy . Since the new structure is chosen from a set
containing the structure from the previous EM iteration, the
convergence of Algorithm 1 follows from that of structural
expectation maximization (Friedman, 1998).

A crucial question is how expressive the novel model fam-
ily is. We provide an analytic answer by showing that
MEVMs are globally optimal under zero-one loss for a
large class of Boolean functions, namely, conjunctions and
disjunctions of attributes and symmetric Boolean func-
tions. Symmetric Boolean functions are Boolean function
whose value depends only on the number of ones in the
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input (Canteaut & Videau, 2005). The class includes (a)
Threshold functions, whose value is 1 on inputs vectors
with k or more ones for a fixed k; (b) Exact-value func-
tions, whose value is 1 on inputs vectors with k ones for a
fixed k; (c) Counting functions, whose value is 1 on inputs
vectors with the number of ones congruent to k mod m for
fixed k,m; and (d) Parity functions, whose value is 1 if the
input vector has an odd number of ones.
Definition 4.3. (Domingos & Pazzani, 1997) The Bayes
rate for an example is the lowest zero-one loss achievable
by any classifier on that example. A classifier is locally op-
timal for an example iff its zero-one loss on that example is
equal to the Bayes rate. A classifier is globally optimal for
a sample iff it is locally optimal for every example in that
sample. A classifier is globally optimal for a problem iff it
is globally optimal for all possible samples of that problem.

We can now state the following theorem.
Theorem 4.4. The mixtures of EVMs family is globally op-
timal under zero-one loss for

1. Conjunctions and disjunctions of attributes;

2. Symmetric Boolean functions such as

• Threshold (m-of-n) functions
• Parity functions
• Counting functions
• Exact value functions

Theorem 4.4 is striking as the parity function and its spe-
cial case, the XOR function, are instances of not linearly
separable functions which are often used as examples of
particularly challenging classification problems. The opti-
mality for symmetric Boolean functions holds even for the
model that assumes full exchangeability of the attributes
given the value of the class variable (see Figure 3, right). It
is known that the naive Bayes classifier is not globally op-
timal for threshold (m-of-n) functions despite them being
linearly separable (Domingos & Pazzani, 1997). Hence,
combining conditional independence and exchangeability
leads to highly tractable probabilistic models that are glob-
ally optimal for a broader class of Boolean functions.

5. Experiments
We conducted extensive experiments to assess the effi-
ciency and effectiveness of MEVMs as tractable probabilis-
tic models for classification and probability estimation. A
major objective is the comparison of MEVMs and naive
Bayes models. We also compare MEVMs with several state
of the art classification algorithms. For the probability es-
timation experiments, we compare MEVMs to latent naive
Bayes models and several widely used tractable graphical
model classes such as latent tree models.

Table 1. Properties of the classification data sets and mean and
standard deviation of the number of MEVM blocks.

Data set |V | Train Test Blocks
Parity 1,000 106 10,000 1.3± 0.3
Counting 1,000 106 10,000 1.9± 0.9
M-of-n 1,000 106 10,000 2.4± 1.6
Exact 1,000 106 10,000 3.2± 2.1

20Newsgrp 19,726.1 1,131.4 753.2 19.2± 1.5
Reuters-8 19,398.0 1,371.3 547.2 16.9± 9.1
Polarity 38,045.8 1,800.0 200.0 34.1± 0.7
Enron 43,813.6 4,000.0 1,000.0 30.2± 6.0
WebKB 7,290.0 1,401.5 698.0 19.3± 3.6
MNIST 784.0 12,000.0 2,000.0 72.3± 3.1

5.1. Classification

We evaluated the MEVM classifier using both synthetic
and real-world data sets. Each synthetic data set consists
of 106 training and 10000 test examples. Let n(x) be the
number of ones of the example x. The parity data was
generated by sampling uniformly at random an example x
from the set {0, 1}1000 and assigning it to the first class if
n(x) mod 2 = 1, and to the second class otherwise. For
the 10-of-1000 data set we assigned an example x to the
first class if n(x) ≥ 10, and to the second class otherwise.
For the counting data set we assigned an examples x to the
first class if n(x) mod 5 = 3, and to the second class oth-
erwise. For the exact data set we assigned an example x to
the first class if n(x) ∈ {0, 200, 400, 600, 800, 1000}, and
to the second class otherwise.

We used the SCIKIT 0.141 functions to load the 20News-
group train and test samples. We removed headers, foot-
ers, and quotes from the training and test documents. This
renders the classification problem more difficult and leads
to significantly higher zero-one loss for all classifiers. For
the Reuters-8 data set we considered only the Reuters-
21578 documents with a single topic and the top 8 classes
that have at least one train and one test example. For the
WebKB text data set we considered the classes project,
course, faculty, and student. For all text data sets we
used the binary bag-of-word representation resulting in fea-
ture spaces with up to 45000 dimensions. For the MNIST
data set, a collection of hand-written digits, we set a feature
value to 1 if the original feature value was greater than 50,
and to 0 otherwise. The polarity data set is a well-known
sentiment analysis problem based on movie reviews (Pang
& Lee, 2004). The problem is to classify movie reviews
as either positive or negative. We used the cross-validation
splits provided by the authors. The Enron spam data set
is a collection of e-mails from the Enron corpus that was
divided into spam and no-spam messages (Metsis et al.,

1http://scikit-learn.org/
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Table 2. Accuracy values for the two-class experiments. Bold
numbers indicate significance (paired t-test; p < 0.01) compared
to non-bold results in the same row.

Data set MEVM NB DT SVM 5-NN
Parity 0.958 0.497 0.501 0.493 0.502
Counting 0.967 0.580 0.655 0.768 0.765
M-of-n 0.994 0.852 0.990 0.995 0.715
Exact 0.996 0.566 0.983 0.995 0.974
20Newsgrp 0.905 0.829 0.803 0.867 0.582
Reuters-8 0.968 0.940 0.965 0.982 0.881
Polarity 0.826 0.794 0.623 0.859 0.520
Enron 0.980 0.915 0.948 0.972 0.743
WebKB 0.943 0.907 0.899 0.952 0.780
MNIST 0.969 0.964 0.981 0.983 0.995

Table 3. Accuracy values for the multi-class experiments. Bold
numbers indicate significance (paired t-test; p < 0.01) compared
to non-bold results in the same column.

Classifier 20Newsgrp Reuters-8 WebKB MNIST
MEVM 0.626 0.911 0.860 0.855
NB 0.537 0.862 0.783 0.842

2006). Here, we applied randomized 100-fold cross val-
idation. We did not apply feature extraction algorithms
to any of the data sets. Table 1 lists the properties of the
data sets and the mean and standard deviation of the num-
ber of blocks of the MEVMs. We distinguished between
two-class and multi-class (more than 2 classes) problems.
When the original data set had more than two classes, we
created the two-class problems by considering every pair
of classes as a separate cross-validation problem. We draw
this distinction because we want to compare classification
approaches independent of particular multi-class strategies
(1-vs-n, 1-vs-1, etc.).

We exploited necessary condition (1) from Proposition 3.3
to learn the block structure of the MEVM classifiers. For
each pair of variables X,X ′ and each class value y, we
applied Welch’s t-test to test the null hypothesis E(X |
y) = E(X ′ | y). If, for two variables, the test’s p-
value was less than 0.1, we rejected the null hypothesis
and placed them in different blocks conditioned on y. We
applied Laplace smoothing with a constant of 0.1. The
same parameter values were applied across all data sets
and experiments. For all other classifiers we used the
SCIKIT 0.14 implementations naive bayes.BernoulliNB,
tree.DecisionTreeClassifier, svm.LinearSVC, and neigh-
bors.KNeighborsClassifier. We used the classifiers’ stan-
dard settings except for the naive Bayes classifier where
we applied a Laplace smoothing constant (alpha) of 0.1 to
ensure a fair comparison (NB results deteriorated for alpha
values of 1.0 and 0.01). The standard setting for the clas-
sifiers are available as part of the SCIKIT 0.14 documenta-
tion. All implementations and data sets will be published.

Table 2 lists the results for the two-class problems. The
MEVM classifier was one of the best classifiers for 8 out
of the 10 data sets. With the exception of the MNIST data
set, where the difference was insignificant, MEVM signifi-
cantly outperformed the naive Bayes classifier (NB) on all
data sets. The MEVM classifier outperformed SVMs on
4 data sets, two of which are real-world text classification
problems and achieved a tie on 4. For the parity data set
only the MEVM classifier was better than random. Table 3
shows the results on the multi-class problems. Here, the
MEVM classifier significantly outperforms naive Bayes on
all data set. The MEVM classifier outperformed all clas-
sifiers on the 20Newsgroup and was a close second on the
Reuters-8 and WebKB data sets. The MEVM classifier is
particularly suitable for high-dimensional and sparse data
sets. We hypothesize that this has three reasons. First,
MEVMs can model both negative and positive correlations
between variables. Second, MEVMs perform a non-linear
transformation of the feature space. Third, MEVMs clus-
ter noisy variables into blocks of exchangeable sequences
which acts as a form of regularization in sparse domains.

5.2. Probability Estimation

We conducted experiments with a widely used collection of
data sets (Van Haaren & Davis, 2012; Gens & Domingos,
2013; Lowd & Rooshenas, 2013). Table 4 lists the number
of variables, training and test examples, and the number of
blocks of the MEVM models. We set the latent variable’s
domain size to 20 for each problem and applied the same
EM initialization for MEVMs and NB models. This way
we could compare NB and MEVM independent of the tun-
ing parameters specific to EM. We implemented EM ex-
actly as described in Algorithm 1. For step (2), we ex-
ploited Proposition 3.3 (1) and, for each y, partitioned the
variables into exchangeable blocks by performing a series
of Welch’s t-tests on the expectations E(Xj | y), estimated
by
∑N
i=1 x

(i)
j δ(y | i)/N , assigning two variables to differ-

ent blocks if the null hypothesis of identical means could be
rejected at a significance level of 0.1. For MEVM and NB
we again used a Laplace smoothing constant of 0.1. We
ran EM until the average log-likelihood increase between
iterations was less than 0.001. We restarted EM 10 times
and chose the model with the maximal log-likelihood on
the training examples. We did not use the validation data.
For LTM (Choi et al., 2011), we applied the four meth-
ods, CLRG, CLNJ, regCLRG, and regCLNJ, and chose the
model with the highest validation log-likelihood.

Table 5 lists the average log-likelihood of the test data for
the MEVM, the latent naive Bayes (Lowd & Domingos,
2005) (NB), the latent tree (LTM), and the Chow-Liu tree
model (Chow & Liu, 2006) (CL). Even without exploit-
ing the validation data for model tuning, the MEVM mod-
els outperformed the CL models on all, and the LTMs on
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Table 4. Properties of the data sets used for probability estimation
and mean and standard deviation of the number of MEVM blocks.

Data set |V | Train Test Blocks
NLTCS 16 16,181 3,236 8.8± 1.9
MSNBC 17 291,326 58,265 15.9± 1.1
KDDCup 2000 64 180,092 34,955 15.8± 4.7
Plants 69 17,412 3,482 15.9± 2.9
Audio 100 15,000 3,000 13.7± 3.0
Jester 100 9,000 4,116 10.4± 2.0
Netflix 100 15,000 3,000 14.8± 3.2
MSWeb 294 29,441 5,000 21.3± 2.0
Book 500 8,700 1,739 12.4± 2.9
WebKB 839 2,803 838 10.6± 2.3
Reuters-52 889 6,532 1,540 16.7± 3.1
20Newsgroup 910 11,293 3,764 17.9± 3.7

all but two of the data set. MEVMs achieve the highest
log-likelihood score on 7 of the 12 data sets. With the ex-
ception of the Jester data set, MEVMs either outperformed
or tied the NB model. While the results indicate that
MEVMs are effective for higher-dimensional and sparse
data sets, where the increase in log-likelihood was most
significant, MEVMs also outperformed the NB models on
3 data sets with less than 100 variables. The MEVM and
NB models have exactly the same number of free param-
eters. Since results on the same data sets are available for
other tractable model classes we also compared MEVMs
with SPNs (Gens & Domingos, 2013) and ACMNs (Lowd
& Rooshenas, 2013). Here, MEVMs are outperformed by
the more complex SPNs on 5 and by ACMNs on 6 data
sets. However, MEVMs are competitive and outperform
SPNs on 7 and ACMNs on 6 of the 12 data sets. Follow-
ing previous work (Van Haaren & Davis, 2012), we ap-
plied the Wilcoxon signed-rank test. MEVM outperforms
the other models at a significance level of 0.0124 (NB),
0.0188 (LTM), and 0.0022 (CL). The difference is insignif-
icant compared to ACMNs (0.6384) and SPNs (0.7566).

To compute the probability of one example, MEVMs re-
quire as many steps as there are blocks of exchangeable
variables. Hence, EM for MEVM is significantly more ef-
ficient than EM for NB, both for a single EM iteration and
to reach the stopping criterion. While the difference was
less significant for problems with fewer than 100 variables,
the EM algorithm for MEVM was up to two orders of mag-
nitude faster for data sets with 100 or more variables.

6. Discussion
Exchangeable variable models (EVMs) provide a frame-
work for probabilistic models combining the notions of
conditional independence and partial exchangeability. As
a result, it is possible to efficiently learn the parameters
and structure of tractable high tree-width models. EVMs
can model complex positive and negative correlations be-

Table 5. Average log-likelihood of the MEVM, the naive Bayes,
the latent tree, and the Chow-Liu tree model.

Data set MEVM NB LTM CL
NLTCS -6.04 -6.04 -6.46 -6.76
MSNBC -6.23 -6.71 -6.52 -6.54
KDDCup 2000 -2.13 -2.15 -2.18 -2.29
Plants -14.86 -15.10 -16.39 -16.52
Audio -40.63 -40.69 -41.89 -44.37
Jester -53.22 -53.19 -55.17 -58.23
Netflix -57.84 -57.87 -58.53 -60.25
MSWeb -9.96 -9.96 -10.21 -10.19
Book -34.63 -34.80 -34.23 -34.70
WebKB -157.21 -158.01 -156.84 -163.48
Reuters-52 -86.98 -87.32 -91.25 -94.37
20Newsgroup -152.69 -152.78 -156.77 -164.13

tween large numbers of variables. We presented the theory
of EVMs and showed that a particular subfamily is optimal
for several important classes of Boolean functions. Exper-
iments with a large number of data sets verified that mix-
tures of EVMs are powerful and highly efficient models for
classification and probability estimation.

EVMs are potential components in deep architectures such
as sum-product networks (Gens & Domingos, 2013). In
light of Theorem 4.4, exchangeable variable nodes, com-
plementing sum and product nodes, can lead to more
compact representations with fewer parameters to learn.
EVMs are also related to graphical modeling with perfect
graphs (Jebara, 2013). In addition, EVMs provide an in-
sightful connection to lifted probabilistic inference (Ker-
sting, 2012), an active research area concerned with ex-
ploiting symmetries for more efficient probabilistic infer-
ence. We have developed a principled framework based on
partial exchangeability as an important notion of structural
symmetry. There are numerous opportunities for cross-
fertilization between EVMs, perfect graphical models, col-
lective graphical models, and statistical relational models.

Directions for future work include more sophisticated
structure learning, EVMs with continuous variables, EVMs
based on instances of partial exchangeability other than fi-
nite exchangeability, novel statistical relational formalisms
incorporating EVMs, applications of EVMs, and a general
theory of graphical models with exchangeable potentials.
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A. Proof of Proposition 3.1
Let X be partially exchangeable with respect to the statistic
T with values T , let |T | = poly(|X|), and let, for any
partial assignment e, St,e := {x | T (x) = t and x ∼ e} ,
where x ∼ e denotes that x and e agree on the variables in
their intersection (Koller & Friedman, 2009). If we can in
time poly(|X|),

(1) for every e and every t ∈ T , decide if there exists an
x ∈ St,e and, if so, construct such an x,

then the complexity of MAP inference, that is, com-
puting argmaxy P (y, e) for any partial assignment e, is
poly(|X|). If, in addition, we can in time poly(|X|),

(2) for every e and every t ∈ T , compute |St,e|,

then the complexity of marginal inference, that is, comput-
ing P (e) for any partial assignment e, is poly(|X|).

Proof. We first prove statement (1). Let e be a given
partial assignment and assume we want to compute
argmaxy P (y, e). We construct an xt ∈ St,e for each
t ∈ T and set x̂t := argmaxxt

P (xt). By assumption, this
is possible in time poly(|X|). Since we have that x̂t = ŷe
with ŷ := argmaxy P (y, e) we can extract the solution in
linear time.

To prove statement (2), let e be a partial assignment. We
construct a xt ∈ St,e for each t ∈ T for which such an xt
exists, compute |St,e|, and return

∑
t∈T P (xt)|St,e|. By

assumption, this is possible in time poly(|X|).

We can utilize Proposition 3.1 to prove that probabilistic in-
ference for a sequence of n exchangeable binary variables
is tractable.

Example A.1 (Finite Exchangeability). Let X be an ex-
changeable sequence of binary random variables. Let n(e)
be the number of 1s in a partial assignment e to the vari-
ables X. Clearly, we have that X is exchangeable with
respect to the statistic T (x) = n(x) with values T =
{0, ..., n}.

First, we prove that for every partial assignment e to k of
the n variables and every t ∈ T , we can decide if there
exists an x ∈ St,e and, if so, construct such an x in time
poly(|X|). If n(e) > t or n−k+n(e) < t, then there does
not exist such an x. Otherwise it is possible to generate a x
with n(x) = t in linear time by assigning exactly t − n(e)
ones to the unassigned variables and we have that x ∈ St,e.
Hence, MAP inference is tractable.

Next, we prove that for every partial assignment e to k
variables and every t ∈ T , we can compute |St,e| in time

poly(|X|). But this is possible since |St,e| =
(
n−k
t−n(e)

)
.

Hence, marginal inference is tractable.

Please note that Example A.1 implies tractability results for
numerous important special cases of finite exchangeability
such as parity and threshold functions.

There are forms of finite partial exchangeability (Diaco-
nis & Freedman, 1980a) that go beyond the notion of full
finite exchengeability and, therefore, cardinality-based po-
tentials (Gupta et al., 2007; Tarlow et al., 2010) of Exam-
ple A.1. We provide three examples.

Example A.2 (Block Exchangeability). Let w be a fixed
constant. For a sequence of binary random variables X let
X = {X1, ...,Xw} be a partition of the variables X into
w subsequences, and let nY(x) be the number of 1s in an
assignment x projected onto the variables Y ⊆ X. Now,
let T (x) = (nX1(x), ..., nXw

(x)).

It is straight-forward to verify that |T | = poly(|X|).
Moreover, with arguments similar to those made in Exam-
ple A.1 one can show that conditions (1) and (2) of Propo-
sition 3.1 are met. Hence, MAP and marginal inference are
tractable for the statistic T .

Example A.3. Let X be a sequence of n binary random
variables and let τ0→1(x) be the number of times 01 occurs
as a substring2 in x. Now, consider the statistic

T (x) = τ0→1(x).

For example, for x = 11011111 we have T (x) = 1 and
for x = 01010101 we have T (x) = 4. We also have that
|T | = bn/2c+ 1 = poly(|X|).

Now, let e be a partial assignment to k of the n variables
and let 0 ≤ t ≤ bn/2c be a value of the statistic. Let
b = {0, 1, ∗}n be a string where the characters 0 and 1
encode the assignments to variables according to e and the
character * encodes unassigned variables. We now parti-
tion b into four sets Gij , i, j ∈ {0, 1}, of substrings de-
fined as Gij := {s v b | s1 = i, s|s| = j, s` = * for 1 ≤
i < ` < j ≤ |s|}, where v denotes the substring rela-
tion. We can now complete the partial assignment e to
a joint assignment x with T (x) = t if and only if (1)
τ0→1(b)+|G01| ≤ t and (2) τ0→1(b)+

∑
s∈G00

⌈
|s|−2

2

⌉
+∑

s∈G01

⌊
|s|
2

⌋
+
∑

s∈G10

⌊
|s|−2

2

⌋
+
∑

s∈G11

⌈
|s|−2

2

⌉
≥ t.

When these two conditions are met, the full assignment
x can be constructed by completing the substring in the
groups Gij so as to make T (x) = t and this is possible in
linear time. Hence, MAP inference is tractable.

It is possible to construct novel tractable statistics by nest-
ing statistics that are known to be tractable.

2As opposed to subsequences, substrings are consecutive parts
of a string.
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Example A.4 (Nested Tractable Statistics). Let X be an
n × n array of binary random variables. For instance,
X could represent a binarized image with n rows and n
columns. Let k be a fixed integer constant and let ` be
the integer such that n = k`. We assume without loss
of generality that such an integer exists. We partition the
original array into `2 squares of dimension k × k. For
1 ≤ i ≤ `2, let Si be the variables of square i. Now,
let T1 : {0, 1}k2 → {0, 1} be the statistic defined as

T1(s = (s1, ..., sk2)) = [[
k2∑
i=1

si > τ ]],

for some τ with 0 ≤ τ < k2. That is, T1(s) = 1, if
the number of 1s in a given square exceeds a threshold of
τ and T1(s) = 0 otherwise. Please note that for τ = 0
this corresponds to max-pooling. Now, let T : {0, 1}n2 →
{0, ..., `2} be the statistic defined as follows:

T (x) =
`2∑
i=1

T1(si).

Based on the tractability of the two statistics, it is straight-
forward to verify that both MAP and marginal inference is
tractable for the statistic T .

Please note that the presented theoretical framework facili-
tates the discovery and development of novel tractable non-
local potentials.

B. Proof of Theorem 3.2
Let X1, ..., Xn be a sequence of random variables with
joint distribution P , let T be a statistic with distinct val-
ues t0, ..., tk, and let X1, ..., Xn be partially exchangeable
with respect to T . The ML estimates for N examples,
x(1), ...,x(N), are MLE[(w0, ..., wk)] =

(
c0
N , ...,

ck

N

)
, where

ci =
∑N
j=1[[T

(
x(j)

)
= ti]].

Proof. Let θ = (w0, ..., wk). By Theorem 2.3, the log-
likelihood for N examples x(1), ...,x(N) is

L(θ) =
N∑
j=1

log

(
k∑
i=0

wiUi

(
x(j)

))
.

Let ci =
∑N
j=1[[T

(
x(j)

)
= ti]] and let x̂i

be a joint assignment with T (x̂i) = ti. Then,
L(θ) =

∑k
i=0 ci log(wiUi(x̂i)) =

∑k
i=0 ci[log(wi) +

log(Ui(x̂i))] =
∑k
i=0 ci log(wi) +

∑k
i=0 ci log(Ui(x̂i)).

The second term is free of parameters and, hence, find-
ing the ML estimates amounts to maximizing the first sum.
This is equivalent to finding the maximum likelihood esti-
mate of a multinomial which can be solved with Lagrange
multipliers. Hence, MLE(wi) = ci

N , for 0 ≤ i ≤ k.

C. Proof of Proposition 3.3
The following statements are necessary conditions for ex-
changeability of a finite sequence of random variables
X1, ..., Xn. For all i, j, i′, j′ ∈ {1, ..., n} with i 6= j and
i′ 6= j′

(1) E(Xi) = E(Xj);

(2) Var(Xi) = Var(Xj); and

(3) Cov(Xi, Xj) = Cov(Xi′ , Xj′) ≥ −Var(Xi)
(n−1) .

These conditions are well-known and are straight-forward
to prove. Nevertheless, for the sake of completeness, we
prove statement (3).

Proof. It is straight-forward to prove statements (1) and
(2). In order to prove statement (3) we use statements (2)
to write

0 ≤ Var(X1 + · · ·+Xn)

= Var(X1) + · · ·+ Var(Xn) + 2
∑
i<j

Cov(Xi, Xj)

= nVar(Xi) + n(n− 1)Cov(Xi, Xj).

Hence, Cov(Xi, Xj) ≥ −Var(Xi)
(n−1) .

D. Proof of Theorem 4.4
The mixtures of EVMs family is globally optimal under
zero-one loss for

1. Conjunctions and disjunctions of attributes;

2. Symmetric Boolean functions such as

• Threshold (m-of-n) functions
• Parity functions
• Counting functions
• Exact value functions

Proof. Let X be the sequence of variables under consid-
eration. We write y(x) for the (hidden) class value of ex-
ample x. For conjunctions of attributes, let X̂ ⊆ X be the
sequence of variables that are part of the conjunction. Con-
ditioned on the binary class variable being either 0 or 1, we
partition the variables into the two blocks X̂ and X − X̂.
We set the parameters of the MEVM as follows.

q(X̂)(` | 1) = 1.0 if ` = |X̂| and q(X̂)(` | 1) = 0.0
otherwise;

q(X̂)(` | 0) = 0.0 if ` = |X̂| and q(X̂)(` | 0) = (|X̂|` )
2|X̂|

otherwise;
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q(X−X̂)(` | 1) = (|X|−|X̂|` )
2|X|−|X̂|

; q(X−X̂)(` | 0) = (|X|−|X̂|` )
2|X|−|X̂|

;

p(1) = 2|X|−|X̂|

2|X|
; and p(0) = (2|X̂|−1)(2|X|−|X̂|)

2|X|
.

Then, we have that P(1 | x) > 0 if y(x) = 1 and
P(1 | x) = 0 otherwise. Moreover, P(0 | x) = 0 if
y(x) = 1 and P(0 | x) > 0 otherwise. Hence, the MEVM
classifier always returns the correct class value. A similar
argument can be made to prove the optimality for disjunc-
tions of attributes.

To prove the second statement, we consider an MEVM
model with a binary class variable and the following block
structure. For each of the class variable’s values y, y ∈
{0, 1}, we have that Xy = {X1, ..., Xn}. That is, con-
ditioned on each class value, the attributes are assumed
to be exchangeable (see Figure 3; right). It is straight-
forward to verify that this particular MEVM can learn ar-
bitrary discrete distributions over any symmetric Boolean
function.


