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Abstract

Current methods to avoid overfitting are ei-
ther data-oriented (using separate data for
validation) or representation-oriented (penal-
izing complexity in the model). This paper
proposes process-oriented evaluation, where
a model’s expected generalization error is
computed as a function of the search pro-
cess that led to it. The paper develops
the necessary theoretical framework, and ap-
plies it to one type of learning: rule induc-
tion. A process-oriented version of the CN2
rule learner is empirically compared with
the default CN2. The process-oriented ver-
sion is more accurate in a large majority
of the datasets, with high significance, and
also produces simpler models. Experiments
in artificial domains suggest that process-
oriented evaluation is particularly useful in
high-dimensional domains.

1 INTRODUCTION

Overfitting avoidance is often considered the central
problem of machine learning (e.g., (Cheeseman &
Oldford, 1994)). If a learner is sufficiently powerful,
it must guard against selecting a model that fits the
training data well but captures the underlying phe-
nomenon poorly. Current methods to address this
problem fall into two broad categories. Data-oriented
evaluation uses separate data to learn and validate
models, and includes methods like cross-validation
(Breiman, Friedman, Olshen & Stone, 1984; Stone,
1974), the bootstrap (Efron & Tibshirani, 1993), and
reduced-error pruning (Brunk & Pazzani, 1991). It
has several disadvantages: it is often computationally

intensive, reduces the data available for learning, can
be unreliable if the validation set is small, and is it-
self prone to overfitting if a large number of models is
compared (Ng, 1997). Representation-oriented evalu-
ation seeks to avoid these problems by using the same
data for training and validation, but a prior: penaliz-
ing some models as more likely to overfit. Bayesian ap-
proaches in general fall into this category (Cheeseman,
1990; MacKay, 1992). Representation-oriented mea-
sures typically contain two terms, one reflecting fit
to the data, and one penalizing model complexity
(Akaike, 1978; Schwarz, 1978; Wallace & Boulton,
1968; Rissanen, 1978; Moody, 1992). This approach is
only appropriate when the simpler models are truly the
more accurate ones, and there is mounting evidence
that this is typically not the case ( (Domingos, 1998;
Domingos, 1997; Schuurmans, Ungar & Foster, 1997;
Lawrence, Giles & Tsoi, 1997; Webb, 1996; Schaf-
fer, 1993; Murphy & Pazzani, 1994), etc.). Structural
risk minimization (Vapnik, 1995) and PAC learning
(Kearns & Vagzirani, 1994) are representation-oriented
methods that seek to bound the difference between
training and generalization error using a function of
the model space’s (effective) dimension. This typically
produces bounds that are overly broad, and requires
severely restricting the model space.

In this paper we argue that representation-oriented
evaluation has these limitations because it only con-
siders the learner’s model space, and not its search
process. A learner with an unlimited model space can
avoid overfitting as long as it attempts only a limited
number of hypotheses (even if it is not possible a priori
to predict which). If these hypotheses are correlated,
the chance of overfitting is further reduced. Given
the sequence of hypotheses that a learner attempts,
it is possible to estimate the generalization error of
the “current best” hypothesis taking into account the
process that led to it. Intuitively, the more hypotheses
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Figure 1: A simple example of an overfitting avoidance
problem.

that have been attempted and the less correlated they
are, the higher the generalization error we expect for a
given training-set error. This paper begins to develop
this approach, which we will call process-oriented eval-
uation (POE for short). The basic theoretical frame-
work is presented, and then applied to the standard
“separate and conquer” rule induction process (Clark
& Niblett, 1989). An empirical study demonstrates
the effectiveness of POE. The paper concludes with
sections on related and future work.

2 PROCESS-ORIENTED
EVALUATION

Consider the simplest example of an overfitting avoid-
ance problem, in a classification context. Suppose
learner L; consists of drawing one hypothesis at ran-
dom from some model space and returning it, and
learner Ly consists of drawing two hypotheses at ran-
dom (independently) from the same model space as Ly,
and returning the one with lowest error on a training
sample S. This situation is shown schematically in
Figure 1. Let h; be the hypothesis returned by L,
hs the hypothesis returned by Ls, n the number of
examples in S, and e; the number of examples h; mis-
classifies. The goal is to choose the hypothesis with
lowest true error ¢ (i.e., ¢ is the probability of h;
misclassifying an example, given the true example dis-
tribution). Suppose n = 100, e; = 12, and e3 = 11.
Should we prefer hy or h2? According to the maximum
likelihood principle (DeGroot, 1986), ¢, = 0.12 and
€2 = 0.11, so hs should be chosen. Assuming the two
hypotheses have the same complexity or prior prob-
ability, representation-oriented evaluation would give
the same answer. However, Lo had two opportunities
to draw a hypothesis with low training error, and so
the probability of e; being low merely by chance is
higher than for e;. Thus hy may in fact have a higher
true error rate than hj.

This notion can be quantified. If a hypothesis h’s true
error rate is € and S consists of n independently drawn
examples, the number of errors e committed by h on
S is a binomially distributed variable with parameters
n and e:
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€
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Let B(eln,€) be the probability that the number of
errors is greater than e:

Bleln,e)= > bleln,e) (2)

i=e+1

Notice that this notation is the opposite of the usual
notation for a cumulative distribution function (i.e.,
B(e|n,€) = 1 — Binomial_cdf(e|n,€)). It will be more
convenient for what follows.

The probability of h; misclassifying e; examples is
p(e1|n, €1) = b(e1|n, €1). This can be used with Bayes’s
theorem to compute the expected value of €; given n
and e1, Flei|n,e1]. By finding a similar expression for
p(ea|n, €2), we can compute Elez|n, es] and choose the
hypothesis with lowest expected error. Let the two
hypotheses drawn by L, be hgy 1 and hs s (with true
errors ¢, 1 and € o respectively, and numbers of train-
ing errors e; 1 and e;5). From these, Ly chooses the
one with lowest training error (i.e., hy = hoj, where
J = argmin;c; 5 €2;). Then the probability of Ly re-
turning a hypothesis hs that misclassifies e; training
examples is the probability that h;; misclassifies ey
training examples and hj » misclassifies more, or vice-
versa, or both hy 1 and hs 2 misclassify e; examples:

b(ez |77,, 6271)3(62 |TL, 6272)
+B(ez|n, e21)b(ez|n, €2,2)
+ b(62|n,€271)b(62|n,€272) (3)

plealn, &) =

Our goal is to use this equation to compute the ex-
pected value of €;. We are hindered by the fact that
in addition to €5 (whether it is €31 or €3 2) the equa-
tion contains another unknown parameter (whichever
€9, is not €3). Since we are not interested in €5 or
€2,2 per se, but only in the effect on €y of trying two
hypotheses instead of of one, we propose the following
heuristic: assume that €31 = €22 = €3. This approx-
imation will be good if €31 and €3 » are similar, and
poor if they are very different. However, this heuristic



may yield good results even in the latter case, because
a close approximation of Efea|n,es] is not required;
all that is required is that Eles|n, es] > Elei|n, €] iff
€3 > €1, which is a much weaker condition (Domingos
& Pazzani, 1997). If €21 = €22 = €2 Equation 3 be-
comes:

b(ea|n, e2)B(ea|n, €2)

+B(ez|n, e2)b(ez|n, €2)

+ b(ea|n, €2)b(ex|n, €2)

= [B(62|n,62)+b(62|n,€2)]2
—B2(62|n,62)

= B%(ea—1|n, e2) — B¥(ez|n, €2) (4)

plezln, &) =

Applying Bayes’s theorem:

plez|n, e2) o< p(ea)p(ez|n, €2) (5)
p(€ez2) can be used to incorporate prior beliefs about the

error rate of the hypotheses considered by Ly. Here it
will simply be assumed uniform:!

plez|n, e2) o< p(ez|n, €2) (6)

The expected value of €3 can now be computed by
integration:

1
/ €3 P(€2|71,€2) dey
0
1
/P(62|71,€2) dey
0

Eles|n, es] = (7)

Doing this for ez = 11, n = 100 results in Efea|n, eq] =
0.134. A similar treatment for e1, using e; = 12, n =
100 and p(e1|n,e1) = b(er|n, €1), yields Eler|n,e1] =
0.127. Thus the hypothesis output by L; would be
preferred, even though L,’s has a lower training error.

Equation 4 can be readily generalized to a learner L,,
that draws m hypotheses at random and chooses the
one with lowest training error:

!This is an unrealistic assumption, and is made solely
for the sake of simplicity. As the following sections show,
the proposed method can be effective even when this as-
sumption is used. This can be attributed to the fact that,
except for very small sample sizes and/or very extreme pri-
ors, the effect of the likelihood term p(ez|n,ez) will easily
dominate the prior’s. In any case, a version of POE using
beta priors is currently being implemented.

x  plem|n, em)
= B™(em—1|n,em) — B"(em|n, €m)

(8)
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Notice that this formula makes intuitive sense: as m
increases, the mass of probability is shifted to higher
and higher ¢,,’s; but as n increases, higher and higher
m’s are needed to make this happen to the same de-
gree. To see this, consider the binomial expansion

B™(em—1|n, €m)
= [B(em|n,em) + blem|n, en)]™
B™(em|n, em) + mBm_l(em|n, em)b(em|n, €m)
m(m —

T

1
)Bm_2(6m|n, em)b2(6m|n, €m)+ -
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and consider that, for all but the smallest sample sizes,
B(em|n, €m) > b(em|n, €). Thus:

plemIn, em) o< plem|n, €n)
= B™(em—1|n,em) — B"(em|n, em)
mb(em|n,em)Bm_1(em|n,em)

(10)
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When m = 1, this reduces to b(em|n, €), as expected.
When m = 2, b(ep|n, €,) is multiplied by a constant
and by B(em|n,€em). Since the latter is a function
that increases monotonically with €,, for a given n and
em, the effect of this is to decrease the probability of
lower €,,’s and increase the probability of higher ones,
and thus to increase the expected €¢,,. As m increases,
b(em|n, €m) is multiplied by higher and higher powers
of B(em|n,€m). This further decreases the probabil-
ity of low €,,’s and increases the probability of high
ones, leading to an ever-increasing expected €,,. As
an example, Figure 2 shows (25|50, €,,) (magnified
by a factor of five) and several powers of B(25|50, €,,).
The resulting E[en, |50, 25] (not shown) has a roughly
similar shape to 5(25]50,€,,), but shifts rightward in
step with B(25]50, €,). For larger n, the same process
takes place, but b(ep,|n,€y) is more sharply peaked,
B(em|n, €m) also transitions from values close to zero
to values close to one more sharply, and the advance
of B™(em|n, €m) to the right becomes correspondingly
slower (since, for any 0 < k < y < 1, as y — 1 with
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Figure 2: Variation of b(en|n,€en) and powers of

B(em|n, €m) with €y, for n =50, e, = n/2.

k held constant higher and higher m’s are needed to
make y™ < k). This can be seen by comparing Fig-
ure 2 with Figure 3, which shows the corresponding
plots for n = 500.

Equation 8 still assumes that all m hypotheses drawn
are independent, but it can be further generalized to
include the dependent case:

p(em|n, em) o< plem|n, €m)
= p(vlgz§m €m,i > em|na€m)

—p(Yi<i<m €m;i > €m|n, €m) (11)

Evaluating this expression when high-order dependen-
cies are present will generally not be feasible, but
the standard Bayesian network approach (Heckerman,
1996) is applicable here: the number of training errors
em,; of each hypothesis hy, ; generated by L, can be
viewed as a node in a Bayesian network, whose par-
ents are the training errors of the hypotheses h,, ; it is
primarily dependent on. For example, in many greedy
search processes (e.g., standard decision tree induc-
tion), if h,, 3 was derived from A, 2, which in turn
was derived from h,, 1, € 3 Will be approximately in-
dependent of e, 1 given €,, 2. In general, the Bayesian
network for a given learning process will have the DAG
(directed acyclic graph) of the search process itself as
a subgraph (e.g., in a greedy search each node e, ;
will have arcs to the training errors of the hypotheses
that were generated from h,, ;). If par(em ;) are the
parents of e, ; in the Bayesian network, Equation 11
above reduces to:
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Figure 3: Variation of b(en|n,€en) and powers of

B(em|n, €m) with €y, for n =500, e, = n/2.

plemln, em) o< plem|n, em) =
m
Hp(em,i > €m|n; €mavem’j6par(em,,) €m,j = em)
i=1
m
- Hp(em,i > em|n: €mavem)j6par(em,,) €m,j > em)
i=1

(12)

L1 and L, above were considered to be different learn-
ers, but they can equally well be considered different
stages of the same learner. For example, Ly can take
the hypothesis output by L; as its own first hypothesis.
More generally, L,, can be the result of continuing the
search of learner Ly, (k < m) with m—k more hypothe-
ses. Thus this framework can be applied to problems
like decision tree and rule pruning, to which we now
turn.

3 AN APPLICATION: RULE
INDUCTION

Most rule induction systems employ a set covering or
“separate and conquer” search strategy (Michalski,
1983; Clark & Niblett, 1989). Rules are induced one
at a time, and each rule starts with a training set com-
posed of the examples not covered by any previous
rules. A rule is induced by adding conditions one at a
time, starting with none (i.e., the rule initially covers
the entire instance space). The next condition to add
is chosen by attempting all possible conditions. Con-



ditions on symbolic attributes are typically of the form
a; = v;j, where v;; is a possible value of attribute a;.
Conditions on numeric attributes are typically of the
form a; < v;; or a; > v;;, where the thresholds v;; are
usually values of the attribute that appear in the train-
ing set. In the beam search process used by many rule
learners, at each step the best b versions of the rule
according to some evaluation function are selected for
further specialization. AQ (Michalski, 1983) continues
adding conditions until the rule is “pure” (i.e., until it
covers examples of only one class). This can lead to se-
vere overfitting. The latest version of the CN2 system
(Clark & Boswell, 1991) uses a simple and effective
Bayesian method to combat this: induction of a rule
stops when no specialization improves its error rate,
and the latter is computed using a Laplace correction
or m-estimate. If n, is the number of examples covered
by a rule r, and e, is the number of those examples
it misclassifies, the conventional estimate of the rule’s
error rate is e, /n,, but its m-estimate is:

¢ = ér + meo (13)

n, +m

where €q is the rule’s a priorierror, which CN2 takes to
be the error obtained by random guessing if all classes
are equally likely: ¢g = (¢ — 1)/¢, where ¢ is the num-
ber of classes. This prior value is given a weight of m
examples (i.e., the behavior of Equation 13 is equiva-
lent to having m additional examples covered by the
rule, one of each class). CN2 uses m=c. As condi-
tions are added, the rule covers fewer and fewer ex-
amples; and €, tends to €y. Thus a rule making more
misclassifications may be preferred if it covers more
examples, causing induction to stop earlier and reduc-
ing overfitting. Clark and Boswell (Clark & Boswell,
1991) found this version of CN2 to be more accurate
than C4.5 (Quinlan, 1993) on 10 of the 12 bench-
mark datasets they used for testing. However, this
scheme ignores that, as more and more conditions are
attempted, the probability of finding one that appears
to reduce the rule’s error merely by chance increases.
This will lead the m-estimate to underestimate the
chosen condition’s true error, and CN2 to overfit. The
upward correction made to €, should increase with the
number of conditions attempted. The process-oriented
evaluation framework described in the previous section
allows us to do this in a systematic way.

Let each hypothesis be one version of the rule at-
tempted during the beam search. The main change
to Equation 8 required is to take into account that
different versions of a rule will cover different numbers

of training examples. In other words, n is now a func-
tion of the hypothesis, and the hypothesis with lowest
ei/n; is chosen. Let 7, = (n1,...,n4, ..., Ny, Where
n; is the number of examples covered by rule version i,
and let €,, = minj<;<m, {€;/n;} be the lowest training-
set error rate found so far. Equation 8 becomes:

p(€m|ﬁma gm) 0.8 p(émlﬁmy €m) =

HB(anm —1lns, em) — HB(ni€m|ni, €m)
i=1 i=1

(14)

This equation does not need to be computed for ev-
ery rule version generated during the beam search, but
only once for each round. One round consists of gen-
erating every possible one-step specialization of each
rule version in the beam, and selecting the b best.
Thus, if there are a attributes and v is the maximum
number of values of any attribute (in the worst case,
v = n for numeric attributes), one round corresponds
to O(bav) rule versions. Let my be the total num-
ber of rule versions generated up to, and including,
round k. Round 1 consists of the initial rule with
no conditions, and m; = 1. Induction stops when
Elem|fim,, ém,] 2 Eleme_y [fime_y, €m,_,], for k> 1.

Equation 14 is of course only a first approximation.
Many other aspects of the rule induction process can
be taken into account using Equation 12, and making
approximations as needed for computational efficiency.
A version of CN2 that takes into account the depen-
dence between each rule version and its parent (i.e.,
the rule version it specializes by one condition) is cur-
rently being implemented.

4 EMPIRICAL STUDY

In order to test the effectiveness of process-oriented
evaluation, default and process-oriented versions of
CN2 were compared on the benchmark datasets previ-
ously used by Clark and Boswell (1991).%2 The process-
oriented version was implemented by adding the nec-
essary facilities to the CN2 source code. Numerical in-
tegration (Equation 7) was performed using Simpson’s
rule, and B(e|n,¢) (Equation 2) was computed using
the incomplete beta function (Press, Teukolsky, Vet-
terling & Flannery, 1992). Integrating Equation 14 ev-
ery time Elem, [Tim,, €m, ] eeds to be computed (once

2With the exception of pole-and-cart, which is not avail-

able in the UCI repository (Merz, Murphy & Aha, 1997).



per round) would generally significantly slow down the
rule induction process. Instead, it was approximated

by:

Pem|n, ém) X p(ém|n, €n) =
B" (ném—1In, €5) — B" (Rém|n, €m)  (15)

where n = % >oit . n;. This replaces each of the prod-
ucts with a single-step computation, speeding up eval-
uation by O(m). CN2’s Laplace estimates are still used
to choose the best b specializations in each round. This
is preferable to using uncorrected estimates, since as
implemented POE has no preference between hypothe-
ses within the same round, and this is also a factor in
avoiding overfitting. However, the Laplace correction
distorts the values used by Equation 15. This will be
particularly pronounced when there are many classes,
since CN2 uses m = c¢. In order to minimize this prob-
lem, m = 2 was used with POE.3

The experimental procedure of (Clark & Boswell,
1991) was followed. Each dataset was randomly di-
vided into 67% for training and 33% for testing, and
the error rate and theory size (total number of condi-
tions) were measured for default CN2 and CN2-POE.
This was repeated 20 times. The average results and
their standard deviations are shown in Table 1.*

POE reduces CN2’s error rate in 8 of the 11 datasets.
Using a sign test, these results are significant at the
4% level. In other words, POE improves CN2 with
high confidence. It also produces simpler rule sets in
all but two of the datasets. With the approximation
used, POE did not noticeably increase CN2’s running
time. This is also due to the fact that POE tends to
make induction stop sooner than in default CN2, as
evinced by the theory size results.

While these results are encouraging, they do not nec-
essarily prove that CN2-POE reduces overfitting by
taking into account the increasing number of rule ver-
sions generated as search progresses. If this is indeed
what is taking place, the difference in error between de-
fault CN2 and CN2-POE (errorcnz—errorcna2—poE)
should increase with the dataset’s number of at-

3Simply changing m = ¢ to m = 2 in default CN2 does
not change its performance on the datasets used.

*There are some differences between CN2’s results and
those reported in (Clark & Boswell, 1991). This may be
due to the fact that the default version of CN2 uses a beam
size of 5, whereas Clark and Boswell used b = 20. The
distribution version of CN2 may also differ from the one

used in (Clark & Boswell, 1991).

tributes, since this will increase the number of rule
versions generated in each round. In order to test this
hypothesis, experiments were carried out in artificial
domains. Concepts defined as Boolean functions in
disjunctive normal form were used as targets. The
datasets were composed of 100 training examples and
1000 test examples described by a variable number of
attributes a. The number of literals d in each dis-
junct was generated at random, with a mean of d = 5
and a variance of 5 x (1 — %) This is obtained by
including each literal in the disjunct with probability
%. Literals were negated or not with equal probabil-
ity. The number of disjuncts was set to 297! = 16,
which ensures the concept covers roughly half the in-
stance space. Equal numbers of positive and negative
examples were included in the dataset, and positive ex-
amples were divided evenly among disjuncts. In each
run a different target concept was used. One hundred
runs were conducted for each value of a between 10
and 100 (at intervals of 5), and the correlation be-
tween (errorcna — errorgna-pog) and a was mea-
sured. This was found to be highly positive (p = 0.66),
confirming our hypothesis.

5 RELATED WORK

The literature on model selection and error estimation
is very large, and we will not attempt to review it
here. The incompleteness of representation-oriented
evaluation was noted 20 years ago by Pearl (1978):

It would, therefore, be more appropriate to
connect credibility with the nature of the se-
lection procedure rather than with properties
of the final product. When the former is not
explicitly known ... simplicity merely serves
as a rough indicator for the type of processing
that took place prior to discovery.

Huber (St. Amant & Cohen, 1997; Huber, 1994) ex-

presses thus the need for process-oriented evaluation:

Data analysis is different from, for exam-
ple, word processing and batch programming;:
the correctness of the end product cannot be
checked without inspecting the path leading
to it.

Several pieces of previous work take into account the
number of hypotheses being compared, and so can be
considered early steps towards process-oriented eval-
uation. This includes notably systems that use the



Table 1: Empirical results: error rates and theory sizes of default CN2 and CN2 with process-oriented evaluation

(CN2-POE).

Dataset Error rate Theory size

CN2 CN2-POE CN2 CN2-POE
Breast 30.0£1.4 29.7+1.4 1145424  58.7+2.6
Echocardio | 32.7+1.2 32.3+£1.3 42.941.2  35.442.1
Glass 39.0+£1.5 38.3%£1.7 51.8+1.0 54.7£1.1
HeartC 20.8+£0.8 22.540.8 57.840.9  52.0£1.0
HeartH 22.4+1.1 21.841.3 69.2+1.5 60.3+£14
Hepatitis 21.240.9 19.241.3 40.241.7  34.0£1.3
Lympho 21.4+1.1 24.141.1 39.54+0.7  38.7£1.0
Soybean 19.5+1.0 19.4+£1.0 116.7+£2.3 110.943.1
Thyroid 4.1+0.2  3.840.2 97.54+2.0 104.8+£2.0
Tumor 60.1£1.0 65.1£1.3 302.844.6 273.94+4.4
Voting 48404  4.3£0.3 61.74£2.9  49.6+£2.5

Bonferroni correction when testing significance (e.g.,
(Kass, 1980; Gaines, 1989; Jensen & Schmill, 1997);
see also (Miller, 1981; Klockars & Sax, 1986; Westfall
& Wolfinger, 1997)). A key difference between these
systems and what is proposed here is that they require
a somewhat arbitrary choice of significance threshold,
while this paper directly attempts to optimize the end
goal (expected generalization error). Also, the Bonfer-
roni correction does not take hypothesis dependencies
into account, while the present framework offers (at
least in principle) a way of doing so.

Quinlan and Cameron-Jones’s (1995) “layered search”
method for automatically selecting CN2’s beam width
can also be considered a form of process-oriented eval-
uation. While layered search and CN2-POE have sim-
ilar aims, their biases differ: layered search limits the
search’s width, while CN2-POE limits its length. The
latter may be more effective in reducing the fragmenta-
tion and small disjuncts problems (Pagallo & Haussler,
1990; Holte, Acker & Porter, 1989). The assumptions
made by the heuristic proposed here are also clearer
than those implicit in Quinlan and Cameron-Jones’s
measure.

Evaluating models that are the result of a search
process, not just of fitting the parameters of a pre-
determined structure, has traditionally not been a con-
cern of statisticians. However, this is beginning to

change (Chatfield, 1995).

Some of the arguments made here for taking into ac-
count the number of hypotheses attempted are made
in greater detail in (Cohen & Jensen, 1997) and (Ng,
1997). The present paper goes further in arguing that
other aspects of the search process should also be taken

into account whenever possible (for example, in rule
induction, the number of examples covered by each
hypothesis).

6 FUTURE WORK

The development and evaluation contained in this pa-
per are obviously only preliminary. As mentioned
above, a version of CN2-POE that takes hypothesis
dependencies into account is currently being imple-
mented. Applications of POE to decision tree in-
duction, backpropagation, instance selection, feature
selection and discretization are also areas for future
work. In each case, the main issue is likely to be find-
ing the optimal trade-off between the computational
and mathematical complexity of POE and its payoff
in reduced error rates. The success of the enterprise is
likely to hinge on distinguishing strong dependencies
from weak ones that can be ignored, and on finding ef-
ficient but roughly correct approximations. For most
learners in most domains, it is probably not realis-
tic to expect large error reductions from POE, since
it does not change the underlying representation or
search process. However, if POE’s gains are small but
consistent across a broad spectrum of learners and do-
mains, it will still be worth developing.

The POE error estimates introduced in this paper have
two types of statistical bias. One stems from the fact
that, because evaluation focuses on the lowest error
found, low outliers have a stronger effect than high
ones, leading to a negative bias (i.e., underestimating
error). This bias can be estimated and the POE val-
ues corrected. This is an area of current work. The



second source of bias is the assumption that all hy-
potheses tried by the learner have similar error rates.
This will lead to a positive bias when the error rate
is decreasing (i.e., POE will tend to overestimate er-
ror at least up to the point where the learner starts
overfitting). One way to overcome this is to intro-
duce explicit expectations about the evolution of the
learner’s error as search progresses. For example, a
specific type of curve may be assumed, or an “expected
curve” can be compiled by cross-validation. Another
approach is to avoid the assumption of similar error
rates, for example by marginalizing over the true error
rates of all hypotheses but the chosen one, or by us-
ing their maximume-likelihood estimates. Both of these
approaches are also currently being studied.

The ultimate goal of POE is to accurately predict a
hypothesis’s generalization error from its training-set
error, using knowledge of how the hypothesis was ob-
tained. How far this is possible remains an open ques-
tion.

7 CONCLUSION

Two main types of model selection are currently avail-
able. In data-oriented evaluation, a hypothesis’s score
does not depend on its form or how the hypothe-
sis was found, but only on its performance on the
data. In representation-oriented evaluation, the score
depends on the data and on the hypothesis’s form,
but not on the search process that led to it. This pa-
per argued that the latter cannot be ignored, and pro-
posed process-oriented evaluation (POE), which takes
all three factors into account. An application of POE
to the CN2 rule induction system was found to reduce
error in 8 of 11 benchmark datasets, and produce sim-
pler theories in 9. Experiments in artificial domains
support the hypothesis that these gains stem at least
partly from CN2-POE’s use of search process informa-
tion.
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