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Abstract

Semantic parsing maps sentences to for-
mal meaning representations, enabling
question answering, natural language in-
terfaces, and many other applications.
However, there is no agreement on what
the meaning representation should be, and
constructing a sufficiently large corpus of
sentence-meaning pairs for learning is ex-
tremely challenging. In this paper, we ar-
gue that both of these problems can be
avoided if we adopt a new notion of se-
mantics. For this, we take advantage of
symmetry group theory, a highly devel-
oped area of mathematics concerned with
transformations of a structure that preserve
its key properties. We define a symmetry
of a sentence as a syntactic transformation
that preserves its meaning. Semantically
parsing a sentence then consists of infer-
ring its most probable orbit under the lan-
guage’s symmetry group, i.e., the set of
sentences that it can be transformed into
by symmetries in the group. The orbit is
an implicit representation of a sentence’s
meaning that suffices for most applica-
tions. Learning a semantic parser consists
of discovering likely symmetries of the
language (e.g., paraphrases) from a corpus
of sentence pairs with the same meaning.
Once discovered, symmetries can be com-
posed in a wide variety of ways, poten-
tially resulting in an unprecedented degree
of immunity to syntactic variation.

1 Introduction

The goals of natural language semantics are to
represent the meanings of sentences formally and
to relate those meanings. Semantic parsers map
sentences into their formal meaning representa-
tions. Traditionally, semantic meanings have been

characterized in terms of formal logical languages
and benefitted from logical entailment (Montague,
1970). One challenge for semantic parsing is that
there is little consensus on which meaning repre-
sentations to choose. A second challenge is creat-
ing a sufficiently large training corpus of sentences
labeled with their meaning representation for su-
pervised learning methods; such data sets are de-
veloped at high human cost (Miller et al. 1994,
Zettlemoyer and Collins 2005). We propose a new
notion of semantics using insights from symmetry
group theory that avoids these challenges.

Symmetry group theory studies the formal
properties of symmetry groups, which are groups
of transformations under which key properties of
a structure are preserved (Miller Jr., 1972). We
introduce the concept of a semantic symmetry
group, which contains syntactic operations which
when applied to a sentence preserve its meaning.
Since symmetry groups are closed under compo-
sition, we can use semantic symmetries that were
not seen at training time. A semantic symmetry
group partitions the set of all sentences into orbits,
sets of sentences with the same meaning. The se-
mantic parse of a sentence is the orbit of which
it is a member. Since natural language frequently
contains ambiguities, we utilize a probabilistic ap-
proach to semantic symmetry and orbit member-
ship. Properties of symmetry group theory al-
low the design of compact probabilistic models of
meaning over which inference is efficient.

While symmetry group theory does not involve
an explicit system of entailment, we hypothesize
that symmetry-based semantic parsing is extensi-
ble to entailment, since entailment rules act like
symmetries on a knowledge base.

Symmetry-based semantic parsers can learn
from paraphrase corpora, which are easy and
cheap to produce. Recent work has focused on uti-
lizing data sets without explicitly paired meanings,
such as data sets of question-answer pairs (Clarke



et al., 2010) or conversation logs (Artzi and Zettle-
moyer, 2011). Paraphrase corpora are just as easy
to generate while allowing for a more direct form
of supervision. Another related work is unsuper-
vised semantic parsing (USP), which learns clus-
ters of meaning-equivalent lambda forms (Poon
and Domingos, 2009). Unlike USP, symmetry-
based semantic parsers learn from supervised data
and are easier to use.

Symmetry is foundational in modern physics
(Wigner, 1967), and has been applied in many
areas of computer science such as search (Craw-
ford et al., 1996), model checking (Ip and Dill,
1996), and vision (Liu et al., 2010). The trend
towards paraphrase-based semantic parsing shows
the strength of using symmetry-like paraphrase
transformations for semantics. However, to date,
previous approaches have still targeted pre-defined
meaning representations (Jurčı́ček et al. 2009,
Fader et al. 2013) or have had limited forms
of composition of transformations (MacCartney
2009, Stern et al. 2011). Most importantly,
while transformation-based semantics has become
increasingly popular, there is still limited under-
standing of how expressive it can be or what its
formal properties are. We seek to develop a gen-
eral framework of semantic symmetry that con-
nects previous work and formalizes the use of syn-
tactic transformations for modeling semantics.

2 Symmetry group theory

A symmetry of a structure x is a function that when
applied leaves key properties unchanged. For ex-
ample, a 120◦ clockwise rotation of an equilat-
eral triangle is a symmetry for that triangle since
its shape and orientation are unaffected. A group
is an ordered pair (G, ◦) where G is a set and
◦ is an operation which together satisfy the set
of group axioms: (1) Closure: ∀ ti, tj ∈ G,
ti ◦ tj ∈ G; (2) Associativity: ∀ ti, tj , tk ∈ G,
ti ◦ (tj ◦ tk) = (ti ◦ tj) ◦ tk; (3) Identity: ∃ e ∈ G
such that ∀ ti ∈ G, e ◦ ti = ti ◦ e = ti; (4) In-
verses: ∀ ti ∈ G, ∃ t−1i ∈ G, such that ti ◦ t−1i =
t−1i ◦ ti = e. A symmetry group of a structure is
a group where the set contains symmetries and the
group operation ◦ is function composition.

For example, a symmetry group for an equi-
lateral triangle consists of clockwise rotations of
120◦ and 240◦, reflections across the three me-
dians, and doing nothing (i.e., the identify trans-
formation). Every composition of symmetries is

equivalent to a symmetry in the group; for exam-
ple, a rotation and then a reflection of an equilat-
eral triangle is equivalent to a different reflection.

The orbit of a structure x under a symmetry
group G is the set of all structures that x can be
transformed to by application of elements in G:
O(x) = {g.x|g ∈ G},where the period represents
the application of the symmetry g on x.

We can compactly represent a symmetry group
G in terms of a generating set T . G is generated
by T if every symmetry inG can be expressed as a
composition of a finite number of elements of T .

3 A symmetry group theory of semantics

A language L is a set of strings; for natural lan-
guage, strings are sentences. LetC be the set of all
constituents of sentences in L. Constituents may
have subconstituents; for a constituent c, letCh(c)
be the ordered list of c’s subconstituents.

Definition 3.1 A syntactic transformation on a
language L is a function f : C → C such that,
for every sentence in L with a constituent c, the
sentence with c replaced by t(c) is also in L.

For example, t1: sunshine→ pizza is a valid syn-
tactic transformation even through it will change
the meaning of sentences. sunshine → enjoys is
not a syntactic transformation as it would create
invalid sentences. A syntactic transformation ap-
plies to all constituents in its specified language,
but it only maps a certain set of constituents to
different constituents. For all other constituents, it
acts like the identity transformation. For example,
t1 leaves the sentence William wore sunglasses un-
changed since the word sunshine is not present.

3.1 Semantic symmetries
Let M be the set of all constituent meanings and
the interpretation i: C → M be a function from
each constituent to its meaning. The meaning of a
constituent c is i(c).
Definition 3.2 A symmetry t: C → C is a bi-
jective syntactic transformation on a language L
such that for every constituent c in L, i(c) =
i(t(c)).

Since happy, glad, and jolly are synonyms,
there exists a symmetry t1: happy → glad →
jolly → happy that permutes these words. Ap-
plying t1 to William is happy creates the sentence
William is glad, without altering the meaning. An-
other symmetry may reposition a clause, chang-
ing William is glad when it is sunny to When it



is sunny, William is glad. Every symmetry is re-
versible; t−11 is happy→ jolly→ glad→ happy.

The symmetries of a language can be given as
axioms or learned from data (e.g., a corpus of pairs
of sentences with the same meaning). A symmetry
group G of a language L is the group of all the
symmetries of L under function composition.

Proposition 3.1 If G is the symmetry group of a
language L, there is a one-to-one correspondence
between the orbits of G and the meanings of L.

Since the semantic symmetries that generate an
orbit for a constituent preserve its meaning, it
follows that there is this one-to-one correspon-
dence between meanings and orbits. The set of
unique sentence orbits forms a partition of L. The
meaning of a sentence is represented implicitly by
membership in one of those orbits.

3.2 A generative model of sentences

Given the symmetry group G, the probabil-
ity of a sentence s is given by P (s) =∑

m∈M P (m)P (s|m), where M is the set of
meanings for the set of all sentences S. As
a running example, let’s assume a simple lan-
guage Lsimple where all sentences are subject-
verb-object triples. The probability of a mean-
ing is the product of the probabilities of an agent,
an event, and a patient. Since there is a one-to-
one correspondence between meanings and orbits,
the generative model can be written as P (s) =∑

o∈O P (o)P (s|o), where O is the set of all orbits
of a language L given its symmetry group G.

3.3 Orbit distributions

An orbit distribution assigns a probability to each
element of an orbit o, such that

∑
c∈o P (c | o) = 1.

We focus on orbit distributions that can be written
compactly using a recursive definition.

The orbit of a word consists of itself and its syn-
onyms. Assume the following orbits of words with
their probabilities: {(William, 0.2), (Bill, 0.8)},
{(wore, 0.6), (donned, 0.4)}, and {(sunglasses,
0.7), (shades, 0.3)}. Since an orbit corresponds to
a meaning, which is an agent-event-patient triple,
we can construct all the sentences in the sentence
orbit. For example, it is clear that there are eight
sentences in the orbit of sentences about William
wearing his sunglasses: to generate a sentence we
select a word from the William orbit, the wearing
orbit, and the sunglasses orbit independently and
combine those selections (i.e., with a Cartesian

product). The probability of a sentence in Lsimple

given an orbit decomposes into the product of the
probabilities of the word choices given the agent,
event, and patient orbits. (E.g., given the orbit un-
der discussion, the probability of the sentence Bill
wore shades is 0.8 ∗ 0.6 ∗ 0.3 = 0.144.)

Proposition 3.2 The orbit of constituent c under
symmetry group G, OG(c), is the union of the
Cartesian product of the orbits of Ch(c′) over all
c′ ∈ OG(c).

In general, the orbit of a sentence will not de-
compose perfectly into a product. For example, if
we add the notion of passive voice to Lsimple, we
add eight new sentences to the language (e.g., Sun-
glasses were worn by Bill.). However, in the pas-
sive sentences, the order of the agent and the pa-
tient orbits are swapped, so they will have a differ-
ent decomposition than the active voice sentences.
(The Cartesian product is not commutative.) The
union of the Cartesian products of the child or-
bits from the active sentences and from the passive
sentences does generate the whole sentence orbit.

The symmetry that swaps between active and
passive voice applies to all sentences; if a sen-
tence is in active voice, it becomes passive, and
vice versa. We noted above that given an orbit
of sentences we can split them between the sen-
tences with active voice and those with passive
voice. Once we select a voice, the subset of the
orbit of sentences with that property can be de-
composed into a product of the child orbits.

Given a symmetry t ∈ G there is a set of con-
stituents Ct that t acts on in a non-identity way.
We postulate that for the orbit of c ∈ Ct under
G, OG(c), there exists a partitioning of OG(c)
into subsets called sub-orbits such that for each
sub-orbit OG(c)i, the Cartesian product of the or-
bits of Ch(c′) for all c′ ∈ OG(c)i are equiva-
lent and equal to OG(c)i. For symmetries of ac-
tive/passive voice, the sentences are partitioned by
which voice they demonstrate. Another example
involves actions where the set of child orbits is dif-
ferent among the subsets (e.g., here the orbits for
sold and bought are children of only some of the
sentences: x sold y to z → z bought y from x).
The probability of choosing a constituent from a
sub-orbit oi given an orbit o can be calculated by
summing the probabilities of the sub-orbit’s con-
stituents: P (oi|o) =

∑
c∈oi P (c|o). For a partition

of o, the probability of the sub-orbits sums to 1.
P (c|o) is defined in two levels. The probabil-



ity of a constituent given an orbit is the weighted
sum of the probabilities of the constituent given an
orbit’s sub-orbits:

P (c|o) =
∑
oi

P (oi|o)P (c|oi).

The probability of a constituent given a sub-
orbit is the product of the probabilities of the con-
stituent’s subconstituents given their orbits:

P (c|oi) =
∏

c′∈Ch(c)

P (c′|OG(c
′))

Note that the orbit distributions can share child
orbits distributions. For example, the probability
distribution over the orbit of {William, Bill} can be
shared among all sentences that involve William.
Because different sentence orbits share in this way,
the full probabilistic model over all possible orbits
can be written compactly.

4 Symmetry-based semantic parsing

The goal of symmetry-based semantic parsing is
to identify the most probable orbit, and thereby the
implicit meaning representation, of a sentence.

Theorem 4.1 The most probable orbit of a sen-
tence s can be found in polynomial time.

Proof sketch: We follow the proof of Theorem 1
in Gens and Domingos 2013 that states the par-
tition function, and therefore also the MAP state,
of a sum-product network (SPN) can be computed
in time linear to the number of edges in the SPN.
We can apply that proof here, because like an
SPN, orbits are structured as levels of products and
weighted sums.

This formulation requires a closed-world as-
sumption on orbits; given a new sentence s, we
find the best orbit for s from all previously seen
orbits. Clearly, we need to be able to model never
before seen orbits as well. We hypothesize we can
extend the probabilistic model by adding a new
unseen orbit o∗ to the set of possible orbits. The
prior P (o∗) can be set to some constant depending
on how likely it is to see a new orbit. The condi-
tional probability P (s|o∗) can be approximated by
examining the symmetries that affect s. If o∗ is the
MAP semantic parse, the model will add o∗ to the
set of possible sentence orbits.

5 Learning symmetries

If the symmetry group G of a language L is pro-
vided, then the learning problem is simply to esti-
mate the parameters of the orbit distributions. All

of the orbit structure is defined solely by G acting
on L. The main goal of learning, however, will be
to discover the likely semantic symmetries of L.

Assume a training data set D of pairs of sen-
tences with the same meaning. The sentences that
are paraphrases of each other form a set of approx-
imate orbits O. We seek a minimal generating set
of symmetries T for G that maximizes the (penal-
ized) likelihood of sentences given their approxi-
mate orbits:

L(S,O, θ) = P (S|O, θ) ∝ P (S,O, θ)
=

∏
s∈S

∑
o∈O

P (o, θ)P (s|o, θ),

where θ is the set of parameters for the orbit distri-
butions. Given a generating set T for G, the prob-
ability distributions over the constituent orbits can
be estimated empirically in closed form.

The sets of sentences with the same meaning
give us a set of candidate symmetries based on
the constituents that appear in meaning-equivalent
sentences. For example, if we know that Bill
wore shades has the same meaning as Bill donned
shades, there is a high probability that wore →
donned is a symmetry (and its inverse). To learn
T , we score possible transformations on how
likely they are to be symmetries and greedily add
the highest scoring transformations to T . Because
T is a minimal generating set, we may need to
reduce symmetries in T as new symmetries are
found. For example, if we first learn a symmetry
wore shades→ donned sunglasses and then learn
wore→ donned, we can infer that the first symme-
try is a composition of the second symmetry and a
new symmetry shades → sunglasses. T can then
be altered to only include symmetries that are not
compositions of other symmetries in T .

6 Conclusions and Future Work

We proposed symmetry-based semantic parsing as
a new approach to semantic parsing that does not
require a formal meaning representation or high
cost labeled training corpora. Using symmetry
group theory for semantics is a promising area of
research still in its first stages. We plan to extend
our theories to account for richer, more complex
forms of sentence compositions, as well as sym-
metries at multiple levels of abstraction (e.g., un-
der ontologies). Another important step will be ex-
amining how to incorporate entailment by viewing
logical rules as symmetries of a knowledge base.
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