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Abstract. Object identification is the problem of determining whether
different observations correspond to the same object. It occurs in a wide
variety of fields, including vision, natural language, citation matching,
and information integration. Traditionally, the problem is solved sepa-
rately for each pair of observations, followed by transitive closure. We
propose solving it collectively, performing simultaneous inference for all
candidate match pairs, and allowing information to propagate from one
candidate match to another via the attributes they have in common. Our
formulation is based on conditional random fields, and allows an optimal
solution to be found in polynomial time using a graph cut algorithm. Pa-
rameters are learned using a voted perceptron algorithm. Experiments
on real and synthetic datasets show that this approach outperforms the
standard one.

1 Introduction

In many domains, the objects of interest are not uniquely identified, and the
problem arises of determining which observations correspond to the same ob-
ject. For example, in vision we may need to determine whether two similar
shapes appearing at different times in a video stream are in fact the same ob-
ject. In natural language processing and information extraction, a key task is
determining which noun phrases are co-referent (i.e., refer to the same entity).
When creating a bibliographic database from reference lists in papers, we need
to determine which citations refer to the same papers in order to avoid dupli-
cation. When merging multiple databases, a problem of keen interest to many
large scientific projects, businesses, and government agencies, we need to deter-
mine which records represent the same entity and should therefore be merged.
This problem, originally defined by Newcombe et al. [14] and placed on a firm
statistical footing by Fellegi and Sunter [7], is known by the name of object
identification, record linkage, de-duplication, merge/purge, identity uncertainty,
hardening soft information sources, co-reference resolution, and others. There is
a large literature on it, including Winkler [21], Hernandez and Stolfo [9], Cohen
et al. [4], Monge and Elkan [13], Cohen and Richman [5], Sarawagi and Bhamidi-
paty [17], Tejada et al. [20], Bilenko and Mooney [3], etc. Most approaches are



variants of the original Fellegi-Sunter model, in which object identification is
viewed as a classification problem: given a vector of similarity scores between
the attributes of two observations, classify it as “Match” or “Non-match.” A
separate match decision is made for each candidate pair, followed by transitive
closure to eliminate inconsistencies. Typically, a logistic regression model is used
[1].

Making match decisions separately ignores that information gleaned from
one match decision may be useful in others. For example, if we find that a pa-
per appearing in Proc. PKDD-04 is the same as a paper appearing in Proc. 8th

PKDD, this implies that these two strings refer to the same venue, which in
turn can help match other pairs of PKDD papers. In this paper, we propose an
approach that accomplishes this propagation of information. It is based on con-
ditional random fields, which are discriminatively trained, undirected graphical
models [10]. Our formulation allows us to find the globally optimal match in
polynomial time using a graph cut algorithm. The parameters of the model are
learned using a voted perceptron [6].

Recently, Pasula et al. [15] proposed an approach to the citation matching
problem that has collective inference features. This approach is based on directed
graphical models, uses a different representation of the matching problem, also
includes parsing of the references into fields, and is quite complex. It is a genera-
tive rather than discriminative approach, requiring modeling of all dependences
among all variables, and the learning and inference tasks are correspondingly
more difficult. A collective discriminative approach has been proposed by Mc-
Callum and Wellner [12], but the only inference it performs across candidate
pairs is the transitive closure that is traditionally done as a post-processing
step. Bhattacharya and Getoor [2] proposed an ad hoc approach to matching
authors taking into account the citations they appear in. Our model can be
viewed as a form of relational Markov network [18], except that it involves the
creation of new nodes for match pairs, and consequently cannot be directly cre-
ated by queries to the databases of interest. Max-margin Markov networks [19]
can also be viewed as collective discriminative models, and applying their type
of margin-maximizing training to our model is an interesting direction for future
research.

We first describe in detail our approach, which we call the collective model.
We then report experimental results on real and semi-artificial datasets, which
illustrate the advantages of our model relative to the standard Fellegi-Sunter
one.

2 Collective Model

Using the original database-oriented nomenclature, the input to the problem is
a database of records (set of observations), with each record being a tuple of
fields (attributes). We now describe the graphical structure of our model, its
parameterization, and inference and learning algorithms for it.



2.1 Model Structure

Consider a database relation R = {r1, r2, . . . , rn}, where ri is the ith record in
the relation. Let F = {F 1, F 2, . . . , F m} denote the set of fields in the relation.
For each field F k, we have a set FV k of corresponding field values appearing in
the relation, FV k = {fk

1
, fk

2
, . . . , fk

lk
}. We will use the notation ri.F

k to refer

to the value of kth field of record ri. The goal is to determine, for each pair of
records (ri, rj), whether they refer to the same underlying entity. Our graphical
model contains three types of nodes:

Record-match nodes. The model contains a Boolean node Rij for each pair-
wise question of the form: “Is record ri the same as record rj?”

Field-match nodes. The model contains a Boolean node F k
xy for each pairwise

question of the form: “Do field values fk
x and fk

y represent the same underlying
property?” For example, for the venue field in a bibliography database, the
model might contain a node for the question: “Do the strings ‘Proc. PKDD-
04’ and ‘Proc. 8th PKDD’ represent the same venue?”

Field-similarity nodes. For pair of field values f k
x , fk

y ∈ FV k, the model con-

tains a node Sk
xy whose domain is the [0, 1] interval. This node encodes how

similar the two field values are, according to a pre-defined similarity mea-
sure. For example, for textual fields this could be the TF/IDF score [16].
Since their values are computed directly from the data, we will also call these
nodes evidence nodes.

Because of the symmetric nature of their semantics, Rij , F k
xy and Sk

xy repre-

sent the same nodes as Rji, F k
yx and Sk

yx, respectively.
The structure of the model is as follows. Each record-match node Rij is con-

nected by an edge to each corresponding field-match node F k
xy, 1 ≤ k ≤ m.

Formally, Rij is connected to F k
xy iff ri.F

k = fk
x and rj .F

k = fk
y . Each field-

match node F k
xy is in turn connected to the corresponding field-similarity node

Sk
xy. Each record-match node Rij is also directly connected to the corresponding

field-similarity node Sk
xy. In general, a field-match node will be linked to many

record-match nodes, as the same pair of field values can be shared by many
record pairs. This sharing lies at the heart of our model. The field-match nodes
allow information to propagate from one candidate record pair to another. No-
tice that merging the evidence nodes corresponding to the same field value pairs,
without introducing field-match nodes, would not work. This is because evidence
nodes have known values at inference time, rendering the record-match nodes
independent and reducing our approach to the standard one. Figure 1(a) shows
a four-record bibliography database, and 1(b) shows the corresponding graphical
representation for the candidate pairs (b1, b2) and (b3, b4). Note how dependences
flow through the shared field-match node corresponding to the venue field. Infer-
ring that b1 and b2 refer to the same underlying paper will lead to the inference
that the corresponding venue strings “Proc. PKDD-04” and “Proc. 8th PKDD”
refer to the same underlying venue, which in turn might provide sufficient evi-
dence to merge b3 and b4. In general, our model can capture complex interactions



between candidate pair decisions, potentially leading to better object identifica-
tion.

One limitation of the model is that it makes a global decision on whether
two fields are the same, which may not always be appropriate. For example, “J.
Doe” may sometimes be the same as “Jane Doe,” and sometimes the same as
“Julia Doe.” In this case the model will tend to choose whichever match is most
prevalent. This simplifies inference and learning, and in many domains will not
sigificantly affect overall performance. Nevertheless, relaxing it is an item for
future work.

2.2 Conditional Random Fields

Conditional random fields, introduced by Lafferty et al. [10], define the condi-
tional probability of a set of output variables Y given a set of input or evidence
variables X. Formally,

P (y|x) =
1

Zx

∑

c∈C

exp
∑

l

λlcflc(yc, xc) (1)

where C is the set of cliques in the graph, xc and yc denote the subset of vari-
ables participating in clique c, and Zx is a normalization factor. flc, known as
a feature function, is a function of variables involved in clique c, and λlc is the
corresponding weight. In many domains, rather than having different parameters
(feature weights) for each clique in the graph, the parameters of a conditional
random field are tied across repeating clique patterns in the graph, called clique
templates [18]. The probability distribution can then be specified as

P (y|x) =
1

Zx

∑

t∈T

∑

c∈Ct

exp
∑

l

λltflt(yc, xc) (2)

where T is the set of all the templates, Ct is the set of cliques which satisfy
template t, and flt and λlt are respectively a feature function and a feature
weight, pertaining to template t.

2.3 Model Parameters

Our model has a singleton clique for each record-match node and one for each
field-match node, a two-way clique for each edge linking a record-match node
to a field-match node, a two-way clique for each edge linking a record-match
node to a field-similarity node, and a two-way clique between each field-match
node and the corresponding field-similarity node. The parameters for all cliques
of the same type are tied; there is a template for the singleton record-match
cliques, one for each type of singleton field-match clique (e.g., in a bibliography
database, one for author fields, one for title fields, one for venue fields, etc.),
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(b) Collective model (fragment).

Fig. 1. Example of collective object identification. For clarity, we have omitted the
edges linking the record-match nodes to the corresponding field-similarity nodes.

and so on. The probability of a particular assignment r to the record-match and
field-match nodes, given that the field-similarity (evidence) node values are s, is

P (r|s) =
1

Zs

exp
∑

i,j

[

∑

l

λlfl(rij) +
∑

k

(

∑

l

φklfl(rij .F
k) +

∑

l

γklgl(rij , rij .F
k)

+
∑

l

ηklhl(rij , rij .S
k) +

∑

l

δklhl(rij .F
k, rij .S

k)

)]

(3)



where (i, j) ranges over all candidate pairs and k ranges over all fields. rij .F
k and

rij .S
k refer to the kth field-match node and field-similarity node, respectively,

for the record pair (ri, rj). λl and φkl denote the feature weights for singleton
cliques. γkl denotes the feature weights for a two-way clique between a record-
match node and a field-match node. ηkl and δkl denote the feature weights for a
two-way clique between a Boolean node (record-match node or field-match node,
respectively) and a field-similarity node. Cliques have one feature per possible
state. Singleton cliques thus have two (redundant) features: f0(x) = 1 if x = 0,
and f0(x) = 0 otherwise; f1(x) = 1 if x = 1, and f1(x) = 0 otherwise. Two-way
cliques involving Boolean variables have four features: g0(x, y) = 1 if (x, y) =
(0, 0); g1(x, y) = 1 if (x, y) = (0, 1); g2(x, y) = 1 if (x, y) = (1, 0); g3(x, y) = 1 if
(x, y) = (1, 1); each of these features is zero in all other states. Two-way cliques
between a Boolean node (record-match node or field-match node) q and a field-
similarity node s have two features, defined as follows: h0(q, s) = 1 − s if q = 0,
and h0(q, s) = 0 otherwise; h1(q, s) = s if q = 1, and h1(q, s) = 0 otherwise. This
captures the fact that, the more similar two field values are, the more likely they
are to match.

Notice that a particular field-match node appears in Equation 3 once for each
pair of records containing the corresponding field values. This reflects the fact
that that node is effectively the result of merging the field-match nodes from
each of the individual record-match decisions.

2.4 Inference and Learning

Inference in our model corresponds to finding the configuration r∗ of non-evidence
nodes that maximizes P (r∗|s). For random fields where maximum clique size is
two and all non-evidence nodes are Boolean, this problem can be reduced to a
graph min-cut problem, provided certain constraints on the parameters are satis-
fied [8]. Our model is of this form, and it can be shown that satisfying the follow-
ing constraints suffices for the min-cut reduction to hold: γk0+γk3−γk1−γk2 ≥ 0,
∀k, 1 ≤ k ≤ m, where the γkl, 0 ≤ l ≤ 3, are the parameters of the clique tem-
plate for edges linking record-match nodes to field-match nodes of type F k (see
Equation 3).1 This essentially corresponds to requiring that nodes be positively
correlated, which should be true in this application. Our learning algorithm en-
sures that the learned parameters satisfy these constraints. Since min-cut can
be solved exactly in polynomial time, we have a polynomial-time exact inference
algorithm for our model.

Learning involves finding maximum-likelihood parameters from data. The
partial derivative of the log-likelihood L (see Equation 3) with respect to the
parameter γkl is

∂L

∂γkl

=
∑

i,j

gl(rij , rij .F
k) −

∑

r
′

PΛ(r′|s)
∑

i,j

gl(r
′

ij , r
′

ij .F
k) (4)

1 The constraint mentioned in Greig et al. [8] translates to γk0, γk3 ≥ 0, γk1, γk2 ≤ 0,
which is a more restrictive version of the constraint above.



where r′ varies over all possible configurations of the non-evidence nodes in the
graph, and PΛ(r′|s) denotes the probability distribution according to the current
set of parameters. In words, the derivative of the log-likelihood with respect to a
parameter is the difference between the empirical and expected counts of the cor-
responding feature, with the expectation taken according to the current model.
The other components of the gradient are found analogously. To satisfy the con-
straint γk0 + γk3 − γk1 − γk2 ≥ 0, we perform the following re-parameterization:
γk0 = f(β1) + β2, γk1 = f(β1) − β2, γk2 = −f(β3) + β4, γk3 = −f(β3) − β4,
where f(x) = log(1+ex). We then learn the β parameters using the appropriate
transformation of Equation 4. The second term in this equation involves the
expectation over an exponential number of configurations, and its computation
is intractable. We use a voted perceptron algorithm [6], which approximates this
expectation by the feature counts of the most likely configuration, which we find
using our polynomial-time inference algorithm with the current parameters. The
final parameters are the average of the ones learned during each iteration of the
algorithm. Notice that, because parameters are learned at the template level, we
are able to propagate information through field values that did not appear in
the training data.

2.5 Combined Model

Combining models is often a simple way to improve accuracy. We combine the
standard and collective models using logistic regression. For each record-match
node in the training set, we form a data point with the outputs of the two models
as predictors, and the true value of the node as the response variable. We then
apply logistic regression to this dataset. Notice that this still yields a conditional
random field.

3 Experiments

We performed experiments on real and semi-artificial datasets, comparing the
performance of (a) the standard Fellegi-Sunter model using logistic regression,
(b) the collective model, and (c) the combined model. If we consider every possi-
ble pair of records for a match, the potential number of matches is O(n2), which
is a very large number even for datasets of moderate size. Therefore, we used the
technique of first clustering the dataset into possibly-overlapping canopies using
an inexpensive distance metric, as described by McCallum et al. [11], and then
applying our inference and learning algorithms only to record pairs which fall in
the same canopy. This reduced the number of potential matches to at most the
order 1% of all possible matches. In our experiments we used this technique with
all the three models being compared. The field-similarity nodes were computed
using cosine similarity with TF/IDF [16].

3.1 Real-World Data

Cora The hand-labeled Cora dataset is provided by McCallum2 and has previ-
ously been used by Bilenko and Mooney [3] and others. This dataset is a collec-

2 www.cs.umass.edu/∼mccallum/data/cora-refs.tar.gz



Table 1. Experimental results on the Cora dataset (performance measured in %).

Citation Matching

Model Before transitive closure After transitive closure
F-measure Recall Precision F-measure Recall Precision

Standard 86.9 89.7 85.3 84.7 98.3 75.5
Collective 87.4 91.2 85.1 88.9 96.3 83.3
Combined 85.8 86.1 87.1 89.0 94.9 84.5

Author Matching

Model Before transitive closure After transitive closure
F-measure Recall Precision F-measure Recall Precision

Standard 79.2 65.8 100 89.5 81.1 100
Collective 90.4 99.8 83.1 90.1 100 82.6
Combined 88.7 99.7 80.1 88.6 99.7 80.2

Venue Matching

Model Before transitive closure After transitive closure
F-measure Recall Precision F-measure Recall Precision

Standard 48.6 36.0 75.4 59.0 70.3 51.6
Collective 67.0 62.2 77.4 74.8 90.0 66.7
Combined 86.5 85.7 88.7 82.0 96.5 72.0

tion of 1295 different citations to computer science of research papers from the
Cora Computer Science Research Paper Engine. The original dataset contains
only unsegmented citation strings. Bilenko and Mooney [3] segmented each cita-
tion into fields (author, venue, title, publisher, year, etc.) using an information
extraction system. We used this processed version of Cora. We further cleaned
it up by correcting some labels. This cleaned version contains references to 132
different research papers. We used only the three most informative fields: author,
title and venue (with venue including conferences, journals, workshops, etc.). We
compared the performance of the algorithms for the task of de-duplicating cita-
tions, authors and venues.3 For training and testing purposes, we hand-labeled
the field pairs. The labeled data contains references to 50 authors and 103 venues.
We carried out five runs of two-fold cross-validation, and report the average F-
measure, recall and precision on post-canopy record match decisions. (To avoid
contamination of test data by training data, we ensured that no true set of
matching records was split between folds.) Next, we took the transitive closure
over the matches produced by each model as a post-processing step to remove
any inconsistent decisions. Table 1 shows the results obtained before and after
this step. The combined model is the best-performing one for de-duplicating
citations and venues. The collective model is the best one for de-duplicating
authors. Transitive closure has a variable effect on the performance, depending
upon the algorithm and the de-duplication task (i.e. citations, authors, venues).

3 For the standard model, TFIDF similarity scores were used as the match probabilities
for de-duplicating the fields (i.e. authors and venues).



Table 2. Experimental results on the BibServ dataset (performance measured in %).

Citation Matching

Model Before transitive closure After transitive closure
F-measure Recall Precision F-measure Recall Precision

Standard 82.7 99.8 70.7 68.5 100.0 52.1
Collective 82.8 100.0 70.7 73.6 99.5 58.4
Combined 85.6 99.8 75.0 76.0 99.5 61.5

We also generated precision/recall curves on Cora for de-duplicating cita-
tions, and the collective model dominated throughout. 4

BibServ BibServ.org is a publicly available repository of about half a million
pre-segmented citations. It is the result of merging citation databases donated
by its users, CiteSeer, and DBLP. We experimented on the user-donated sub-
set of BibServ, which contains 21,805 citations. As before, we used the author,
title and venue fields. After forming canopies, we obtained about 58,000 match
pair decisions. We applied the three models to these pairs, using the parameters
learned on Cora (Training on BibServ was not possible because of the unavail-
ability of labeled data.). We then hand-labeled 100 random pairs on which at
least one model disagreed with the others, and 100 random pairs on which they
all agreed. From these, we extrapolated the (approximate) results that would be
obtained by hand-labeling the entire dataset.5 Table 2 shows the results obtained
for de-duplicating citations before and after transitive closure. All the models
have close to 100% recall on the BibServ data. The combined model yields the
best precision, resulting in the overall best F-measure. Transitive closure hurts
all models, with the standard model being the worst hit. This is attributable to
the fact that BibServ is much noisier and broader than Cora; the parameters
learned on Cora produce an excess of matches on BibServ, and transitive closer
compounds this. Collective inference, however, makes the model more resistant
to this effect.

Summary These experiments show that the collective and the combined models
are able to exploit the flow of information across candidate pairs to make better
predictions. The best combined model outperforms the best standard model in
F-measure by 2% on de-duplicating citations in Cora, 27.5% on de-duplicating
venues in Cora and 3% on de-duplicating citations in BibServ. On de-duplicating
authors in Cora, the best collective model outperforms the best standard model
by 0.9%.

3.2 Semi-Artificial Data

To further observe the behavior of the algorithms, we generated variants of
the Cora dataset by taking distinct field values from the original dataset and

4 For the collective model, the match probabilities needed to generate precision/recall
curves were computed using Gibbs sampling starting from the graph cut solution.

5 Notice that the quality of this approximation does not depend on the size of the
database.



randomly combining them to generate distinct papers. This allowed us to control
various factors like the number of clusters, level of distortion, etc., and observe
how these factors affect the performance of our algorithms. To generate the
semi-artificial dataset, we created eight distorted duplicates of each field value
taken from the Cora dataset. The number of distortions within each duplicate
was chosen according to a binomial distribution whose “probability of success”
parameter we varied in our experiments; a single Bernoulli trial corresponds to
the distortion of a single word in the original string. The total number of records
was kept constant at 1000 in all the experiments with semi-artificial data. To
generate the records in the dataset, we first decided the number of clusters,
and then created duplicate records for each cluster by randomly choosing the
duplicates for each field value in the cluster. The results reported are over the
task of de-duplicating citations, were obtained by performing five runs of two-fold
cross-validation on this data, and are before transitive closure.6

The first set of experiments compared the relative performance of the models
as we varied the number of clusters from 50 to 400, with the first two cluster
sizes being 50 and 100 and then varying the size at an interval of 100. The
binomial distortion parameter was kept at 0.4. Figures 2(a), 2(c) and 2(e) show
the results. The F-measure (Figure 2(a)) drops as the number of clusters is
increased, but the collective model always outperforms the standard model. The
recall curve (Figure 2(c)) shows similar behavior. Precision (Figure 2(e)) appears
to drop with increasing number of clusters, with collective model outperforming
the standard model throughout.

The second set of experiments compared the relative performance of the
models as we varied the level of distortion from 0 to 1, at intervals of 0.2. (0
means no distortion, and 1 means that every word in the string is distorted.) The
number of clusters in the dataset was kept constant at 100. Figures 2(b), 2(d)
and 2(f) show the results. As expected, the F-measure (Figure 2(b)) drops as the
level of distortion in the data increases, with the collective model dominating
between the distortion levels of 0.2 to 0.6. The two models seem to perform
equally well at other distortion levels. The recall curve (Figure 2(c)) shows similar
behavior. Precision (Figure 2(e)) seems to fluctuate with increasing distortion,
with the collective model dominating throughout.

Overall, the collective model clearly dominates the standard model over a
broad range of the number of clusters and level of distortion in the data.

4 Conclusion and Future Work

Determining which observations correspond to the same object is a key prob-
lem in information integration, citation matching, natural language, vision, and
other areas. It is traditionally solved by making a separate decision for each pair
of observations. In this paper, we proposed a collective approach, where infor-
mation is propagated among related decisions via the attribute values they have

6 For clarity, we have not shown the curves for the combined model, which are similar
to the collective model’s.
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Fig. 2. Experimental results on semi-artificial data.

in common. In our experiments, this produced better results than the standard
method. Directions for future work include enriching the model with more com-
plex dependences (which will entail moving to approximate inference), using it
to deduplicate multiple types of objects at once, etc.
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