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Abstract

If it is to qualify as knowledge, a learner’s
output should be accurate, stable and com-
prehensible. Learning multiple models can
improve significantly on the accuracy and
stability of single models, but at the cost
of losing their comprehensibility (when they
possess it, as do, for example, simple decision
trees and rule sets). This paper proposes and
evaluates CMM, a meta-learner that seeks to
retain most of the accuracy gains of mul-
tiple model approaches, while still produc-
ing a single comprehensible model. CMM
is based on reapplying the base learner to
recover the frontiers implicit in the multi-
ple model ensemble. This is done by giv-
ing the base learner a new training set, com-
posed of a large number of examples gener-
ated and classified according to the ensemble,
plus the original examples. CMM is evalu-
ated using C4.5RULES as the base learner,
and bagging as the multiple-model method-
ology. On 26 benchmark datasets, CMM re-
tains on average 60% of the accuracy gains
obtained by bagging relative to a single run
of C4.5RULES, while producing a rule set
whose complexity is typically a small multi-
ple (2-6) of C4.5RULES’s, and also improv-
ing stability.

1 INTRODUCTION

Machine learning seeks to automate the acquisition of
knowledge for performing useful tasks. Because of this
concern with knowledge, rather than simply accurate
prediction, research in this area places a high value
on algorithms that produce comprehensible output.
There are also practical reasons for this. In many (if
not most) applications, it is not enough for a learned
model to be accurate; it also needs to be understood

by its human users, if they are to trust it and deem it
acceptable. Also, users often wish to gain insight into
a domain, rather than simply obtain an accurate clas-
sifier for it, and this is possible only if they are able to
make sense of the learner’s output. Even when predic-
tive accuracy is the sole goal, comprehensibility is an
important asset for a learner, because it facilitates the
process of interactive refinement that is at the heart
of most successful applications.

Because machine learning seeks to capture a broad
spectrum of knowledge, from the commonsense to
the expert-level, it has also tended to focus on
representations—Iike decision trees, rule sets and be-
lief networks—that are more powerful than those tra-
ditionally found in statistics and pattern recognition.
This flexibility, while essential to the field’s goals, has
the disadvantage that it allows learners to be overly re-
sponsive to the training data, producing models that
can change dramatically with small changes in the
data. This instability undermines their claim to pro-
ducing knowledge. As Turney and coauthors found
when working on industrial applications of decision
tree learning, “the engineers are disturbed when dif-
ferent batches of data from the same process result in
radically different decision trees. The engineers lose
confidence in the decision trees, even when we can
demonstrate that the trees have high predictive ac-
curacy.” (Turney, 1995). Other researchers have also
noted the negative impact of instability on learners’
ability to produce knowledge (Dietterich, 1996).

Recently, an approach that mitigates this problem has
been the object of much research (see, for example,
(Chan, Stolfo & Wolpert, 1996)). It consists of learn-
ing several (say, fifty) different models by means of
variations in the learner or the data, and then com-
bining these models in some way to make predictions.
Different forms of this “multiple models” approach in-
clude bagging (Breiman, 1996), boosting (Freund &
Schapire, 1996), stacking (Wolpert, 1992), Bayesian

averaging (Buntine, 1990), error-correcting output



coding (Kong & Dietterich, 1995), combiner trees
(Chan & Stolfo, 1995), and others. This approach has
been found to be quite effective in practice (Drucker,
Cortes, Jackel, LeCun & Vapnik, 1994; Quinlan, 1996;
etc.), and also has substantial theoretical foundations
(Madigan, Raftery, Volinsky & Hoeting, 1996; Fried-
man, 1996). However, the focus of this line of research
has been on reducing instability as a means to im-
proving accuracy; from the point of view of knowledge
acquisition, it in fact represents a setback, because it
gives up the essential goal of output comprehensibil-
ity. While (for example) a single decision tree can
easily be understood by a human as long as it is not
too large, fifty such trees, even if individually simple,
exceed the capacity of even the most patient user; and
this is aggravated by the fact that, to understand the
ensemble’s prediction, it is necessary in addition to un-
derstand (and keep track of) how the trees will interact
at performance time.

Thus, while significant progress has been made to-
wards separately achieving each of the goals of accu-
racy, stability and comprehensibility, the overarching
one of attaining all three simultaneously remains elu-
sive. This paper aims to move closer to this ideal—or
at least to further explore the space of trade-offs among
the three subgoals—by proposing a learning method
that combines some of the accuracy and stability gains
of multiple models with the comprehensibility of a sin-
gle model. The proposed approach is described in the
next section. It is then evaluated on a large number
of benchmark datasets. The paper concludes with a
short review of related work, and an outline of direc-
tions for future research.

2 THE CMM ALGORITHM

2.1 BASIC FRAMEWORK

In classification problems, a model is (implicitly or ex-
plicitly) a division of the instance space into regions,
each of which is assigned to one of the possible classes.
A learner is accurate to the extent that the division
into class regions it produces, given a set of training
examples, coincides with the “real” one; it is stable
to the extent that it produces the same division into
regions given two different training sets from the same
domain; and its output is comprehensible insofar as it
states clearly (to a human user) what the class regions
are.

Suppose L is a classification learner that produces
models in a comprehensible representation (e.g., rule
sets), but is also unstable. Then it may be possible
to improve its accuracy and stability by applying it
m > 1 times, either to m different training sets' or

"Where two different training sets can be composed of

with m different versions of L itself?, and combining
the resulting m models in some form. This combina-
tion can be carried out at either learning or perfor-
mance time, but in either case it effectively results in
assigning a class label to each possible instance, and
thus to once again partitioning the instance space into
class regions. In other words, once combined, the mul-
tiple models constitute again a single model. However,
the class regions in this new model are, in general, a
function of all the individual models and of how they
are combined, and the clear division that might have
been present in each one of them is lost.

This lost comprehensibility can potentially be recov-
ered in the following way. Just as L can be ap-
plied to model the “true” partitioning of the instance
space into class regions, by learning from previously-
collected training examples, it can be applied to model
the partitioning produced by the combined models,
by learning from a set of randomly generated exam-
ples, whose classes are those predicted by the combined
models. Because L produces models in a comprehensi-
ble representation, the resulting “meta-learned” model
will also be comprehensible; as long as it is not too
complex. Since the partitioning produced by com-
bining m models is likely to be more complex than
that produced by each of the component models, the
meta-learned model is also likely to be more complex
than them; but not necessarily to such an extent that
it is rendered incomprehensible, especially since it is
only an approximation to the exact partitioning pro-
duced by the combined models. On the other hand,
because of this fact, the meta-learned model is also
likely to be less accurate than the combined one, es-
pecially if the representational power of the language
of combined models is greater than that of the compo-
nent model language. However, and crucially, because
the accuracy and stability of learned models tend to
increase with training set size (due to decreasing vari-
ance (Kohavi & Wolpert, 1996)), and the training set
size for the meta-learning step can be made as large as
desired, subject to computational resource constraints,
it should be possible to obtain a meta-learned model
that is more accurate and stable than the base models.

The procedure just described, which will be called
CMM (for “Combined Multiple Models”), is shown in
pseudo-code in Table 1.3 Two significant points should

the same instances, but with different weights, as in boost-
ing (Freund & Schapire, 1996).

2Which, in the limit, can be m different learners, as is
typically done in stacking (Wolpert, 1992).

*Instead of variations of S, variations of L may be used.
Note that this procedure is quite different from stacking
(Wolpert, 1992), where the final output is a two-level classi-
fier that explicitly includes all the models produced, plus a
meta-classifier to combine their predictions at performance
time.



Table 1. The CMM meta-learning algorithm.

Inputs:

is the training set,

is a learning algorithm,

is a procedure for combining models,

is the no. of component models to generate,
is the no. of new examples to generate.

330

Procedure CMM (S, L, C,m, n)

Fori=1tom
Let S; be a variation of S.
Let M; = Model produced by applying L to S;.

Forj=1ton
Let # be a randomly generated example.
Let ¢ be the class assigned to & by Cas,,... . m,, (Z).
Let S = SU{(Z, ¢)}.

Let M = Model produced by applying L to S.

Return M.

be noted. One is that, to the extent possible, the ex-
amples for the meta-learning phase should be gener-
ated from the same distribution as the “true” training
examples, since many learners are sensitive to this dis-
tribution, and could be misled by (for example) uni-
form sampling. More precisely, if z is an unclassified
example and ¢ its class, since the “true” probability
distribution Pr(z) is usually unknown, it should be
estimated as closely as possible. While many general
methods exist for approximately solving this problem
(e.g., Parzen windows (Duda & Hart, 1973)), in the
implementation described below the approach followed
is one of replicating the way the learner L implicitly
models Pr(z). This avoids a mismatch between the
bias of L and that of the probability estimation pro-
cedure.

The other point to be noted is that, in CMM, the
training set for meta-learning is composed of the arti-
ficially generated examples and the original ones. This
recognizes the fact that the combined model is itself
only an approximation to the “true” partitioning of the
instance space into class regions, and thus the meta-
learning phase may benefit from taking into consider-
ation the original examples.

2.2 AN IMPLEMENTATION

In order to test and apply the ideas above, an imple-
mentation of CMM was carried out using a specific
learner L and a specific multiple-model methodology.

C4.5RULES (Quinlan, 1993) release 8 was used as the
base learner. C4.5RULES produces propositional rule
sets, which we believe to be the most easily understood
of all representations currently in use. C4.5RULES
also has the advantage of being widely used, and thus
constituting a good standard for empirical compar-
isons. In this system, rules are extracted from a
previously-learned decision tree, and are ordered (i.e.,
if more than one rule applies, the one appearing first in
the ordering prevails). Bagging (Breiman, 1996) was
used as the multiple-model methodology, on account
of being perhaps the simplest one available, and of its
effectiveness with decision trees being well established
(Breiman, 1996; Quinlan, 1996). In the bagging pro-
cedure, given a training set of size s, a “bootstrap”
replicate of it is constructed by taking s samples with
replacement from the training set. Thus a new train-
ing set of the same size is produced, where each of the
original examples may appear once, more than once,
or not. On average, for sufficiently large s, 63% of the
original examples will appear in the bootstrap sam-
ple. The learner L is then applied to this training set.
This procedure is repeated m times, and the result-
ing m models are aggregated by uniform voting (i.e.,
when a test example is presented, the class that is pre-
dicted by the greatest number of models is predicted;
if a tie occurs, the lowest-ordered class is chosen, as in
(Breiman, 1996)).4

Examples for meta-learning are generated using the
probability distribution implicit in the rule sets pro-
duced by C4.5RULES. Effectively, the number of
training examples classified by each rule, as a fraction
of the training set size, is an estimate of the probabil-
ity of finding an example in the region covered by that
rule, and not covered by any preceding rules. Given
that the m component models thus represent m ap-
proximations to the “true” example distribution, all
with equal weight, and that n new examples are re-
quired, CMM generates n/m of these examples from
each component rule set. For each individual rule, if
it classified r of the s examples in the bootstrap sam-
ple it was induced from, (r/s) - (n/m) examples cov-
ered by it will be generated. For each example, this
is done by ensuring that it satisfies the rule’s precon-
ditions, and beyond that by setting the values of its
attributes according to a uniform distribution (thus
leading to a piecewise uniform approximation to the
example distribution). Before being accepted, an ex-
ample is matched with the previous rules in the rule
set, and if it is covered by any it is regenerated, to

*Note that, although learning m bootstrap models is m
times more computationally expensive than learning a sin-
gle model, this does not imply that bagging is infeasible for
large databases, since it can be trivially parallelized with
almost 100% efficiency by learning each of the m models
on a different processor.



ensure that the current rule does not become under-
represented, and the previous rule that matched it
over-represented. This is done up to a maximum num-
ber of times, 100 by default.® Missing values for each
attribute are generated in similar proportions to those
found in the original training set.

3 EMPIRICAL EVALUATION

The question of whether the approach just outlined
will indeed, in any given domain, retain a significant
fraction of bagging’s accuracy and stability gains over
a single run of C4.5RULES, without producing an
overly complex model, is one to be answered empir-
ically. To this end, experiments were carried out using
a varied and representative sample of 26 datasets from
the Irvine repository (Merz, Murphy & Aha, 1997).

A value for m (the number of component models) was
determined by comparing the accuracies obtained with
m = 10, 25 and 50 on a subset of the datasets. m = 50
was found to produce no significant gains over m = 25,
but m = 10 led to poor results. This suggests some
atypicality in Breiman’s (1996) results on the (artifi-
cial) waveform domain, where he studied the effect of
m and found most of the gain in accuracy to be ob-
tained with 10 replicates, and also suggests that Quin-
lan (1996) might have obtained even better results for
bagging if more replicates had been used. m = 25 was
used throughout the studies reported below.

The number n of examples generated randomly for
meta-learning was set to 1000. This value reflects the
knowledge that C4.5RULES tends to produce rule sets
whose size grows approximately linearly with training
set size (Domingos, 1996; Oates & Jensen, 1997), and
thus that using a very large n is likely to lead to un-
necessarily complex models. Within this constraint, n
was chosen to be larger than any of the dataset sizes
present. Given that the randomly generated examples
are added to the original ones, this implies that the
training set size for meta-learning will always be at
least twice the size of the original training set.

An experimental methodology similar to that of
(Breiman, 1996) was followed, with 20 runs instead of
100, due to the large number of datasets used. In each
run, 90% of the examples in the dataset were randomly
chosen for training, and the remainder were used for
testing. Table 2 shows the resulting average accura-
cies and standard deviations. The results for a single
model are those obtained by running C4.5RULES on
the entire unchanged training set. C4.5/C4.5RULES
was applied with its default settings throughout.

®The exact value of this parameter is unimportant. It
suffices that it make the number of examples incorrectly
generated from a rule smaller than the quantization error
implicit in the computation of (r/s) - (n/m).

Bagging improves accuracy relative to a single run
of C4.5RULES in 22 out of the 26 datasets, by
3.5 percentage points on average (2.6% in all 26
datasets). These 22 datasets, where bagging improves
on C4.5RULES, are those where it would make sense
to apply CMM. CMM improves on C4.5RULES in all
but four of them. Its average accuracy is 2.1% higher
than C4.5RULES’s, i.e., CMM retains on average 60%
of bagging’s accuracy gains, and similarly in all 26
datasets. CMM is more accurate than C4.5RULES
with a confidence of 99.7% according to a sign test,
and 99.9% according to a Wilcoxon test (96% and
99.2%, respectively, on all 26 datasets). In six of the
22 datasets, CMM is more accurate than bagging.

Output comprehensibility is more difficult to measure
than accuracy, since it is ultimately subjective. How-
ever, an oft-used operational measure of it is output
size, counting one unit for each antecedent and each
consequent of each rule (including the default rule,
with 0 antecedents and 1 consequent). While this mea-
sure is necessarily imperfect, its meaningful use here
is facilitated by the fact that two of the outputs be-
ing compared (single model and CMM) are interpreted
in exactly the same way, being produced by the same
learner.

The significance of changes in output size is differ-
ent from that of changes in accuracy, where in gen-
eral each percentage point of improvement counts. In
this respect, output size behaves similarly to running
time, another complexity measure: its exact value is
arguably of little significance, as long as it stays within
given acceptable bounds. Thus a greater increase in
complexity is more acceptable when starting from a
lower basis, since the resulting final complexity will be
correspondingly lower.

The output sizes obtained for C4.5RULES, bagging
and CMM are also shown in Table 2, along with the
ratio between CMM’s size and C4.5RULES’s. The
datasets are listed in increasing order of size (i.e., in-
creasing number of examples). Bagging’s output size,
computed as the sum of the component model sizes,
obviously underestimates the difficulty in comprehend-
ing the bagged ensemble, and is given here only for
indicative purposes. CMM’s complexity is typically a
small multiple of C4.5RULES’s (2-6), with the smaller
multiples occurring for the larger datasets. This is as
desired, and leads to CMM’s complexity staying be-
low 250 for almost all domains. Thus, by this mea-
sure, CMM can be considered to produce comprehen-
sible output in almost all cases, assuming C4.5RULES
does. As a further comparison, another widely-used
rule learner, CN2 (Clark & Niblett, 1989), was run
on these datasets. While being on average less accu-
rate than C4.5RULES and CMM, CN2 has an output
complexity that is often greater than CMM’s. This



Table 2: Empirical results: average accuracies and their standard deviations, output sizes and stabilities. “C/S”
is the ratio between CMM’s output size and the single model’s.

Dataset Accuracy Output size Stability
CMM Bagging Single CMM Bag. Sing. C/S | CMM Bag. Sing.
Lenses 75.046.8 75.0+£6.8 62.547.1 175 255.2 9.7 1.8 | 941 941 90.2
Lung cancer 40.0+£7.5 36.7£7.2 31.7£7.0 | 1988 3546 148 13.5 | 55.0 585 529
Soybean (small) | 97.0£1.6 97.0£1.6 98.0+1.4 | 160.1 268.5 10.2 15.7| 83.9 85.0 78.2
Labor 85.842.5 90.0+£1.9 81.7+£2.7 39.7  271.0 9.9 40| 899 933 751
Post-operative 68.9£3.0 66.1+£3.3 T71.7+3.1 82.4  688.8 9.1 9.0 | 8.7 90.7 833
LED 61.5+£3.2 61.54+3.2 60.0£2.5 | 202.1 12116 471 43| 732 734 635
Zoology 94.0+£1.8 93.5+1.8 92.0+1.7 | 140.8 623.7 294 48| 921 925 934
Promoters 87.7+£1.7 88.6+1.5 87.3+£25 | 143.0 5383 21.8 6.6 | 84.6 87.8 83.7
Echocardiogram | 67.74£3.2 71.943.5 65.842.5 85.1 7298 13.1 6.5 | 71T 79.2 644
Lymphography | 76.7+2.3 80.0+£2.6 75.3+£2.8 | 213.2 8775 342 6.2 | 518 652 62.0
Iris 94.3+1.1 94.3+1.1 94.7+1.1 176 3035 11.0 1.6 | 96.0 96.9 99.2
Hepatitis 76.242.5 794427 775426 | 1582 6309 290 54| 718 785 T1.6
Wine 94.241.0 95.841.0 94.7+1.6 69.4 399.1 15.0 46| 71.1 794 746
Audiology 778415 788+1.5 T75.2+1.3 | 4403 19733 742 59| 453 538 524
Sonar T1.742.2 774416 76.9+1.6 90.6 816.6 352 26| 622 834 754
Glass 731415 774415 T1.7+£1.7 | 2146 17405 61.8 3.5 | 67.1 705 69.3
Breast cancer 70.2+1.8 69.7£1.9 68.4+1.9 | 174.1 1933.1 16.8 104 | 754 76.0 68.1
Horse colic 86.3£1.6 86.0+£1.4 83.8+14 52.8 9725 226 23| 88.7 89.6 827
Heart disease 81.841.5 80.2+1.7 78.0+1.7 | 177.7 13969 485 3.7 | 80.2 88.8 75.1
Solar flare 69.241.7 70.0£1.6 T71.14£1.7 | 250.1 2070.6 52.8 4.7 | 838 87.7 84.7
Primary tumor | 43.4+£2.1 46.942.3 424424 | 579.0 5029.8 90.3 6.4 | 529 559 509
Liver disease 66.0+£1.8 69.6+1.9 63.7£1.4 | 116.1 23299 53.0 2.2 | 821 8.0 70.6
Voting records 95.54+0.7 96.6+£0.6 96.4+0.7 742 597.1 219 34| 904 932 942
Credit 87.5+£1.1 88.3+£0.8 86.2+1.1 | 104.9 2181.2 494 2.1 | 89.7 906 814
Pima diabetes 75.5+£0.9 76.4+£0.9 73.6+0.8 82.4 34766 389 21| 831 854 76.3
Annealing 96.240.5 95.240.6 93.940.6 90.2 1680.7 64.0 14| 8.4 90.8 873
is further evidence that CMM is broadly competitive each domain, ne = 1000 unclassified examples were

with single-shot rule learners in its ability to produce
comprehensible results.

The output sizes shown for CMM in these datasets
may be unnecessarily large, due to the tendency of
C4.5RULES’s output size to grow approximately in
step with input size, and to the fact that 1000 arti-
ficial examples are being generated for all domains,
leading to a ratio between the meta-learning and orig-
inal training set sizes that is quite large for the smaller
datasets (those with tens of examples). It may thus be
possible to substantially optimize CMM’s complexity
without seriously affecting accuracy by choosing n as
a function of dataset size. This is a matter for future
research.

Stability was measured following the ideas contained
in (Turney, 1995), and taking advantage of the models
produced in the train-test runs carried out. The stabil-
ity of a system is defined as the (estimated) probabil-
ity that models generated by the system from different
training sets will agree on an arbitrary example. For

generated using a uniform distribution in the instance
space. For each system, stability was then computed
as:

ne nr {—1

1 2
Stab = 100% x — ; =D D D agreea;

i=1 j=1

where nr is the number of train-test runs carried out
(and therefore the number of models produced by the
system), and agree.;; is 1 if models M; and M; pre-
dicted the same class for example e, and 0 otherwise.
The use of artificial examples obviates the need to
set apart examples from the original dataset for sta-
bility testing, further dwindling the number available
for training, and/or leading to unreliable estimates of
stability. The use of a uniform distribution reflects a
deeper notion of stability than that implicit in using
some estimate of the dataset’s distribution (Turney,
1995). Note that, because the different models are not
generated from independent training sets, the empiri-
cal measure above will tend to overestimate stability.



The results are shown in Table 2. On average, bagging
is 6% more stable than a single run of C4.5RULES.
CMM is 2% more stable than C4.5RULES, and thus
retains a third of bagging’s stability gains. CMM
improves stability in all but five of the 20 datasets
where bagging is more accurate and stable than
C4.5RULES. On all 26 datasets, CMM is more stable
than C4.5RULES with a confidence of 91% accord-
ing to a sign test, and 94% according to a Wilcoxon
test. These results are remarkable, in view of the fact
that CMM, like C4.5RULES, produces a single rule
set. Taken together with the accuracy and complex-
ity results, they show that CMM can indeed retain a
large part of bagging’s accuracy and stability gains
while still outputting comprehensible rule sets, and
thus brings us closer to the goal of producing mod-
els that qualify as knowledge.

The running time of the bagging procedure is propor-
tional to the number of models being generated, while
the time needed to produce the combined model is
a function of the total number of examples. With
C4.5RULES and the numbers of models and exam-
ples used in our experiments, the running time of the
meta-learning procedure was always lower than that
of bagging by more than an order of magnitude, and
therefore not a significant factor.

A summary lesion study was conducted by (1) exclud-
ing the original examples from the meta-learning train-
ing set,® and (2) replacing the probability estimation
procedure described in the previous section with a uni-
form distribution of the examples in instance space.
The results are shown in Table 3. As expected, both
changes had a significant negative impact on accuracy,
confirming the utility of the procedures used. CMM
was more accurate than the “all new examples” ver-
sion in 18 datasets and less in 4, by 2.6% on aver-
age, with a confidence greater than 99% according to
a Wilcoxon test. CMM was more accurate than the
“uniform probability” version in 15 datasets and less in
5, by 1.1% on average, with a confidence greater than
99% according to a Wilcoxon test. Estimating exam-
ple probabilities from the frequencies in the leaves of
the underlying (pruned) decision trees also decreased
accuracy, lending support to the notion that a good
match between the learner’s bias and that of the prob-
ability estimation procedure is important for good re-
sults. Disabling the generation of missing values had a
large negative impact in the annealing dataset, where
very large numbers of missing values are present, and
a less discernible one in the datasets where fewer such
values occur.

C4.5RULES’s pruning parameters during the meta-
SMore precisely, replacing the original examples with

an equal number of artificial ones, in order to maintain a
constant training set size.

Table 3: Lesion study results: average accuracies and
their standard deviations. “All new” shows the result
of ignoring the original examples. “Uniform” shows
the result of using a uniform example distribution.

Dataset CMM All new Uniform
Lenses 75.0 75.0+£5.9 75.0+5.9
Lung cancer 40.0 33.3+£6.4  35.0£5.8
Soybean (small) 97.0 97.0+1.4 97.0£1.4
Labor 85.8 79.24+2.8 85.842.4
Post-operative 68.9 71.14£2.8 69.4+3.0
LED 61.5 61.5+£2.8 61.0+£2.7
Zoology 94.0 92.0+£1.6 94.0£1.6
Promoters 87.7 84.5+1.6 83.6+1.4
Echocardiogram 67.7 67.3£3.0 66.5£2.2
Lymphography 76.7 75.0+£2.4  77.7+2.5
Iris 94.3 96.3+£0.9 94.3£1.0
Hepatitis 76.2 75.6+£2.1 76.2+2.6
Wine 94.2 94.240.9 94.7£1.2
Audiology 77.8 67.3£2.1 75.841.3
Sonar 71.7 65.7£1.8 67.1£1.1
Glass 73.1 61.24£2.5 70.2+1.7
Breast cancer 70.2 66.4+2.1 70.5+1.3
Horse colic 86.3 85.8+1.2 84.7+1.2
Heart disease 81.8 79.0+£1.7 80.0+1.6
Solar flare 69.2 69.1£1.4 69.4+14
Primary tumor 43.4 40.14£2.0 39.3£2.2
Liver disease 66.0 67.3+1.9 64.9+1.3
Voting records 95.5 95.6+£0.7 95.1+0.7
Credit 87.5 86.2+0.8 86.7+0.8
Pima diabetes 75.5 75.240.7  74.5+0.9
Annealing 96.2 85.6+0.9 96.1£0.5

learning phase can be used to trade off the accuracy
and complexity of CMM’s output. For example, us-
ing a confidence level of 10% instead of the default,
or applying the optional Fisher’s exact test with a
10% confidence level, both resulted in output size re-
ductions in the 10-30% range for almost all domains,
while decreasing average accuracy by only fractions of
a percentage point.” Another parameter that can po-
tentially be used to trade off accuracy and complexity
is n, the number of synthetic examples generated. To
investigate this, the experiments were repeated with
n = 500 and n = 2500. As expected, complexity in-
creases steadily with training set size, and average ac-
curacy improves from n = 500 to n = 1000, but not
from n = 1000 to n = 2500. Since, in general, varying
n is only useful up to the point where accuracy asymp-

"In order to ensure a fair comparison with C4.5RULES,
these changes were also applied when learning the single
model; while they also produced some reductions in out-
put size at little cost in accuracy, these reductions were
generally smaller than those obtained with CMM.



totes, the best results may be obtained by empirically
estimating this point for each dataset.® More conve-
niently, CMM may be used with a base learner whose
output size is insensitive to training set size, once the
accuracy asymptote is reached (or at least less sen-
sitive than C4.5RULES). Experiments with such sys-
tems (e.g., (Domingos, 1996; Jensen, 1997)) are an area
for future research.

4 RELATED WORK

The CMM algorithm bears interesting relationships to
many pieces of previous research in inductive learning.
Apart from its effect on accuracy, pruning of decision
trees and rule sets can be viewed as an attempt to ex-
tract a simpler, more comprehensible model from an
overly complex one. Work by Catlett (1991, Chap-
ter 5), Quinlan (1993, Chapter 5), Evans and Fisher
(1994), and Fayyad, Djorgovski and Weir (1996) has
this flavor. Quinlan(1987) briefly describes merging all
branches from multiple decision trees into a single rule
set and extracting the “best” rules, with promising
results. Buntine (1990) considers the extraction of a
single “good” tree from an option tree (a compact rep-
resentation of multiple trees) to be an important prob-
lem for future research. Kong and Dietterich (1995)
make a similar statement for error-correcting output
coding and other multiple-model schemes. Shannon
and Banks (1997) have recently proposed a method
for combining multiple decision trees into one, based
on measuring distances between them and finding the
“median” tree. Their approach is considerably more
complex than CMM, and has not yet been imple-
mented, or shown to improve on the accuracy and
stability of single trees. The high instability of tree
learners may make it very difficult for this method to
produce good results. Utans (1996) combined multi-
ple neural networks into one by averaging parameters,
with the goal of achieving performance-time computa-
tional savings; the output still suffers from the opaque-
ness of a neural network. Datta and Kibler (1995) have
sought to develop single-shot classifiers that are more
stable than standard machine learning algorithms, but
have so far not attempted to evaluate the comprehen-
sibility of the prototype-based representation they use.

CMM is an example of a method for extracting com-
prehensible output from a learned model (in this case,
a bagged ensemble of models). Substantial research
has been carried out for the case where the model is a
neural network (e.g., Towell & Shavlik, 1993; Andrews

8However, stability will often continue to improve after
accuracy asymptotes, and this may make it worthwhile to
use larger training sets. For example, in the experiments
described, with n = 2500 CMM’s stability gain averaged
over all datasets was nearly half of bagging’s, compared to
a third for n = 1000.

& Diederich, 1996). Algorithms based on queries to an
oracle are also relevant to this problem, and have been
the object of much study in the theoretical commu-
nity (e.g., Angluin, 1988). Although oracle-based algo-
rithms are generally of limited usefulness when learn-
ing directly from real data, they can be applied more
easily in the meta-learning phase, using the previously-
learned model (or model ensemble) as the oracle (e.g.,
Craven & Shavlik, 1994). More generally, many forms
of active learning (Cohn, Atlas & Ladner, 1994), where
the learner has some degree of control over the infor-
mation it obtains from the environment, are poten-
tially applicable to this problem.

5 FUTURE WORK

Several directions for future research are readily ap-
parent, apart from those already mentioned in previ-
ous sections. One is to use different algorithms as the
base learner and the meta-learner. To be justified, this
should result in better performance than either algo-
rithm used alone. An intriguing possibility is that,
when models in language £ are combined, the result
may be best expressed in a different language Lps (pre-
sumably with £ C Lpr). If general conditions under
which this is and is not the case can be derived, they
may then be applied to the choice of meta-learner given
a base learner.

Ideally, the meta-learning phase would result in models
that are as stable and accurate as the bagged ensem-
ble, while being of similar complexity to the base mod-
els. Replacing the random sampling of instance space
currently used with query-based/active learning tech-
niques may bring this limit closer, while keeping the
computational complexity of the meta-learning phase
within acceptable bounds. An alternative (and per-
haps less promising) approach is to explicitly combine
the component rule sets, for example by applying in-
duction to the problem of determining what surface
features they have in common.

Another direction for future research is investigating
the conditions under which CMM can be expected to
work (i.e., improve accuracy and stability relative to
the base learner, while losing little or no comprehen-
sibility). Intuitively, if the problem is “easy” (i.e.,
the base learner can find the “best” model or a close
one in one pass), there should be little gain in us-
ing multiple models and CMM. On the other hand,
if the base learner’s representation is inappropriate
to the domain, it may be impossible to improve ac-
curacy without corresponding increases in complexity
(e.g., if the representation used is one of rules with
tests on single attribute values, and the true frontier
is not axis-parallel). Thus, the greatest gains from us-
ing CMM may be obtained in domains where the base



learner’s representation is adequate, but the learner
has difficulty finding the “right” model, for example
because of its greedy search procedure or limited choice
of rule construction operators. Careful empirical study
should be able to shed some light on this matter.

A limitation of the work described here is that it uses
a somewhat naive notion of comprehensibility, equat-
ing it with simplicity. In reality, many other factors
are involved, and will vary from one user group to an-
other (e.g., Pazzani, Mani & Shankle, 1997). Although
arriving at a better definition of comprehensibility is
a difficult task due to the subjective component in-
volved, much progress should result from seeking a
deeper understanding of what makes a model compre-
hensible, and using the results to guide algorithms like

CMM.

The meta-learning method described here can be used
to (attempt to) render comprehensible the output of
any learner, by applying rule induction to the models
it produces. For example, it could be used to extract
rules from a neural network. It would be interesting
to see how it (or variations of it) fare at this task.

6 CONCLUSION

In the quest to automate knowledge acquisition, cur-
rent learners still have a considerable way to go, if
learned models are viewed as constituting knowledge
only if they are simultaneously accurate, stable and
comprehensible. This paper described a method for
taking an unstable learner of comprehensible repre-
sentations and obtaining one that is more stable and
accurate, while still producing comprehensible output.
The proposed method, called CMM, is based on learn-
ing several models, combining them, and reapplying
the learner to make explicit the mapping thus pro-
duced. Experimental tests have shown CMM to be a
promising approach.
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