
Approximate Inference by Compilation to
Arithmetic Circuits

Daniel Lowd
Department of Computer and Information Science

University of Oregon
Eugene, OR 97403-1202

lowd@cs.uoregon.edu

Pedro Domingos
Department of Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350

pedrod@cs.washington.edu

Abstract

Arithmetic circuits (ACs) exploit context-specific independence and determinism
to allow exact inference even in networks with high treewidth. In this paper, we
introduce the first ever approximate inference methods using ACs, for domains
where exact inference remains intractable. We propose and evaluate a variety of
techniques based on exact compilation, forward sampling, AC structure learning,
Markov network parameter learning, variational inference, and Gibbs sampling.
In experiments on eight challenging real-world domains, we find that the methods
based on sampling and learning work best: one such method (AC2-F) is faster
and usually more accurate than loopy belief propagation, mean field, and Gibbs
sampling; another (AC2-G) has a running time similar to Gibbs sampling but is
consistently more accurate than all baselines.

1 Introduction

Compilation to arithmetic circuits (ACs) [1] is one of the most effective methods for exact inference
in Bayesian networks. An AC represents a probability distribution as a directed acyclic graph of
addition and multiplication nodes, with real-valued parameters and indicator variables at the leaves.
This representation allows for linear-time exact inference in the size of the circuit. Compared to
a junction tree, an AC can be exponentially smaller by omitting unnecessary computations, or by
performing repeated subcomputations only once and referencing them multiple times. Given an
AC, we can efficiently condition on evidence or marginalize variables to yield a simpler AC for the
conditional or marginal distribution, respectively. We can also compute all marginals in parallel by
differentiating the circuit. These many attractive properties make ACs an interesting and important
representation, especially when answering many queries on the same domain. However, as with
junction trees, compiling a BN to an equivalent AC yields an exponentially-sized AC in the worst
case, preventing their application to many domains of interest.

In this paper, we introduce approximate compilation methods, allowing us to construct effective ACs
for previously intractable domains. For selecting circuit structure, we compare exact compilation of
a simplified network to learning it from samples. Structure selection is done once per domain, so the
cost is amortized over all future queries. For selecting circuit parameters, we compare variational
inference to maximum likelihood learning from samples. We find that learning from samples works

1

best for both structure and parameters, achieving the highest accuracy on eight challenging, real-
world domains. Compared to loopy belief propagation, mean field, and Gibbs sampling, our AC2-F
method, which selects parameters once per domain, is faster and usually more accurate. Our AC2-G
method, which optimizes parameters at query time, achieves higher accuracy on every domain with
a running time similar to Gibbs sampling.

The remainder of this paper is organized as follows. In Section 2, we provide background on
Bayesian networks and arithmetic circuits. In Section 3, we present our methods and discuss re-
lated work. We evaluate the methods empirically in Section 4 and conclude in Section 5.

2 Background

2.1 Bayesian networks

Bayesian networks (BNs) exploit conditional independence to compactly represent a probability
distribution over a set of variables, {X1, . . . , Xn}. A BN consists of a directed, acyclic graph with
a node for each variable, and a set of conditional probability distributions (CPDs) describing the
probability of each variable, Xi, given its parents in the graph, denoted πi [2]. The full probability
distribution is the product of the CPDs: P (X) =

∏n
i=1 P (Xi|πi).

Each variable in a BN is conditionally independent of its non-descendants given its parents. Depend-
ing on the how the CPDs are parametrized, there may be additional independencies. For discrete
domains, the simplest form of CPD is a conditional probability table, but this requires space expo-
nential in the number of parents of the variable. A more scalable approach is to use decision trees as
CPDs, taking advantage of context-specific independencies [3, 4, 5]. In a decision tree CPD for vari-
able Xi, each interior node is labeled with one of the parent variables, and each of its outgoing edges
is labeled with a value of that variable. Each leaf node is a multinomial representing the marginal
distribution of Xi conditioned on the parent values specified by its ancestor nodes and edges in the
tree.

Bayesian networks can be represented as log-linear models:
log P (X = x) = − log Z +

∑
i wifi(x) (1)

where each fi is a feature, each wi is a real-valued weight, and Z is the partition function. In BNs, Z
is 1, since the conditional distributions ensure global normalization. After conditioning on evidence,
the resulting distribution may no longer be a BN, but it can still be represented as a log linear model.

The goal of inference in Bayesian networks and other graphical models is to answer arbitrary
marginal and conditional queries (i.e., to compute the marginal distribution of a set of query vari-
ables, possibly conditioned on the values of a set of evidence variables). Popular methods include
variational inference, Gibbs sampling, and loopy belief propagation.

In variational inference, the goal is to select a tractable distribution Q that is as close as possible to
the original, intractable distribution P . Minimizing the KL divergence from P to Q (KL(P ‖Q)) is
generally intractable, so the “reverse” KL divergence is typically used instead:

KL(Q‖P) =
∑

x

Q(x) log
Q(x)
P (x)

= −HQ(x)−
∑

i

wiEQ[fi] + log ZP (2)

where HQ(x) is the entropy of Q, EQ is an expectation computed over the probability distribution Q,
ZP is the partition function of P , and wi and fi are the weights and features of P (see Equation 1).
This quantity can be minimized by fixed-point iteration or by using a gradient-based numerical
optimization method. What makes the reverse KL divergence more tractable to optimize is that the
expectations are done over Q instead of P . This minimization also yields bounds on the log partition
function, or the probability of evidence in a BN. Specifically, because KL(Q ‖P) is non-negative,
log ZP ≥ HQ(x) +

∑
i wiEQ[fi].

The most commonly applied variational method is mean field, in which Q is chosen from the set
of fully factorized distributions. Generalized or structured mean field operates on a set of clusters
(possibly overlapping), or junction tree formed from a subset of the edges [6, 7, 8]. Selecting the
best tractable substructure is a difficult problem. One approach is to greedily delete arcs until the
junction tree is tractable [6]. Alternately, Xing et al. [7] use weighted graph cuts to select clusters
for structured mean field.

2

2.2 Arithmetic circuits

The probability distribution represented by a Bayesian network can be equivalently represented
by a multilinear function known as the network polynomial [1]: P (X1 = x1, . . . , Xn = xn) =∑

X

∏n
i=1 I(Xi = xi)P (Xi = xi|Πi = πi) where the sum ranges over all possible instantiations of

the variables, I() is the indicator function (1 if the argument is true, 0 otherwise), and the P (Xi|Πi)
are the parameters of the BN. The probability of any partial instantiation of the variables can now be
computed simply by setting to 1 all the indicators consistent with the instantiation, and to 0 all others.
This allows arbitrary marginal and conditional queries to be answered in time linear in the size of
the polynomial. Furthermore, differentiating the network with respect to its weight parameters (wi)
yields the probabilities of the corresponding features (fi).

The size of the network polynomial is exponential in the number of variables, but it can be more
compactly represented using an arithmetic circuit (AC). An AC is a rooted, directed acyclic graph
whose leaves are numeric constants or variables, and whose interior nodes are addition and multi-
plication operations. The value of the function for an input tuple is computed by setting the variable
leaves to the corresponding values and computing the value of each node from the values of its chil-
dren, starting at the leaves. In the case of the network polynomial, the leaves are the indicators and
network parameters. The AC avoids the redundancy present in the network polynomial, and can be
exponentially more compact.

Every junction tree has a corresponding AC, with an addition node for every instantiation of a sep-
arator, a multiplication node for every instantiation of a clique, and a summation node as the root.
Thus one way to compile a BN into an AC is via a junction tree. However, when the network con-
tains context-specific independences, a much more compact circuit can be obtained. Darwiche [1]
describes one way to do this, by encoding the network into a special logical form, factoring the
logical form, and extracting the corresponding AC.

Other exact inference methods include variable elimination with algebraic decision diagrams (which
can also be done with ACs [9]), AND/OR graphs [10], bucket elimination [11], and more.

3 Approximate Compilation of Arithmetic Circuits

In this section, we describe AC2 (Approximate Compilation of Arithmetic Circuits), an approach
for constructing an AC to approximate a given BN. AC2 does this in two stages: structure search
and parameter optimization. The structure search is done in advance, once per network, while the
parameters may be selected at query time, conditioned on evidence. This amortizes the cost of
the structure search over all future queries.The parameter optimization allows us to fine-tune the
circuit to specific pieces of evidence. Just as in variational inference methods such as mean field,
we optimize the parameters of a tractable distribution to best approximate an intractable one. Note
that, if the BN could be compiled exactly, this step would be unnecessary, since the conditional
distribution would always be optimal.

3.1 Structure search

We considered two methods for generating circuit structures. The first is to prune the BN structure
and then compile the simplified BN exactly. The second is to approximate the BN distribution with
a set of samples and learn a circuit from this pseudo-empirical data.

3.1.1 Pruning and compiling

Pruning and compiling a BN is somewhat analogous to edge deletion methods (e.g., [6]), except
that instead of removing entire edges and building the full junction tree, we introduce context-
specific independencies and build an arithmetic circuit that can exploit them. This finer-grained
simplification offers the potential of much richer models or smaller circuits. However, it also offers
more challenging search problems that must be approximated heuristically.

We explored several techniques for greedily simplifying a network into a tractable AC by pruning
splits from its decision-tree CPDs. Ideally, we would like to have bounds on the error of our simpli-
fied model, relative to the original. This can be accomplished by bounding the ratio of each log con-

3

ditional probability distribution, so that the approximated log probability of every instance is within
a constant factor of the truth, as done by the Multiplicative Approximation Scheme (MAS) [12].
However, we found that the bounds for our networks were very large, with ratios in the hundreds or
thousands. This occurs because our networks have probabilities close to 0 and 1 (with logs close to
negative infinity and zero), and because the bounds focus on the worst case.

Therefore, we chose to focus instead on the average case by attempting to mini-
mize the KL divergence between the original model and the simplified approximation:
KL(P ‖Q) =

∑
x P (x) log P (x)

Q(x) where P is the original network and Q is the simplified approxi-
mate network, in which each of P ’s conditional probability distributions has been simplified. We
choose to optimize the KL divergence here because the reverse KL is prone to fitting only a sin-
gle mode, and we want to avoid excluding any significant parts of the distribution before seeing
evidence. Since Q’s structure is a subset of P ’s, we can decompose the KL divergence as follows:

KL(P ‖Q) =
∑

i

∑
πi

P (πi)
∑
xi

P (xi|πi) log
P (xi|πi)
Q(xi|πi)

(3)

where the summation is over all states of the Xi’s parents, Πi. In other words, the KL divergence
can be computed by adding the expected divergence of each local factor, where the expectation is
computed according to the global probability distribution. For the case of BNs with tree CPDs (as
described in Section 2.1), this means that knowing the distribution of the parent variables allows us
to compute the change in KL divergence from pruning a tree CPD.

Unfortunately, computing the distribution of each variable’s parents is intractable and must be ap-
proximated in some way. We tried two different methods for computing these distributions: estimat-
ing the joint parent probabilities from a large number of samples (one million in our experiments)
(“P-Samp”), and forming the product of the parent marginals estimated using mean field (“P-MF”).

Given a method for computing the parent marginals, we remove the splits that least increase the
KL divergence. We implement this by starting from a fully pruned network and greedily adding the
splits that most decrease KL divergence. After every 10 splits, we check the number of edges by
compiling the candidate network to an AC using the C2D compiler. 1 We stop when the number of
edges exceeds our prespecified bound.

3.1.2 Learning from samples

The second approach we tried is learning a circuit from a set of generated samples. The samples
themselves are generated using forward sampling, in which each variable in the BN is sampled in
topological order according to its conditional distribution given its parents. The circuit learning
method we chose is the LearnAC algorithm by Lowd and Domingos [13], which greedily learns
an AC representing a BN with decision tree CPDs by trading off log likelihood and circuit size.
We made one modification to the the LearnAC (LAC) algorithm in order to learn circuits with a
fixed number of edges. Instead of using a fixed edge penalty, we start with an edge penalty of 100
and halve it every time we run out of candidate splits with non-negative scores. The effect of this
modified procedure is to conservatively selects splits that add few edges to the circuit at first, and
become increasingly liberal until the edge limit is reached. Tuning the initial edge penalty can lead
to slightly better performance at the cost of additional training time. We also explored using the BN
structure to guide the AC structure search (for example, by excluding splits that would violate the
partial order of the original BN), but these restrictions offered no significant advantage in accuracy.

Many modifications to this procedure are possible. Larger edge budgets or different heuristics could
yield more accurate circuits. With additional engineering, the LearnAC algorithm could be adapted
to dynamically request only as many samples as necessary to be confident in its choices. For exam-
ple, Hulten and Domingos [14] have developed methods that scale learning algorithms to datasets
of arbitrary size; the same approach could be used here, except in a “pull” setting where the data is
generated on-demand. Spending a long time finding the most accurate circuit may be worthwhile,
since the cost is amortized over all queries.

We are not the first to propose sampling as a method for converting intractable models into tractable
ones. Wang et al. [15] used a similar procedure for learning a latent tree model to approximate a

1Available at http://reasoning.cs.ucla.edu/c2d/.

4

BN. They found that the learned models had faster or more accurate inference on a wide range of
standard BNs (where exact inference is somewhat tractable). In a semi-supervised setting, Liang et
al. [16] trained a conditional random field (CRF) from a small amount of labeled training data, used
the CRF to label additional examples, and learned independent logistic regression models from this
expanded dataset.

3.2 Parameter optimization

In this section, we describe three methods for selecting AC parameters: forward sampling, varia-
tional optimization, and Gibbs sampling.

3.2.1 Forward sampling

In AC2-F, we use forward sampling to generate a set of samples from the original BN (one million
in our experiments) and maximum likelihood estimation to estimate the AC parameters from those
samples. This can be done in closed form because, before conditioning on evidence, the AC structure
also represents a BN. AC2-F selects these parameters once per domain, before conditioning on any
evidence. This makes it very fast at query time.

AC2-F can be viewed as approximately minimizing the KL divergence KL(P ‖ Q) between the
BN distribution P and the AC distribution Q. For conditional queries P (Y |X = xev), we are more
interested in the divergence of the conditional distributions, KL(P (.|xev)‖Q(.|xev)). The following
theorem bounds the conditional KL divergence as a function of the unconditional KL divergence:
Theorem 1. For discrete probability distributions P and Q, and evidence xev ,

KL(P (.|xev)‖Q(.|xev)) ≤ 1
P (xev)

KL(P ‖Q)

(See the supplementary materials for the proof.) From this theorem, we expect AC2-F to work
better when evidence is likely (i.e., P (xev) is not too small). For rare evidence, the conditional KL
divergence could be much larger than the unconditional KL divergence.

3.2.2 Variational optimization

Since AC2-F selects parameters based on the unconditioned BN, it may do poorly when conditioning
on rare evidence. An alternative is to choose AC parameters that (locally) minimize the reverse KL
divergence to the BN conditioned on evidence. Let P and Q be log-linear models, i.e.:

log P (x) = − log ZP +
∑

i wifi(x) log Q(x) = − log ZQ +
∑

j vjgj(x)

The reverse KL divergence and its gradient can now be written as follows:

KL(Q‖P) =
∑

j vjEQ(gj)−
∑

i wiEQ(fi) + log ZP

ZQ
(4)

∂
∂vj

KL(Q‖P) =
∑

k vk(EQ(gkgj)−Q(gk)Q(gj))−
∑

i vi(EQ(figj)−Q(fi)Q(gj)) (5)

where EQ(gkgj) is the expected value of gk(x) × gj(x) according to Q. In our application, P is
the BN conditioned on evidence and Q is the AC. Since inference in Q (the AC) is tractable, the
gradient can be computed exactly.

We can optimize this using any numerical optimization method, such as gradient descent. Due
to local optima, the results may depend on the optimization procedure and its initialization. In
experiments, we used the limited memory BFGS algorithm (L-BFGS) [17], initialized with AC2-F.

We now discuss how to compute the gradient efficiently in a circuit with e edges. By setting leaf
values and evaluating the circuit as described by Darwiche [1], we can compute the probability of
any conjunctive feature Q(fi) (or Q(gk)) in O(e) operations. If we differentiate the circuit after
conditioning on a feature fi (or gk), we can obtain the probabilities of the conjunctions Q(figj) (or
Q(gkgj)) for all gj in O(e) time. Therefore, if there are n features in P , and m features in Q, then
the total complexity of computing the derivative is O((n + m)e). Since there are typically fewer
features in Q than P , this simplifies to O(ne).

These methods are applicable to any tractable structure represented as an AC, including low tree-
width models, mixture models, latent tree models, etc. We refer to this method as AC2-V.

5

3.2.3 Gibbs sampling

While optimizing the reverse KL is a popular choice for approximate inference, there are certain
risks. Even if KL(Q‖P) is small, Q may assign very small or zero probabilities to important modes
of P . Furthermore, we are only guaranteed to find a local optimum, which may be much worse
than the global optimum. The “regular” KL divergence, does not suffer these disadvantages, but is
impractical to compute since it involves expectations according to P :

KL(P ‖Q)=
∑

i wiEP (fi)−
∑

j vjEP (gj) + log ZQ/ZP (6)
∂

∂vj
KL(P ‖Q)= EQ(gj)− EP (gj) (7)

Therefore, minimizing KL(P ‖Q) by gradient descent or L-BFGS requires computing the condi-
tional probability of each AC feature according to the BN, EP (gj). Note that these only need to be
computed once, since they are unaffected by the AC feature weights, vj . We chose to approximate
these expectations using Gibbs sampling, but an alternate inference method (e.g., importance sam-
pling) could be substituted. The probabilities of the AC features according to the AC, EQ(gj), can
be computed in parallel by differentiating the circuit, requiring time O(e).2 This is typically orders
of magnitude faster than the variational approach described above, since each optimization step runs
in O(e) instead of O(ne), where n is the number of BN features. We refer to this method as AC2-G.

4 Experiments
In this section, we compare the proposed methods experimentally and demonstrate that approximate
compilation is an accurate and efficient technique for inference in intractable networks.

4.1 Datasets

We wanted to evaluate our methods on challenging, realistic networks where exact inference is in-
tractable, even for the most sophisticated arithmetic circuit-based techniques. This ruled out most
traditional benchmarks, for which ACs can already perform exact inference [9]. We generated in-
tractable networks by learning them from eight real-world datasets using the WinMine Toolkit [18].
The WinMine Toolkit learns BNs with tree-structured CPDs, leading to complex models with high
tree-width. In theory, this additional structure can be exploited by existing arithmetic circuit tech-
niques, but in practice, compilation techniques ran out of memory on all eight networks. See Davis
and Domingos [19] and our supplementary material for more details on the datasets and the networks
learned from them, respectively.

4.2 Structure selection

In our first set of experiments, we compared the structure selection algorithms from Section 3.1
according to their ability to approximate the original models. Since computing the KL divergence
directly is intractable, we approximated it using random samples x(i):

D(P ||Q) =
∑

x

P (x) log
P (x)
Q(x)

= EP [log(P (x)/Q(x))] ≈ 1
m

∑
i

log(P (x(i))/Q(x(i))) (8)

where m is the number of samples (10,000 in our experiments). These samples were distinct from
the training data, and the same set of samples was used to evaluate each algorithm.

For LearnAC, we trained circuits with a limit of 100,000 edges. All circuits were learned using
100,000 samples, and then the parameters were set using AC2-F with 1 million samples.3 Training
time ranged from 17 minutes (KDD Cup) to 8 hours (EachMovie). As an additional baseline, we also
learned tree-structured BNs from the same 1 million samples using the Chow-Liu algorithm [20].

Results are in Table 1. The learned arithmetic circuit (LAC) achieves the best performance on all
datasets, often by a wide margin. We also observe that, of the pruning methods, samples (P-Samp)
work better than mean field marginals (P-MF). Chow-Liu trees (C-L) typically perform somewhere
between P-MF and P-Samp. For the rest of this paper, we focus on structures selected by LearnAC.

2To support optimization methods that perform line search (including L-BFGS), we can similarly approxi-
mate KL(P ‖Q). log ZQ can also be computed in O(e) time.

3With 1 million samples, we ran into memory limitations that a more careful implementation might avoid.

6

Table 1: KL divergence of different
structure selection algorithms.

P-MF P-Samp C-L LAC
KDD Cup 2.44 0.10 0.23 0.07

Plants 8.41 2.29 4.48 1.27
Audio 4.99 3.31 4.47 2.12
Jester 5.14 3.55 5.08 2.82

Netflix 3.83 3.06 4.14 2.24
MSWeb 1.78 0.52 0.70 0.38

Book 4.90 2.43 2.84 1.89
EachMovie 29.66 17.61 17.11 11.12

Table 2: Mean time for answering a single conditional
query, in seconds.

AC2-F AC2-V AC2-G BP MF Gibbs
KDD Cup 0.022 3803 11.2 0.050 0.025 2.5
Plants 0.022 2741 11.2 0.081 0.073 2.8
Audio 0.023 4184 14.4 0.063 0.048 3.4
Jester 0.019 3448 13.8 0.054 0.057 3.3
Netflix 0.021 3050 12.3 0.057 0.053 3.3
MSWeb 0.022 2831 12.2 0.277 0.046 4.3
Book 0.020 5190 16.1 0.864 0.059 6.6
EachMovie 0.022 10204 28.6 1.441 0.342 11.0

-0.044

-0.042

-0.040

-0.038

-0.036

-0.034

10% 20% 30% 40% 50%

Lo
g

pr
ob

ab
ili

ty

Evidence variables

KDD

-0.4

-0.3

-0.2

-0.1

10% 20% 30% 40% 50%

Lo
g

pr
ob

ab
ili

ty

Evidence variables

Plants

-0.58

-0.54

-0.50

-0.46

-0.42

-0.38

10% 20% 30% 40% 50%

Lo
g

pr
ob

ab
ili

ty
Evidence variables

Audio

-0.68

-0.64

-0.60

-0.56

-0.52

10% 20% 30% 40% 50%

Lo
g

pr
ob

ab
ili

ty

Evidence variables

Jester

-0.64

-0.62

-0.60

-0.58

-0.56

-0.54

10% 20% 30% 40% 50%

Lo
g

pr
ob

ab
ili

ty

Evidence variables

Netflix

-0.044

-0.040

-0.036

-0.032

-0.028

10% 20% 30% 40% 50%

Lo
g

pr
ob

ab
ili

ty

Evidence variables

MSWeb

-0.10

-0.09

-0.08

-0.07

10% 20% 30% 40% 50%

Lo
g

pr
ob

ab
ili

ty

Evidence variables

Book

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

10% 20% 30% 40% 50%

Lo
g

pr
ob

ab
ili

ty

Evidence variables

EachMovie

-0.18

-0.16

-0.14

-0.12

-0.10

-0.08

10% 20% 30% 40% 50%

Lo
g

pr
ob

ab
ili

ty

Evidence variables

EachMovie

AC2-F AC2-V AC2-G MF BP Gibbs

Figure 1: Average conditional log likelihood of the query variables (y axis), divided by the number
of query variables (x axis). Higher is better. Gibbs often performs too badly to appear in the frame.

4.3 Conditional probabilities

Using structures selected by LearnAC, we compared the accuracy of AC2-F, AC2-V, and AC2-G
to mean field (MF), loopy belief propagation (BP), and Gibbs sampling (Gibbs) on conditional
probability queries. We ran MF and BP to convergence. For Gibbs sampling, we ran 10 chains, each
with 1000 burn-in iterations and 10,000 sampling iterations. All methods exploited CPD structure
whenever possible (e.g., in the computation of BP messages). All code will be publicly released.

Since most of these queries are intractable to compute exactly, we cannot determine the true proba-
bilities directly. Instead, we generated 100 random samples from each network, selected a random
subset of the variables to use as evidence (10%-50% of the total variables), and measured the log
conditional probability of the non-evidence variables according to each inference method. Different
queries used different evidence variables. This approximates the KL divergence between the true
and inferred conditional distributions up to a constant. We reduced the variance of this approxi-
mation by selecting additional queries for each evidence configuration. Specifically, we generated
100,000 samples and kept the ones compatible with the evidence, up to 10,000 per configuration.
For some evidence, none of the 100,000 samples were compatible, leaving just the original query.

Full results are in Figure 1. Table 2 contains the average inference time for each method.

Overall, AC2-F does very well against BP and even better against MF and Gibbs, especially with
lesser amounts of evidence. Its somewhat worse performance at greater amounts of evidence is
consistent with Theorem 1. AC2-F is also the fastest of the inference methods, making it a very
good choice for speedy inference with small to moderate amounts of evidence.

AC2-V obtains higher accuracy than AC2-F at higher levels of evidence, but is often less accurate at
lesser amounts of evidence. This can be attributed to different optimization and evaluation metrics:

7

reducing KL(Q ‖ P) may sometimes lead to increased KL(P ‖ Q). On EachMovie, AC2-V does
particularly poorly, getting stuck in a worse local optimum than the much simpler MF. AC2-V is
also the slowest method, by far.

AC2-G is the most accurate method overall. It dominates BP, MF, and Gibbs on all datasets. With
the same number of samples, AC2-G takes 2-4 times longer than Gibbs. This additional running time
is partly due to the parameter optimization step and partly due to the fact that AC2-G is computing
many expectations in parallel, and therefore has more bookkeeping per sample. If we increase the
number of samples in Gibbs by a factor of 10 (not shown), then Gibbs wins on KDD at 40 and 50%
and Plants at 50% evidence, but is also significantly slower than AC2-G. Compared to the other AC
methods, AC2-G wins everywhere except for KDD at 10-40% evidence and Netflix at 10% evidence.
If we increase the number of samples in AC2-G by a factor of 10 (not shown), then it beats AC2-F
and AC2-V on every dataset. The running time of AC2-G is split approximately evenly between
computing sufficient statistics and optimizing parameters with L-BFGS.

Gibbs sampling did poorly in almost all of the scenarios, which can be attributed to the fact that
it is unable to accurately estimate the probabilities of very infrequent events. Most conjunctions
of dozens or hundreds of variables are very improbable, even if conditioned on a large amount
of evidence. If a certain configuration is never seen, then its probability is estimated to be very
low (non-zero due to smoothing). MF and BP did not have this problem, since they represent the
conditional distribution as a product of marginals, each of which can be estimated reasonably well.
In follow-up experiments, we found that using Gibbs sampling to compute the marginals yielded
slightly better accuracy than BP, but much slower. AC2-G can be seen as a generalization of using
Gibbs sampling to compute marginals, just as AC2-V generalizes MF.

5 Conclusion

Arithmetic circuits are an attractive alternative to junction trees due to their ability to exploit de-
terminism and context-specific independence. However, even with ACs, exact inference remains
intractable for many networks of interest. In this paper, we introduced the first approximate compi-
lation methods, allowing us to apply ACs to any BN. Our most efficient method, AC2-F, is faster than
traditional approximate inference methods and more accurate most of the time. Our most accurate
method, AC2-G, is more accurate than the baselines on every domain.

One of the key lessons is that combining sampling and learning is a good strategy for accurate
approximate inference. Sampling generates a coarse approximation of the desired distribution which
is subsequently smoothed by learning. For structure selection, an AC learning method applied to
samples was more effective than exact compilation of a simplified network. For parameter selection,
maximum likelihood estimation applied to Gibbs samples was both faster and more effective than
variational inference in ACs.

For future work, we hope to extend our methods to Markov networks, in which generating samples
is a difficult inference problem in itself. Similar methods could be used to select AC structures tuned
to particular queries, since a BN conditioned on evidence can be represented as a Markov network.
This could lead to more accurate results, especially in cases with a lot of evidence, but the cost would
no longer be amortized over all future queries. Comparisons with more sophisticated baselines are
another important item for future work.

Acknowledgements

The authors wish to thank Christopher Meek and Jesse Davis for helpful comments. This research
was partly funded by ARO grant W911NF-08-1-0242, AFRL contract FA8750-09-C-0181, DARPA
contracts FA8750-05-2-0283, FA8750-07-D-0185, HR0011-06-C-0025, HR0011-07-C-0060 and
NBCH-D030010, NSF grants IIS-0534881 and IIS-0803481, and ONR grant N00014-08-1-0670.
The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of ARO,
DARPA, NSF, ONR, or the United States Government.

8

References

[1] A. Darwiche. A differential approach to inference in Bayesian networks. Journal of the ACM, 50(3):280–
305, 2003.

[2] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-
mann, San Francisco, CA, 1988.

[3] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific independence in Bayesian
networks. In Proc. of the 12th Conference on Uncertainty in Artificial Intelligence, pages 115–123,
Portland, OR, 1996. Morgan Kaufmann.

[4] N. Friedman and M. Goldszmidt. Learning Bayesian networks with local structure. In Proc. of the
12th Conference on Uncertainty in Artificial Intelligence, pages 252–262, Portland, OR, 1996. Morgan
Kaufmann.

[5] D. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning Bayesian networks with
local structure. In Proc. of the 13th Conference on Uncertainty in Artificial Intelligence, pages 80–89,
Providence, RI, 1997. Morgan Kaufmann.

[6] Arthur Choi and Adnan Darwiche. A variational approach for approximating Bayesian networks by edge
deletion. In Proc. of the 22nd Conference on Uncertainty in Artificial Intelligence (UAI-06), Arlington,
Virginia, 2006. AUAI Press.

[7] E. P. Xing, M. I. Jordan, and S. Russell. Graph partition strategies for generalized mean field inference.
In Proc. of the 20th Conference on Uncertainty in Artificial Intelligence, pages 602–610, Banff, Canada,
2004.

[8] D. Geiger, C. Meek, and Y. Wexler. A variational inference procedure allowing internal structure for
overlapping clusters and deterministic constraints. Journal of Artificial Intelligence Research, 27:1–23,
2006.

[9] M. Chavira and A. Darwiche. Compiling Bayesian networks using variable elimination. In Proc. of the
20th International Joint Conference on Artificial Intelligence (IJCAI), pages 2443–2449, 2007.

[10] R. Dechter and R. Mateescu. AND/OR search spaces for graphical models. Artificial Intelligence, 171:73–
106, 2007.

[11] R. Dechter. Bucket elimination: a unifying framework for reasoning. Artificial Intelligence, 113:41–85,
1999.

[12] Y. Wexler and C. Meek. MAS: a multiplicative approximation scheme for probabilistic inference. In
Advances in Neural Information Processing Systems 22, Cambridge, MA, 2008. MIT Press.

[13] D. Lowd and P. Domingos. Learning arithmetic circuits. In Proc. of the 24th Conference on Uncertainty
in Artificial Intelligence, Helsinki, Finland, 2008. AUAI Press.

[14] G. Hulten and P. Domingos. Mining complex models from arbitrarily large databases in constant time.
In Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 525–531, Edmonton, Canada, 2002. ACM Press.

[15] Y. Wang, N. L. Zhang, and T. Chen. Latent tree models and approximate inference in Bayesian networks.
Journal of Artificial Intelligence Research, 32:879–900, 2008.

[16] P. Liang, III H. Daumé, and D. Klein. Structure compilation: trading structure for features. In Proc. of
the 25th International Conference on Machine Learning, pages 592–599, Helsinki, Finland, 2008. ACM.

[17] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathemat-
ical Programming, 45(3):503–528, 1989.

[18] D. M. Chickering. The WinMine toolkit. Technical Report MSR-TR-2002-103, Microsoft, Redmond,
WA, 2002.

[19] J. Davis and P. Domingos. Bottom-up learning of Markov network structure. In Proc. of the 27th Inter-
national Conference on Machine Learning, Haifa, Israel, 2010. ACM Press.

[20] C. K. Chow and C. N Liu. Approximating discrete probability distributions with dependence trees. IEEE
Transactions on Information Theory, 14:462–467, 1968.

9

