
Tractable Probabilistic Knowledge Bases with Existence Uncertainty

W. Austin Webb and Pedro Domingos
{webb,pedrod}@cs.washington.edu

Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195-2350, U.S.A.

Abstract

A central goal of AI is to reason efficiently in domains
that are both complex and uncertain. Most attempts toward
this end add probability to a tractable subset of first-order
logic, but this results in intractable inference. To address this,
Domingos and Webb (2012) introduced tractable Markov
logic (TML), the first tractable first-order probabilistic rep-
resentation. Despite its surprising expressiveness, TML has a
number of significant limitations. Chief among these is that it
does not explicitly handle existence uncertainty, meaning that
all possible worlds contain the same objects and relations.
This leads to a number of conceptual problems, such as mod-
els that must contain meaningless combinations of attributes
(e.g., horses with wheels). Here we propose a new formal-
ism, tractable probabilistic knowledge bases (TPKBs), that
overcomes this problem. Like TML, TPKBs use probabilistic
class and part hierarchies to ensure tractability, but TPKBs
have a much cleaner and user-friendly object-oriented syntax
and a well-founded semantics for existence uncertainty. TML
is greatly complicated by the use of probabilistic theorem
proving, an inference procedure that is much more powerful
than necessary. In contrast, we introduce an inference pro-
cedure specifically designed for TPKBs, which makes them
far more transparent and amenable to analysis and imple-
mentation. TPKBs subsume TML and therefore essentially
all tractable models, including many high-treewidth ones.

Introduction
Most interesting tasks in AI require both the representation
of complex structure and the ability to handle uncertainty.
There has historically been a divide among researchers as
to the relative importance of these two requirements, result-
ing in one camp that emphasizes logical methods mostly
derived from first-order logic and another that emphasizes
statistical approaches such as Bayesian and Markov net-
works. There have been many attempts to connect these
two using various combinations of logic and probability,
usually employing some tractable subset of first-order logic
like function-free horn clauses (Wellman, Breese, and Gold-
man 1992; Poole 1993; Muggleton 1996; De Raedt, Kim-
mig, and Toivonen 2007) or description logics (Jaeger 1994;
Koller, Levy, and Pfeffer 1997; d’Amato, Fanizzi, and
Lukasiewicz 2008; Niepert, Noessner, and Stuckenschmidt
2011). However, the tractability of the underlying logic is
lost when made probabilistic, losing the advantages of the

restricted representation. Arguably the most general formal-
ism is Markov logic (Domingos and Lowd 2009), which
includes both first-order logic and probabilistic graphical
models as special cases. However, these approaches have
seen only limited applicability, primarily because of the
intractability of inference, which seems difficult to over-
come since even in propositional graphical models, both ex-
act and approximate inference are NP-hard (Cooper 1990;
Dagum and Luby 1993). Additionally, probabilistic infer-
ence can be reduced to model counting, which is intractable
even for heavily restricted propositional languages (Roth
1996).

Probabilistic inference is often assumed to be exponen-
tial in the treewidth of the model, but a closely related fam-
ily of formalisms including arithmetic circuits (Darwiche
2003), AND/OR graphs (Dechter and Mateescu 2007), and
sum-product networks (Poon and Domingos 2011) take ad-
vantage of context-specific independence to achieve effi-
cient inference even in high treewidth models. Advances in
lifted probabilistic inference, specifically Probabilistic The-
orem Proving (PTP) (Gogate and Domingos 2011), allow
for tractable inference in cases when it would not be pos-
sible even for these more efficient propositional structures.
PTP was the primary inspiration (and inference algorithm)
for TML, the first tractable first-order probabilistic logic
(Domingos and Webb 2012). TML achieves tractability by
imposing a hierarchical structure on its domain, in which
all objects are subparts or sub-...subparts of a single top ob-
ject, the possible attributes (including subparts) of an object
are dependent only on its class, and relations, though they
may have any arity, are allowed only between objects that
are subparts of the same part.

An important issue in statistical relational AI is existence
uncertainty, that is, dealing with objects and attributes that
exist in some possible worlds but not in others. For instance,
if a family may have either no children or one child, and chil-
dren have red hair as a predicate (which is true if the child
has red hair and false otherwise), then it makes no sense to
have to consider the child’s red hair in a family that has no
children. There are representations that take existence un-
certainty into account (e.g. Milch et al. 2005), but these lack
tractable inference, and are quite complex. TML does not
handle existence uncertainty; instead, it marginalizes over
all relations involving non-existent objects, which makes for

rather odd semantics. The goal of this paper is to combine
the tractability of TML with the ability to handle existence
uncertainty. We accomplish this by defining a possible world
as a set of objects and the truth values of the atoms involving
them, rather than just a set of truth values over a universal set
of objects. We show how this semantics suffices to properly
handle existence uncertainty, and how to preserve tractabil-
ity when it is used.

Tractable Probabilistic Knowledge Bases (TPKBs) offer
all of the expressive power of TML with a straightforward
handling of existence uncertainty, a cleaner, object-oriented
syntax, and a dedicated inference algorithm that is easier to
implement and analyze.

Syntax
A TPKB is a set of class declarations and object declara-
tions that obey certain restrictions.

Class declarations
A class declaration for class C specifies the subparts, sub-
classes, and relations for C, as well as weights for the sub-
classes and relations and has the form
class C {

subclasses S1 w1 , ... , Si wi;
subparts C1 P1[n1], ... , Ck Pj[nj];
relations R1(...) w1, ... , Rk(...) wk;

}
Each Rl(...) has the form Rl(Pa, ..., Pz) with each of

Pa,...,Pz being one of the subparts P1,...,Pj of C. Weights play
roughly the same role as in Markov Logic, determining the
probability that a given object belongs to a given subclass
or that a given relation is true. For relations, weights are op-
tional, and if a relation weight does not appear it means that
the relation is hard, i.e. it holds for every instance of the
class, otherwise, we call it soft in which case it may hold or
not, with probability determined by its weight.

The subparts of C are parts which every object of class
C must have and are specified by a part name Pi, the
class membership of that part Ci, and the number ni of
parts of that type where ni is optional and 1 by de-
fault. For instance an object of class TraditionalFamily
might have a single Pet subpart of class Animal and two
Adult subparts, each of class Person, so if the Smiths
are a TraditionalFamily then we can refer to their pet
as Smiths.Pet and the adults as Smiths.Adult[1] and
Smiths.Adult[2]. We refer to the subparts of class C as
P (C).

When we specify that a class C has subclasses S1, ..., Sj,
it means that any object of class C must belong to exactly
one of the subclasses S1, ..., Sj, with the probability distribu-
tion over subclass memberships determined by the weights
w1, ..., wj. For instance, the class Family may have sub-
classes TwoParentFamily, which has two Adult parts, and
OneParentFamily, with one, with respective weights 1.2
and 0.3. We refer to the subclasses of class C as S(C).

The relations of C specify what relationships may hold
among the subparts of any object of class C, and with what
weight. For instance, the class TraditionalFamily may

have the relation Married(Adult[1], Adult[2]). Relations
may apply to the object as a whole, rather than to its sub-
parts, in which case we can omit parentheses and arguments,
for example the relation Mortgage may apply to a fam-
ily, and be true if that family holds a mortgage. The rea-
son we use weights rather than probabilities is compact-
ness - the weight of a relation rule in a class need only
represent the change in the relation’s log probability from
whatever ancestor class it was introduced at. For instance, if
TraditionalFamily and and OneParentFamily are both
subclasses of class Family, and traditional and one-parent
families are equally likely to hold a mortgage, then the
Mortgage relation need only appear at the Family class
level. However, if traditional families are more likely to
hold a mortgage, then Mortgage would appear again under
TraditionalFamily with positive weight.

As an example, consider the Family class.
class Family {

subclasses
TraditionalFamily 1.2,
OnParentFamily 0.3;

subparts
Animal Pet,
...;

relations
Mortgage 1.7,
...;

}
Each declared subclass has its own description.
class TraditionalFamily {

subclasses
...;

subparts
Person Adult[2],
...;

relations
Married(Adult[1], Adult[2]) 2.3,
...;

}

Object declarations
An object declaration creates an instance of a class. The
class of an object determines its subparts and relations, so
the declaration of that object specifies the names/identities
of its subparts and information about its subclass member-
ships and relations in the form of subclass and relation facts.

A given object may have a number of possible classes, so
we use the object-class pair (O, C) to refer to an object O of
class C. The subclasses and relations of O determined by its
class C and are referred to as the subclasses and relations of
O at class C.

An object declaration has the form
C O {Pa Da,...; S∗b ,...; R∗c(...),...}
C is the class and O is the object name. Each Pm Dm state-

ment is a naming fact that assigns part Pm of O the name Dm.
If Pm was introduced as Cm Pm[nm] with nm >1, the part being
named must be specified using notation Pm[l] Dm,l, denoting
that we are naming the lth Pm of O. Note that names for sub-
parts are not required.

S∗b , ... is a list of subclass facts and is either an empty list,
a single Sm where m is in the range 1, ..., i or a list of ¬Sm
statements where each m is drawn from the range 1, ..., i
(though the list may not contain every subclass). The first
means that nothing is known about object O’s subclass mem-
bership, the second that O belongs to subclass Sm, the third
that O does not belong to any of the subclasses Sb,

Similarly, each R∗m(...) is a relation fact and is either
Rm(...), denoting that the relation is known to be true, or
¬Rm(...), denoting that the relation is known to be false. If
no R∗m(...) appears it means that nothing is known about re-
lation Rm(...)’s truth value.

As an example, we show the declaration for the Smiths,
which is a TraditionalFamily whose two adults are mar-
ried but do not have a mortgage.
TraditionalFamily Smiths {

...;
Adult[1] Anna,
Adult[2] Bob;
¬Mortgage,
Married(Anna, Bob);
...;

}
Facts pertaining to relations at a higher class level may be

stated at a lower level, but not the other way around.

Restrictions
There are a number of structural restrictions on class and
object declarations necessary to ensure that inference is
tractable. To describe these we must first define a notion of
ancestor/descendent in the TPKB. Recall from earlier that it
is useful to think of an object O at a particular class level C,
referred to as (O, C). We extend this notation to include the
ground atom R(O, ...), which refers to the relation R(...) of
class C grounded with the relevant subparts of object O.

Definition 1 The descendants of the pair (O, C) in TPKB
K are

1. (Pi(O), Ci) for each Pi (with class Ci) a subpart of O ac-
cording to C

2. (O, S) for each S a subclass of C
3. R(O, ...) for each relation R of C
4. The descendants of each of the above.
There are no other descendants of (O, C), and the first three
types of descendant are referred to as children of (O, C).

With this, the full definition of a TPKB is straightforward.
The overarching purpose of the following definition is to al-
low the distribution defined by the TPKB to have an effi-
cient, recursive decomposition. The first restriction gives the
decomposition a starting point. The second ensures that the
subparts of an object are independent, not mentioning any-
thing they can disagree on, so that the distribution factors as
a product over them. The third prevents contradictory rela-
tion truth values. The fourth prevents an object from having
itself as a descendant, which is nonsensical, or from having
infinitely many descendants.

Definition 2 A set K of class and object declarations is a
TPKB iff it satisfies the following conditions:

1. There is a single object, X0, called the top object, which
is the sole instance of class C0, called the top class, such
that (X0, C0) has every other (O, C) in K as a descendant.

2. For any two subparts Pi(O) and Pj(O) (introduced with
classes Ci and Cj) of object O, (Pi(O), Ci) and (Pj(O), Cj)
share as descendants only objects (O′, C′) such that C′ has
no superclasses, subclasses, or soft relations. Note that
this holds even if the two subparts are introduced in dif-
ferent possible classes of O.

3. If (O, C) has a hard relation R(O, ...) as a child, then it may
have no descendant R(O, ...) that is soft or ¬R(O, ...) that
is hard.

4. No object (O, C) may have a descendant of form (O′, C)
or (O, C′) with C 6= C′ and O 6= O′, which is to say that no
object may have itself as a descendent, or have an descen-
dent with the same class as itself.

Semantics
A TPKB defines a distribution over possible worlds. How-
ever, TPKBs employ a much richer kind of possible world,
which consists of a set of objects and the truth values of
the atoms that involve them. Different possible worlds may
contain different objects, atoms, and truth values. A key fea-
ture that makes TPKBs easy to reason about is that atoms
appear in a possible world only when their arguments also
appear in that world. More concretely, applying this to the
earlier example with children and hair color, the hair color
predicate applied to the child will only be present in worlds
where the child actually exists, that is, worlds in which the
family in question have a child. These semantics allow us
to make probabilistic queries that assume the existence of a
given object or to ask for the probability that a given object
exists.

Definition 3 The possible objects of a TPKB are the top
object and every subpart of a possible object, under every
possible class of that object. No other objects are possible.

We define the class membership predicate Is, where
Is(O, C) is true if object O is of class C and false otherwise.
A predicate (e.g., Is) applied to a set of arguments (e.g., O
and C) is an atom (e.g., Is(O, C)). Likewise, R(O, ...) from
earlier can be thought of as a relation atom which is true if
the relation holds on O (or its subparts) and false otherwise.
We refer to class membership and relation atoms and their
negations as literals.

Definition 4 A possible world W of a TPKB K is an or-
dered pair (X,L) where X is a set of objects and L is a set of
literals that satisfies the following requirements:
1. X0 ∈ X and Is(X0, C0) ∈ L.
2. If O ∈ X and Is(O, C) ∈ L, then

(a) if S is a subclass of C then either Is(O, S) ∈ L or
¬Is(O, S) ∈ L,

(b) exactly one of the positive subclass literals Is(O, S) is
in L,

(c) if R is a relation belonging to C then either R(O, ...) ∈L
or ¬R(O, ...) ∈L, and

(d) O’s parts according to C are all in X, and Is(O′, C′)
∈L for each part O′ of O and corresponding class C′

according to C.

3. No other objects are members of X and no other literals
are members of L.
A closely related notion is that of the possible subworlds

of an object O at class C, which is just the definition above
except with O in place of X0 and C in place of C0.

We say that a possible world W = (X,L) does not con-
tradict a literal l if ¬l/∈L (note that this does not imply that
l∈L). Recall that facts are stated in object declarations, and
function either to name a subpart of an object, specify a class
that that object is in or a set of classes it isn’t in, or specify
the truth value of a relation. Facts are implemented as fol-
lows. If K contains the assertion that relation R of object O
is true (false), then R(O, ...) (¬R(O, ...)) is included in K. A
fact declaring that O is of class Si means that both Is(O, Si)
and ¬Is(O, Sj) for every j 6= i are in K. However, if the
fact is just that O is not of class Si, this simply means that
¬Is(O, Si) is in K. To denote the set of possible worlds of
(O, C) that do not contradict any of the facts in a TPKB K
we write WK(O, C).

We are now ready to specify the distribution that a TPKB
K defines over its possible worlds. This distribution is con-
structed recursively from distributions over possible sub-
worlds of object-class pairs in K. The unnormalized distri-
bution φK over possible subworlds W = (X,L) of (O, C)
can be written recursively as φK(O,C,W) = 0 if ¬Is(O, C)
∈ L and otherwise,

φK(O, C,W) =

 ∏
Pi∈P (C)

φK(Pi(O), Ci,W)ni

×
 ∑

Sj∈S(C)

ewjφK(O, Sj,W)

×
 ∏

Rk∈R(C)

φRK(O, Rk,W)

where φRK(O, Rk, L) = ewk if Rk(O, ...) ∈ L,

φRK(O, Rk, L) = 1 if ¬Rk(O, ...) ∈ L, and φRK(O, Rk, L) =
1 + ewk if neither Rk(O, ...) ∈ L nor ¬Rk(O, ...) ∈ L. If Rk is
hard, then the fact ¬Rk(O, ...) is interpreted as ¬Is(O, C). If
an object has no subparts, no subclasses, or no relations, the
corresponding terms of the above equation are just 1.

The unnormalized distribution over possible worlds W of
TPKB K is

φK(X0, C0,W)

and its partition function is

Z(K) =
∑

W∈WK(X0,C0)

φK(X0, C0,W).

Similarly, we denote by Z(O, C,K) the partition function
with respect to the possible subworlds of (O, C).

The probability of a possible world W is then

P (W |K) =
φK(X0, C0,W)

Z(K)
.

The are several types of queries we can make of K. We
can ask for P (Q|K), where Q is a set of facts pertaining

to objects in K, which we interpret as being restricted to
those possible worlds in which all objects that appear in Q
(as arguments to Is and R predicates) exist. We may also ask
for the probability that a given object or set of objects exist,
which is simply a matter of summing the probabilities of the
possible worlds that contain all of the desired objects.

Inference
All queries mentioned in the previous section (i.e. all con-
ditional marginals) can be computed as ratios of partition
functions (Gogate and Domingos 2011), as

P (Q|K) =
Z(K ∪Q)

Z(K)
.

Computing partition functions is tractable in TPKBs by the
recursive structure of φK . This structure is mirrored by
Algorithm 1, which calculates the subpartition function of
(O,C) by recursively taking a product over subpartition
functions of subparts and relations and summing over sub-
partition functions of subclass children. The partition func-
tion ofK is computed by applying Algorithm 1 to (X0,C0).

Computing the partition function when certain objects are
required to exist in all possible worlds, as is required to an-
swer queries described above, is a more challenging prob-
lem, but it can be handled efficiently given that all objects
mentioned in Q are subparts of the same object O. Notice
that P (Q|K), under the interpretation given in the previous
section, is the sum of unnormalized probabilities of possi-
ble worlds W that contain all objects referenced in Q and in
which the query atoms are true divided by the sum of unnor-
malized probabilities of possible worlds W ′ that contain all
objects referenced in Q. Further, notice that

Z(K, (O, C)) = Z(K)− Z(K ∪ ¬Is(O, C))

contains only terms corresponding to possible worlds which
contain the object O and it is of class C. Thus, subject to
that restriction that all objects in Q are subparts of the same
object, the query P (Q|K), interpreted as described, can be
computed as

P (Q, (O, C)|K) =
Z(K ∪Q, (O, C))
Z(K, (O, C))

This quantity can be computed efficiently using the ma-
chinery used to calculate normal subpartition functions, de-
scribed below. Probability of existence queries can be an-
swered tractably for single objects as Z(K, (O, C))/Z(K),
but the tractability of such queries for more than one object
is an open question.

For lifting, we also compile a table of evidence pertaining
to each (O, C) pair, that is, the evidence that relates to (O, C)
or any of its descendants. For any given instance of a class
that it encounters, it checks for the relevant evidence, then
checks to see if an instance with equivalent evidence has
already been processed, if so, it returns the cached value,
otherwise it runs the computation and caches the result be-
fore returning. The lifting is left implicit in the pseudocode
of Algorithm 1. Note that we can perform MAP inference

America:Society

Smiths:Family

Smiths:TraditionalFamily Smiths:OneParentFamily

Bob:AdultAnna:Adult Married

*

+

+

Married(Anna,Bob) Married(Anna,Bob)

1 1

1 1

... ...
...

... ...

... ...

...

... ...

... ...

e2.3 e0

e1.2 e0.3

Anna Bob

2.3

1.2 0.3

*

*

Mortgage

1.7

Mortgage Mortgage

+

1 1
e1.7 e0

*

Figure 1: Example of a TPKB and its partition function Z, based on example in (Domingos and Webb 2012). On the left,
rectangles represent objects and their classes, rounded rectangles represent relations, arcs joined by an angle symbol represent
subpart rules, other arcs represent subclass or relation rules, and labels represent rule weights. On the right, circles represent
operations in the computation of Z (sums or products), and arc labels represent coefficients in a weighted sum. Dashed arrows
indicate correspondences between nodes in the KB and operations in Z. If Anna and Bob on the left had internal structure, the
leaves labeled “Anna” and “Bob” on the right would be replaced with further computations.

in a TPKB simply by replacing sums over subclasses with
maxes and performing a traceback.

The structure of TPKBs ensures that SubZ is correct and
efficient. Intuitively, restriction 2 ensures that once we know
the class of an object, the subparts of that object and rela-
tions over them at that class are independent of each other
and everything else in the TPKB, so we can compute their
subpartition functions independently. The mutual exclusiv-
ity of subclasses functions similarly.

Theorem 1 The partition function of TPKB K can be com-
puted in time polynomial in the size of K.

We omit the proof for brevity, but it is easily shown that
the partition function of a TPKB can be computed in time
and space that is O(nO(nc + nr)), where nO is the number
of object declarations, nc the number of class declarations,
and nr the number of relation rules.

Expressiveness
Despite their simple syntax and strong tractability guaran-
tees, TPKBs are surprisingly expressive and subsume essen-
tially all widely used tractable models and languages, in-
cluding TML. This gives us many useful results automati-
cally. For instance, it means we can represent junction trees
with negligible overhead and probabilistic grammars (in-
cluding PCFGs) with only polynomial overhead. Further,
many high-treewidth models can also be represented as com-
pact TPKBs. Specifically, TPKBs can compactly represent
sum-product networks (SPNs), for which inference is linear
in size and which are known to be able to represent many
high-treewidth graphical models compactly.

This kind of tractable, high-treewidth distribution is very
common in the real world, occurring whenever two sub-
classes of the same class have different subparts. For ex-
ample, consider images of objects which may be animals,
vehicles, etc. Animals have a head, torso, limbs, etc. Vehi-
cles have doors, headlights, windshields, wheels, and so on.
However, all of these ultimately have pixel values as atomic
properties. This results in a very high treewidth graphical
model, but a relatively compact TPKB.

One of the more interesting properties of TPKBs is that,
like TML, they can represent probabilistic inheritance hi-
erarchies and implement a kind of default reasoning over
them (Etherington and Reiter 1983). In an inheritance hier-
archy, a property of an object is represented at the highest
class that has it. For example, the class Bird has relation
Flies, but the class Animal does not. If Tux is a Bird,
then Tux may be able to fly. However, rules can have ex-
ceptions, e.g., if Penguin is a subclass of Bird and has hard
relation ¬Flies. In standard logic, this would lead to a con-
tradiction, but in default reasoning the more specific rule is
allowed to defeat the more general one. TPKBs implement
a probabilistic generalization of this, where the probability
of a predicate can increase or decrease from a class to a sub-
class depending on the weights of the corresponding relation
rules, and does not change if there is no rule for the predicate
in the subclass.

Proposition 1 Let (C0, ..., Ci, ...Cn) be a set of classes in
a TPKB K where C0 has no superclasses and Cn has no sub-
classes and for 0 ≤ i < n, Ci+1 is a subclass of Ci. Let wi

be the weight of relation R in Ci and assume that no other

Algorithm 1: SubZ(O,C, K)
Input: Object O, Class C, TPKB K
Output: Subpartition function of (O, C)
if ¬ Is(O, C) ∈K then

return 0
else

Z = 0
for Si ∈ S(C) do

Z← Z + ewi SubZ(O,Si,K)
if Z = 0 then

Z← 1
for Pj ∈ P(C) do

Z← Z × (SubZ(Pj(O),Cj ,K))nj

for Rj ∈ R(C) do
if Rj(O, ...) ∈K then

Z← Z × ewj

else if ¬Rj(O, ...) ∈K then
Z← Z × 1

else
Z← Z × (1 + ewj)

return Z

set of classes in K mention R. If O is an object of class Cn,
then, the unnormalized probability of R(O, ...) assuming that
O exists is exp(

∑n
i=0 wi) .

Extensions and Future Work
There are a number of easily realized extensions to TPKBs.
For instance, they can be extended to allow some types of
multiple inheritance, that is, classes with multiple super-
classes, by allowing a class to have any number of super-
classes so long as each of its relations appears in at most one
superclass. Other topics for future work include extending
TPKBs with more advanced notions of existence uncertainty
(e.g. Poole 2007), numeric attributes, learning TPKBs, more
advanced forms of inference that can work with and exploit
existence uncertainty, applications, and general tractability
results for first-order logics.

Conclusion
TPKBs are the first non-trivially tractable first-order proba-
bilistic logic that also handles existence uncertainty. They
inherit all the strengths of their predecessor, TML, but
are much easier to use, reason about, and implement. TP-
KBs open up the prospect of large-scale first-order prob-
abilistic inference that is both efficient and user-friendly.
An open-source implementation of TPKBs is available at
http://alchemy.cs.washington.edu/lite.
Acknowledgements: This research was partly funded by ARO
grant W911NF-08-1-0242, AFRL contracts FA8750-09-C-0181
and FA8750-13-2-0019, NSF grant IIS-0803481, and ONR grant
N00014-08-1-0670. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or

implied, of ARO, AFRL, NSF, ONR, or the United States Govern-
ment.

References
Cooper, G. 1990. The computational complexity of proba-
bilistic inference using Bayesian belief networks. Artificial
Intelligence 42:393–405.
Dagum, P., and Luby, M. 1993. Approximating probabilistic
inference in Bayesian belief networks is NP-hard. Artificial
Intelligence 60:141–153.
d’Amato, C.; Fanizzi, N.; and Lukasiewicz, T. 2008.
Tractable reasoning with Bayesian description logics. In
Greco, S., and Lukasiewicz, T., eds., Scalable Uncertainty
Management. 146–159. Springer.
Darwiche, A. 2003. A differential approach to inference in
Bayesian networks. JACM 50:280–305.
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. Problog:
A probabilistic Prolog and its application in link discovery.
IJCAI, 2462–2467.
Dechter, R., and Mateescu, R. 2007. AND/OR search spaces
for graphical models. Artif. Intell. 171:73–106.
Domingos, P., and Lowd, D. 2009. Markov Logic: An Inter-
face Layer for Artificial Intelligence. Morgan & Claypool.
Domingos, P., and Webb, W.A. 2012. A tractable first-order
probabilistic logic. AAAI 2012.
Etherington, D., and Reiter, R. 1983. On inheritance hierar-
chies with exceptions. NCAI, 104–108.
Gogate, V., and Domingos, P. 2011. Probabilistic theorem
proving. UAI, 256–265.
Jaeger, M. 1994. Probabilistic reasoning in terminological
logics. ICPKRR, 305–316.
Koller, D.; Levy, A.; and Pfeffer, A. 1997. P-Classic: A
tractable probabilistic description logic. NCAI, 390–397.
Muggleton, S. 1996. Stochastic logic programs. In De
Raedt, L., ed., Advances in Inductive Logic Programming.
254–264. IOS Press.
Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D. L;
and Kolobov, A. 2005. BLOG: Probabilistic Models with
Unknown Objects. IJCAI, 1352-1359.
Niepert, M.; Noessner, J.; and Stuckenschmidt, H. 2011.
Log-linear description logics. IJCAI, 2153–2158.
Poole, D. 1993. Probabilistic Horn abduction and Bayesian
networks. Artif. Intell. 64:81–129.
Poole, D. 2007. Logical generative models for probabilistic
reasoning about existence, roles, and identity. AAAI.
Poon, H., and Domingos, P. 2011. Sum-product networks:
A new deep architecture. UAI, 337–346.
Roth, D. 1996. On the hardness of approximate reasoning.
Artif. Intell. 82:273–302.
Wellman, M.; Breese, J. S.; and Goldman, R. P. 1992. From
knowledge bases to decision models. Knowledge Engineer-
ing Review 7:35–53.

