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Abstract On the Semantic Web, data will inevitably come
from many different ontologies, and information processing
across ontologies is not possible without knowing the seman-
tic mappings between them. Manually finding such mappings
is tedious, error-prone, and clearly not possible at the Web
scale. Hence, the development of tools to assist in the ontol-
ogy mapping process is crucial to the success of the Seman-
tic Web. We describe GLUE, a system that employs machine
learning techniques to find such mappings. Given two on-
tologies, for each concept in one ontology GLUE finds the
most similar concept in the other ontology. We give well-
founded probabilistic definitions to several practical similar-
ity measures, and show that GLUE can work with all of them.
Another key feature of GLUE is that it uses multiple learn-
ing strategies, each of which exploits well a different type
of information either in the data instances or in the taxo-
nomic structure of the ontologies. To further improve match-
ing accuracy, we extend GLUE to incorporate commonsense
knowledge and domain constraints into the matching process.
Our approach is thus distinguished in that it works with a va-
riety of well-defined similarity notions and that it efficiently
incorporates multiple types of knowledge. We describe a set
of experiments on several real-world domains, and show that
GLUE proposes highly accurate semantic mappings. Finally,
we extend GLUE to find complex mappings between ontolo-
gies, and describe experiments that show the promise of the
approach.

Key words Semantic Web, Ontology Matching, Machine
Learning, Relaxation Labeling.

1 Introduction

The current World-Wide Web has well over 1.5 billion pages
[goo], but the vast majority of them are in human-readable
format only (e.g., HTML). As a consequence software agents
(softbots) cannot understand and process this information,

and much of the potential of the Web has so far remained
untapped.

In response, researchers have created the vision of the Se-
mantic Web [BLHL01], where data has structure and ontolo-
gies describe the semantics of the data. When data is marked
up using ontologies, softbots can better understand the se-
mantics and therefore more intelligently locate and integrate
data for a wide variety of tasks. The following example illus-
trates the vision of the Semantic Web.

Example 1 Suppose you want to find out more about some-
one you met at a conference. You know that his last name is
Cook, and that he teaches Computer Science at a nearby uni-
versity, but you do not know which one. You also know that
he just moved to the US from Australia, where he had been
an associate professor at his alma mater.

On the World-Wide Web of today you will have trouble
finding this person. The above information is not contained
within a single Web page, thus making keyword search inef-
fective. On the Semantic Web, however, you should be able
to quickly find the answers. A marked-up directory service
makes it easy for your personal softbot to find nearby Com-
puter Science departments. These departments have marked
up data using some ontology such as the one in Figure 1.a.
Here the data is organized into a taxonomy that includes courses,
people, and professors. Professors have attributes such as name,
degree, and degree-granting institution (i.e., the one from which
a professor obtained his or her Ph.D. degree). Such marked-
up data makes it easy for your softbot to find a professor with
the last name Cook. Then by examining the attribute “grant-
ing institution”, the softbot quickly finds the alma mater CS
department in Australia. Here, the softbot learns that the data
has been marked up using an ontology specific to Australian
universities, such as the one in Figure 1.b, and that there are
many entities named Cook. However, knowing that “asso-
ciate professor” is equivalent to “senior lecturer”, the bot can
select the right subtree in the departmental taxonomy, and
zoom in on the old homepage of your conference acquain-
tance. 2
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Fig. 1 Computer Science Department Ontologies.

The Semantic Web thus offers a compelling vision, but it
also raises many difficult challenges. Researchers have been
actively working on these challenges, focusing on fleshing
out the basic architecture, developing expressive and efficient
ontology languages, building techniques for efficient marking
up of data, and learning ontologies (e.g., [HH01,BKD+01,
Ome01,MS01,iee01]).

A key challenge in building the Semantic Web, one that
has received relatively little attention, is finding semantic map-
pings among the ontologies. Given the de-centralized nature
of the development of the Semantic Web, there will be an ex-
plosion in the number of ontologies. Many of these ontologies
will describe similar domains, but using different terminolo-
gies, and others will have overlapping domains. To integrate
data from disparate ontologies, we must know the semantic
correspondences between their elements [BLHL01,Usc01].
For example, in the conference-acquaintancescenario described
earlier, in order to find the right person, your softbot must
know that “associate professor” in the US corresponds to “se-
nior lecturer” in Australia. Thus, the semantic correspondences
are in effect the “glue” that hold the ontologies together into
a “web of semantics”. Without them, the Semantic Web is
akin to an electronic version of the Tower of Babel. Unfor-
tunately, manually specifying such correspondences is time-
consuming, error-prone [NM00], and clearly not possible on
the Web scale. Hence, the development of tools to assist in
ontology mapping is crucial to the success of the Semantic
Web [Usc01].

2 Overview of Our Solution

In response to the challenge of ontology matching on the Se-
mantic Web, we have developed the GLUE system, which ap-

plies machine learning techniques to semi-automatically cre-
ate semantic mappings. Since taxonomies are central com-
ponents of ontologies, we focus first on finding one-to-one
(1-1) correspondences between the taxonomies of two given
ontologies: for each concept node in one taxonomy, find the
most similar concept node in the other taxonomy.

Similarity Definition: The first issue we address is the
meaning of similarity between two concepts. Clearly, many
different definitions of similarity are possible, each being ap-
propriate for certain situations. Our approach is based on the
observation that many practical measures of similarity can
be defined based solely on the joint probability distribution
of the concepts involved. Hence, instead of committing to a
particular definition of similarity, GLUE calculates the joint
distribution of the concepts, and lets the application use the
joint distribution to compute any suitable similarity measure.

Specifically, for any two concepts A and B, the joint dis-
tribution consists of P (A, B), P (A, B), P (A, B), and P (A, B),
where a term such as P (A, B) is the probability that an in-
stance in the domain belongs to concept A but not to concept
B. An application can then define similarity to be a suitable
function of these four values. For example, a similarity mea-
sure we use in this paper is P (A ∩ B)/P (A ∪ B), otherwise
known as the Jaccard coefficient [vR79].

Computing Similarities: The second challenge we address
is that of computing the joint distribution of any two given
concepts A and B. Under certain general assumptions (dis-
cussed in Section 5), a term such as P (A, B) can be approxi-
mated as the fraction of data instances (in the data associated
with the taxonomies or, more generally, in the probability dis-
tribution that generated the data) that belong to both A and B.
Hence, the problem reduces to deciding for each data instance
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if it belongs to A ∩ B. However, the input to our problem in-
cludes instances of A and instances of B in isolation. GLUE
addresses this problem using machine learning techniques as
follows: it uses the instances of A to learn a classifier for A,
and then classifies instances of B according to that classifier,
and vice-versa. Hence, we have a method for identifying in-
stances of A ∩ B.

Multi-Strategy Learning: Applying machine learning to
our context raises the question of which learning algorithm to
use and which types of information to exploit. Many different
types of information can contribute toward the classification
of an instance: its name, value format, the word frequencies in
its value, and each of these is best utilized by a different learn-
ing algorithm. GLUE uses a multi-strategy learning approach
[DDH01]: we employ a set of learners, then combine their
predictions using a meta-learner. In previous work [DDH01]
we have shown that multi-strategy learning is effective in the
context of mapping between database schemas.

Exploiting Domain Constraints: GLUE also attempts to
exploit available domain constraints and general heuristics in
order to improve matching accuracy. An example heuristic is
the observation that two nodes are likely to match if nodes
in their neighborhood also match. An example of a domain
constraint is “if node X matches Professor and node Y is
an ancestor of X in the taxonomy, then it is unlikely that Y
matches Assistant-Professor”. Such constraints occur fre-
quently in practice, and heuristics are commonly used when
manually mapping between ontologies.

Previous works have exploited only one form or the other
of such knowledge and constraints, in restrictive settings [NM01,
MZ98,MBR01,MMGR02]. Here, we develop a unifying ap-
proach to incorporate all such types of information. Our ap-
proach is based on relaxation labeling, a powerful technique
used extensively in the vision and image processing com-
munity [HZ83], and successfully adapted to solve matching
and classification problems in natural language processing
[Pad98] and hypertext classification [CDI98]. We show that
relaxation labeling can be adapted efficiently to our context,
and that it can successfully handle a broad variety of heuris-
tics and domain constraints.

Handling Complex Mappings: Finally, we extend GLUE
to build CGLUE, a system that finds complex mappings be-
tween two given taxonomies, such as “Courses maps to the
union of Undergrad-Courses and Grad-Courses”. CGLUE
adapts the beam search technique commonly used in AI to ef-
ficiently discover such mappings.

Contributions: Our paper therefore makes the following
contributions:

– We describe well-founded notions of semantic similarity,
based on the joint probability distribution of the concepts
involved. Such notions make our approach applicable to a
broad range of ontology-matching problems that employ
different similarity measures.

– We describe the use of multi-strategy learning for find-
ing the joint distribution, and thus the similarity value of

any concept pair in two given taxonomies. The GLUE
system, embodying our approach, utilizes many differ-
ent types of information to maximize matching accuracy.
Multi-strategy learning also makes our system easily ex-
tensible to additional learners, as they become available.

– We introduce relaxation labeling to the ontology-match-
ing context, and show that it can be adapted to efficiently
exploit a broad range of common knowledge and domain
constraints to further improve matching accuracy.

– We show that the GLUE approach can be extended to
find complex mappings. The solution, as embodied by the
CGLUE system, adapts beam search techniques to effi-
ciently discover the mappings.

– We describe a set of experiments on several real-world
domains to validate the effectiveness of GLUE and CGLUE.
The results show the utility of multi-strategy learning and
relaxation labeling, and that GLUE can work well with
different notions of similarity. The results also show the
promise of the CGLUE approach to finding complex map-
pings.

We envision the GLUE system to be a significant piece
of a more complete ontology matching solution. We believe
any such solution should have a significant user interaction
component. Semantic mappings can often be highly subjec-
tive and depend on the choice of target application. User in-
teraction is invaluable and indispensable in such cases. We
do not address this in our current solution. However, the au-
tomated support that GLUE will provide to a more complete
tool will significantly reduce the effort required of the user,
and in many cases will reduce it to just mapping validation
rather than construction.

Parts of the materials in this paper have appeared in
[DMDH02,DMDH03,Doa02]. In those works we describe
the problem of 1-1 matching for ontologies and the GLUE
solution. In this paper, beyond a comprehensive description
of GLUE, we also discuss the problem of finding complex
mappings for ontologies and present a solution in form of the
CGLUE system.

In the next section we define the ontology-matching prob-
lem. Section 4 discusses our approach to measuring similar-
ity, and Sections 5-6 describe the GLUE system. Section 7
presents our experiments with GLUE. Section 8 extends GLUE
to build CGLUE, then describes experiments with the sys-
tem. Section 9 reviews related work. Section 10 discusses fu-
ture work and concludes.

3 The Ontology Matching Problem

We now introduce ontologies, then define the problem of on-
tology matching. An ontology specifies a conceptualization
of a domain in terms of concepts, attributes, and relations
[Fen01]. The concepts provided model entities of interest in
the domain. They are typically organized into a taxonomy tree
where each node represents a concept and each concept is a
specialization of its parent. Figure 1 shows two sample tax-
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onomies for the CS department domain (which are simplifi-
cations of real ones).

Each concept in a taxonomy is associated with a set of
instances. For example, concept Associate-Professor has
instances “Prof. Cook” and “Prof. Burn” as shown in Fig-
ure 1.a. By the taxonomy’s definition, the instances of a con-
cept are also instances of an ancestor concept. For example,
instances of Assistant-Professor, Associate-Professor, and
Professor in Figure 1.a are also instances of Faculty and
People.

Each concept is also associated with a set of attributes.
For example, the concept Associate-Professor in Figure 1.a
has the attributes name, degree, and granting-institution.
An instance that belongs to a concept has fixed attribute val-
ues. For example, the instance “Professor Cook” has value
name = “R. Cook”, degree = “Ph.D.”, and so on. An on-
tology also defines a set of relations among its concepts. For
example, a relation AdvisedBy(Student,Professor) might
list all instance pairs of Student and Professor such that the
former is advised by the latter.

Many formal languages to specify ontologies have been
proposed for the Semantic Web, such as OIL, DAML+OIL,
OWL, SHOE, and RDF [owl,BKD+01,dam,HH01,BG00].
Though these languages differ in their terminologies and ex-
pressiveness, the ontologies that they model essentially share
the same features we described above.

Given two ontologies, the ontology-matching problem is
to find semantic mappings between them. The simplest type
of mapping is a one-to-one (1-1) mapping between the ele-
ments, such as “Associate-Professor to Senior-Lecturer”,
and “degree maps to education”. Notice that mappings be-
tween different types of elements are possible, such as “the
relation AdvisedBy(Student,Professor) maps to the attribute
advisor of the concept Student”. Examples of more complex
types of mapping include “name maps to the concatenation
of first-name and last-name”, and “the union of Undergrad-
Courses and Grad-Courses maps to Courses”. In general,
a mapping may be specified as a query that transforms in-
stances in one ontology into instances in the other [CGL01].

In this paper we focus on finding mappings between the
taxonomies. This is because taxonomies are central compo-
nents of ontologies, and successfully matching them would
greatly aid in matching the rest of the ontologies. Extending
matching to attributes and relations is the subject of ongoing
research.

We will begin by considering 1-1 matching for taxonomies.
The specific problem that we consider is as follows: given
two taxonomies and their associated data instances, for each
node (i.e., concept) in one taxonomy, find the most similar
node in the other taxonomy, for a pre-defined similarity mea-
sure. This is a very general problem setting that makes our
approach applicable to a broad range of common ontology-
related problems, such as ontology integration and data trans-
lation among the ontologies. Later, in Section 8 we will con-
sider extending our solution for 1-1 matching to address the
problem of complex matching between taxonomies.

Data instances: GLUE makes heavy use of the fact that
we have data instances associated with the ontologies we are
matching. We note that many real-world ontologies already
have associated data instances. Furthermore, on the Seman-
tic Web, the largest benefits of ontology matching come from
matching the most heavily used ontologies; and the more heav-
ily an ontology is used for marking up data, the more data it
has. Finally, we show in our experiments that only a moderate
number of data instances is necessary in order to obtain good
matching accuracy.

4 Similarity Measures

To match concepts between two taxonomies, we need a no-
tion of similarity. We now describe the similarity measures
that GLUE handles; but before doing that, we discuss the mo-
tivations leading to our choices.

First, we would like the similarity measures to be well-
defined. A well-defined measure will facilitate the evaluation
of our system. It also makes clear to the users what the sys-
tem means by a match, and helps them figure out whether the
system is applicable to a given matching scenario. Further-
more, a well-defined similarity notion may allow us to lever-
age special-purpose techniques for the matching process.

Second, we want the similarity measures to correspond to
our intuitive notions of similarity. In particular, they should
depend only on the semantic content of the concepts involved,
and not on their syntactic specification.

Finally, we note that many reasonable similarity measures
exist, each being appropriate to certain situations. Hence, to
maximize our system’s applicability, we would like it to be
able to handle a broad variety of similarity measures. The fol-
lowing examples illustrate the variety of possible definitions
of similarity.

Example 2 In searching for your conference acquaintance, your
softbot should use an “exact” similarity measure that maps
Associate-Professor into Senior Lecturer, an equivalent
concept. However, if the softbot has some postprocessing ca-
pabilities that allow it to filter data, then it may tolerate a
“most-specific-parent” similarity measure that maps Associate-
Professor to Academic-Staff, a more general concept. 2

Example 3 A common task in ontology integration is to place
a concept A into an appropriate place in a taxonomy T . One
way to do this is to (a) use an “exact” similarity measure to
find the concept B in T that is “most similar” to A, (b) use a
“most-specific-parent” similarity measure to find the concept
C in T that is the most specific superset concept of A, (c) use
a “most-general-child” similarity measure to find the concept
D in T that is the most general subset concept of A, then (d)
decide on the placement of A, based on B, C, and D. 2

Example 4 Certain applications may even have different sim-
ilarity measures for different concepts. Suppose that a user
tells the softbot to find houses in the range of $300-500K,
located in Seattle. The user expects that the softbot will not
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Fig. 2 The GLUE Architecture.

return houses that fail to satisfy the above criteria. Hence, the
softbot should use exact mappings for price and address.
But it may use approximate mappings for other concepts. If
it maps house-description into neighborhood-info, that is
still acceptable. 2

Most existing works in ontology (and schema) match-
ing do not satisfy the above motivating criteria. Many works
implicitly assume the existence of a similarity measure, but
never define it. Others define similarity measures based on
the syntactic clues of the concepts involved. For example, the
similarity of two concepts might be computed as the dot prod-
uct of the two TF/IDF (Term Frequency/Inverse Document
Frequency) vectors representing the concepts, or a function
based on the common tokens in the names of the concepts.
Such similarity measures are problematic because they de-
pend not only on the concepts involved, but also on their syn-
tactic specifications.

4.1 Distribution-based Similarity Measures

We now give precise similarity definitions and show how our
approach satisfies the motivating criteria. We begin by mod-
eling each concept as a set of instances, taken from a finite
universe of instances. In the CS domain, for example, the uni-
verse consists of all entities of interest in that world: profes-
sors, assistant professors, students, courses, and so on. The
concept Professor is then the set of all instances in the uni-
verse that are professors. Given this model, the notion of the
joint probability distribution between any two concepts A
and B is well defined. This distribution consists of the four
probabilities: P (A, B), P (A, B), P (A, B), and P (A, B). A
term such as P (A, B) is the probability that a randomly cho-
sen instance from the universe belongs to A but not to B, and
is computed as the fraction of the universe that belongs to A
but not to B.

Many practical similarity measures can be defined based
on the joint distribution of the concepts involved. For instance,
a possible definition for the “exact” similarity measure men-
tioned in the previous section is

Jaccard-sim(A, B) = P (A ∩ B)/P (A ∪ B)

=
P (A, B)

P (A, B) + P (A, B) + P (A, B)
(1)

This similarity measure is known as the Jaccard coefficient
[vR79]. It takes the lowest value 0 when A and B are disjoint,
and the highest value 1 when A and B are the same concept.
Most of our experiments will use this similarity measure.

A definition for the “most-specific-parent” similarity mea-
sure is

MSP (A, B) =

{

P (A|B) if P (B|A) = 1
0 otherwise

(2)

where the probabilities P (A|B) and P (B|A) can be trivially
expressed in terms of the four joint probabilities. This def-
inition states that if B subsumes A, then the more specific
B is, the higher P (A|B), and thus the higher the similarity
value MSP (A, B) is. Thus it suits the intuition that the most
specific parent of A in the taxonomy is the smallest set that
subsumes A. An analogous definition can be formulated for
the “most-general-child” similarity measure.

Instead of trying to estimate specific similarity values di-
rectly, GLUE focuses on computing the joint distributions.
Then, it is possible to compute any of the above mentioned
similarity measures as a function over the joint distributions.
Hence, GLUE has the significant advantage of being able to
work with a variety of similarity functions that have well-
founded probabilistic interpretations.

5 The GLUE Architecture

We now describe GLUE in detail. The basic architecture of
GLUE is shown in Figure 2. It consists of three main mod-
ules: Distribution Estimator, Similarity Estimator, and Relax-
ation Labeler.

The Distribution Estimator takes as input two taxonomies
O1 and O2, together with their data instances. Then it ap-
plies machine learning techniques to compute for every pair
of concepts 〈A ∈ O1, B ∈ O2〉 their joint probability dis-
tribution. Recall from Section 4 that this joint distribution
consists of four numbers: P (A, B), P (A, B), P (A, B), and
P (A, B). Thus a total of 4|O1||O2| numbers will be com-
puted, where |Oi| is the number of nodes (i.e., concepts) in
taxonomy Oi. The Distribution Estimator uses a set of base
learners and a meta-learner. We describe the learners and the
motivation behind them in Section 5.2.

Next, GLUE feeds the above numbers into the Similarity
Estimator, which applies a user-supplied similarity function
(such as the ones in Equations 1 or 2) to compute a similarity
value for each pair of concepts 〈A ∈ O1, B ∈ O2〉. The
output from this module is a similarity matrix between the
concepts in the two taxonomies.
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The Relaxation Labeler module then takes the similarity
matrix, together with domain-specific constraints and heuris-
tic knowledge, and searches for the mapping configuration
that best satisfies the domain constraints and the common
knowledge, taking into account the observed similarities. This
mapping configuration is the output of GLUE.

We now describe the Distribution Estimator. First, we
discuss the general machine-learning technique used to esti-
mate joint distributions from data, and then the use of multi-
strategy learning in GLUE. Section 6 describes the Relax-
ation Labeler. The Similarity Estimator is trivial because it
simply applies a user-defined function to compute the simi-
larity of two concepts from their joint distribution, and hence
is not discussed further.

5.1 The Distribution Estimator

Consider computing the value of P (A, B). This joint proba-
bility can be computed as the fraction of the instance universe
that belongs to both A and B. In general we cannot compute
this fraction because we do not know every instance in the
universe. Hence, we must estimate P (A, B) based on the data
we have, namely, the instances of the two input taxonomies.
Note that the instances that we have for the taxonomies may
be overlapping, but are not necessarily so.

To estimate P (A, B), we make the general assumption
that the set of instances of each input taxonomy is a represen-
tative sample of the instance universe covered by the taxon-
omy. We denote by Ui the set of instances given for taxonomy
Oi, by N(Ui) the size of Ui, and by N(UA,B

i ) the number of
instances in Ui that belong to both A and B.

With the above assumption, P (A, B) can be estimated by
the following equation:1

P (A, B) = [N(UA,B
1 ) + N(UA,B

2 )] / [N(U1) + N(U2)],
(3)

Computing P (A, B) then reduces to computing N(UA,B
1 )

and N(UA,B
2 ). Consider N(UA,B

2 ). We can compute this quan-
tity if we know for each instance s in U2 whether it belongs
to both A and B. One part is easy: we already know whether
s belongs to B – if it is explicitly specified as an instance of
B or of any descendant node of B. Hence, we only need to
decide whether s belongs to A.

This is where we use machine learning. Specifically, we
partition U1, the set of instances of ontology O1, into the set
of instances that belong to A and the set of instances that
do not belong to A. Then, we use these two sets as positive
and negative examples, respectively, to train a classifier for
A. Finally, we use the classifier to predict whether instance s
belongs to A.

1 Notice that N(UA,B
i )/N(Ui) is also a reasonable approxima-

tion of P (A, B), but it is estimated based only on the data of Oi. The
estimation in (3) is likely to be more accurate because it is based on
more data, namely, the data of both O1 and O2. Note also that the
estimation in (3) is only an approximate in that it does not take into
account the overlapping instances of the taxonomies.

It is often the case that the classifier returns not a simple
“yes” or “no” answer, but rather a confidence score α in the
range [0,1] for the “yes” answer. The score reflects the un-
certainty of the classification. In such cases the score for the
“no” answer can be computed as 1 − α. Thus we regard the
classification as “yes” if α ≥ 1 − α, and as “no” otherwise.

In summary, we estimate the joint probability distribution
of A and B as follows (the procedure is illustrated in Fig-
ure 3):

1. Partition U1, into UA
1 and UA

1 , the set of instances that do
and do not belong to A, respectively (Figures 3.a-b).

2. Train a learner L for instances of A, using UA
1 and UA

1

as the sets of positive and negative training examples, re-
spectively.

3. Partition U2, the set of instances of taxonomy O2, into
UB

2 and UB
2 , the set of instances that do and do not belong

to B, respectively (Figures 3.d-e).
4. Apply learner L to each instance in UB

2 (Figure 3.e). This

partitions UB
2 into the two sets UA,B

2 and UA,B
2 shown in

Figure 3.f. Similarly, applying L to UB
2 results in the two

sets UA,B
2 and UA,B

2 .
5. Repeat Steps 1-4, but with the roles of taxonomies O1 and

O2 being reversed, to obtain the sets UA,B
1 , UA,B

1 , UA,B
1 ,

and UA,B
1 .

6. Finally, compute P (A, B) using Formula 3. The remain-
ing three joint probabilities are computed in a similar man-

ner, using the sets UA,B
2 , . . . , UA,B

1 computed in Steps 4-
5.

By applying the above procedure to all pairs of concepts 〈A ∈
O1, B ∈ O2〉 we obtain all joint distributions of interest.

5.2 Multi-Strategy Learning

Given the diversity of machine learning methods, the next
issue is deciding which one to use for the procedure we de-
scribed above. A key observation in our approach is that there
are many different types of information that a learner can
glean from the training instances, in order to make predic-
tions. It can exploit the frequencies of words in the text value
of the instances, the instance names, the value formats, the
characteristics of value distributions, and so on.

Since different learners are better at utilizing different
types of information, GLUE follows [DDH01] and takes a
multi-strategy learning approach. In Step 2 of the above es-
timation procedure, instead of training a single learner L, we
train a set of learners L1, . . . , Lk, called base learners. Each
base learner exploits well a certain type of information from
the training instances to build prediction hypotheses. Then,
to classify an instance in Step 4, we apply the base learners
to the instance and combine their predictions using a meta-
learner. This way, we can achieve higher classification accu-
racy than with any single base learner alone, and therefore
better approximations of the joint distributions.
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Fig. 3 Estimating the joint distribution of concepts A and B.

The current implementation of GLUE has two base learn-
ers, Content Learner and Name Learner, and a meta-learner
that is a linear combination of the base learners. We now de-
scribe these learners in detail.

The Content Learner: This learner exploits the frequencies
of words in the textual content of an instance to make predic-
tions. Recall that an instance typically has a name and a set of
attributes together with their values. In the current version of
GLUE, we do not handle attributes directly; rather, we treat
them and their values as the textual content of the instance2.
For example, the textual content of the instance “Professor
Cook” is “R. Cook, Ph.D., University of Sidney, Australia”.
The textual content of the instance “CSE 342” is the text con-
tent of this course’ homepage.

The Content Learner employs the Naive Bayes learning
technique [DP97], one of the most popular and effective text
classification methods. It treats the textual content of each
input instance as a bag of tokens, which is generated by pars-
ing and stemming the words and symbols in the content. Let
d = {w1, . . . , wk} be the content of an input instance, where
the wj are tokens. To make a prediction, the Content Learner
needs to compute the probability that an input instance is an
instance of A, given its tokens, i.e., P (A|d).

Using Bayes’ theorem, P (A|d) can be rewritten as
P (d|A)P (A)/P (d). Fortunately, two of these values can be
estimated using the training instances, and the third, P (d),
can be ignored because it is just a normalizing constant. Specif-
ically, P (A) is estimated as the portion of training instances
that belong to A. To compute P (d|A), we assume that the to-
kens wj appear in d independently of each other given A (this
is why the method is called naive Bayes). With this assump-
tion, we have

P (d|A) = P (w1|A)P (w2|A) · · ·P (wk|A)

P (wj |A) is estimated as n(wj , A)/n(A), where n(A) is the
total number of token positions of all training instances that
belong to A, and n(wj , A) is the number of times token wj

appears in all training instances belonging to A. Even though
the independence assumption is typically not valid, the Naive
Bayes learner still performs surprisingly well in many do-
mains, notably text-based ones (see [DP97] for an explana-
tion).

2 However, more sophisticated learners can be developed that deal
explicitly with the attributes, such as the XML Learner in [DDH01].

We compute P (A|d) in a similar manner. Hence, the Con-
tent Learner predicts A with probability P (A|d), and A with
the probability P (A|d).

The Content Learner works well on long textual elements,
such as course descriptions, or elements with very distinct
and descriptive values, such as color (red, blue, green, etc.).
It is less effective with short, numeric elements such as course
numbers or credits.

The Name Learner: This learner is similar to the Con-
tent Learner, but makes predictions using the full name of the
input instance, instead of its content. The full name of an in-
stance is the concatenation of concept names leading from
the root of the taxonomy to that instance. For example, the
full name of instance with the name s4 in taxonomy O2 (Fig-
ure 3.d) is “G B J s4”. This learner works best on specific and
descriptive names. It does not do well with names that are too
vague or vacuous.

The Meta-Learner: The predictions of the base learners are
combined using the meta-learner. The meta-learner assigns to
each base learner a learner weight that indicates how much
it trusts that learner’s predictions. Then it combines the base
learners’ predictions via a weighted sum.

For example, suppose the weights of the Content Learner
and the Name Learner are 0.6 and 0.4, respectively. Suppose
further that for instance s4 of taxonomy O2 (Figure 3.d) the
Content Learner predicts A with probability 0.8 and A with
probability 0.2, and the Name Learner predicts A with proba-
bility 0.3 and A with probability 0.7. Then the Meta-Learner
predicts A with probability 0.8 · 0.6 + 0.3 · 0.4 = 0.6 and A
with probability 0.2 · 0.6 + 0.7 · 0.4 = 0.4.

In the current GLUE system, the learner weights are set
manually, based on the characteristics of the base learners and
the taxonomies. However, they can also be set automatically
using a machine learning approach called stacking [Wol92,
TW99], as we have shown in [DDH01].

6 Exploiting Domain Constraints and Heuristic
Knowledge

We now describe the Relaxation Labeler, which takes the
similarity matrix from the Similarity Estimator, and searches
for the mapping configuration that best satisfies the given do-
main constraints and heuristic knowledge. We first describe
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relaxation labeling, then discuss the domain constraints and
heuristic knowledge employed in our approach.

6.1 Relaxation Labeling

Relaxation labeling is an efficient technique to solve the prob-
lem of assigning labels to nodes of a graph, given a set of con-
straints. The key idea behind this approach is that the label of
a node is typically influenced by the features of the node’s
neighborhood in the graph. Examples of such features are
the labels of the neighboring nodes, the percentage of nodes
in the neighborhood that satisfy a certain criterion, and the
fact that a certain constraint is satisfied or not.

Relaxation labeling exploits this observation. The influ-
ence of a node’s neighborhood on its label is quantified using
a formula for the probability of each label as a function of
the neighborhood features. Relaxation labeling assigns initial
labels to nodes based solely on the intrinsic properties of the
nodes. Then it performs iterative local optimization. In each
iteration it uses the formula to change the label of a node
based on the features of its neighborhood. This continues un-
til labels do not change from one iteration to the next, or some
other convergence criterion is reached.

Relaxation labeling appears promising for our purposes
because it has been applied successfully to similar matching
problems in computer vision, natural language processing,
and hypertext classification [HZ83,Pad98,CDI98]. It is rel-
atively efficient, and can handle a broad range of constraints.
Even though its convergence properties are not yet well un-
derstood (except in certain cases) and it is liable to converge
to a local maximum, in practice it has been found to perform
quite well [Pad98,CDI98].

We now explain how to apply relaxation labeling to the
problem of mapping from taxonomy O1 to taxonomy O2. We
regard nodes (concepts) in O2 as labels, and recast the prob-
lem as finding the best label assignment to nodes (concepts)
in O1, given all knowledge we have about the domain and the
two taxonomies.

Our goal is to derive a formula for updating the probabil-
ity that a node takes a label based on the features of the neigh-
borhood. Let X be a node in taxonomy O1, and L be a label
(i.e., a node in O2). Let ∆K represent all that we know about
the domain, namely, the tree structures of the two taxonomies,
the sets of instances, and the set of domain constraints. Then
we have the following conditional probability

P (X = L|∆K) =
∑

MX

P (X = L, MX |∆K)

=
∑

MX

P (X = L|MX , ∆K)P (MX |∆K) (4)

where the sum is over all possible label assignments MX to
all nodes other than X in taxonomy O1. Assuming that the
nodes’ label assignments are independent of each other given
∆K , we have

P (MX |∆K) =
∏

(Xi=Li)∈MX

P (Xi = Li|∆K) (5)
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Fig. 4 The sigmoid function

Consider P (X = L|MX , ∆K). MX and ∆K constitutes
all that we know about the neighborhood of X . Suppose now
that the probability of X getting label L depends only on the
values of n features of this neighborhood, where each feature
is a function fi(MX , ∆K , X, L). As we explain later in this
section, each such feature corresponds to one of the heuristics
or domain constraints that we wish to exploit. Then

P (X = L|MX , ∆K) = P (X = L|f1, . . . , fn) (6)

If we have access to previously-computed mappings be-
tween taxonomies in the same domain, we can use them as the
training data from which to estimate P (X = L|f1, . . . , fn)
(see [CDI98] for an example of this in the context of hyper-
text classification). However, here we will assume that such
mappings are not available. Hence we use alternative meth-
ods to quantify the influence of the features on the label as-
signment. In particular, we use the sigmoid or logistic func-
tion σ(x) = 1/(1 + e−x), where x is a linear combination of
the features fk, to estimate the above probability. This func-
tion is widely used to combine multiple sources of evidence
[Agr90]. The general shape of the sigmoid is as shown in Fig-
ure 4.

Thus:

P (X = L|f1, . . . , fn) ∝ σ(α1 · f1 + · · · + αn · fn) (7)

where ∝ denotes “proportional to”, and the weight αk indi-
cates the importance of feature fk.

The sigmoid is essentially a smoothed threshold function,
which makes it a good candidate for use in combining evi-
dence from the different features. If the total evidence is be-
low a certain value, it is unlikely that the nodes match; above
this threshold, they probably do.

By substituting Equations 5-7 into Equation 4, we obtain

P (X = L|∆K) ∝
∑

MX

σ

(

n
∑

k=1

αkfk(MX , ∆K , X, L)

)

×

∏

(Xi=Li)∈MX

P (Xi = Li|∆K) (8)

The proportionality constant is found by renormalizing
the probabilities of all the labels to sum to one. Notice that
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Constraint Types Examples

Neighborhood
Two nodes match if their children also match.
Two nodes match if their parents match and at least x% of their children also match.
Two nodes match if their parents match and some of their descendants also match.

   
D

om
ai

n-
In

de
pe

nd
en

t

Union  If all children of node X match node Y, then X also matches Y.

Subsumption
 If node Y is a descendant of node X, and Y matches PROFESSOR, then it is unlikely that X matches ASSISTANT-PROFESSOR.
 If node Y is NOT a descendant of node X, and Y matches PROFESSOR, then it is unlikely that X matches FACULTY.

Frequency  There can be at most one node that matches DEPARTMENT-CHAIR.

D
om

ai
n-

D
ep

en
de

nt

Nearby
 If a node in the neighborhood of node X matches ASSOCIATE-PROFESSOR, then the chance that X matches PROFESSOR
isincreased.

Table 1 Examples of constraints that can be exploited to improve matching accuracy.

this equation expresses the probabilities P (X = L|∆K) for
the various nodes in terms of each other. This is the iterative
equation that we use for relaxation labeling.

6.2 Constraints

Table 1 shows examples of the constraints currently used in
our approach and their characteristics. We distinguish between
two types of constraints: domain-independent and -dependent
constraints. Domain-independent constraints convey our gen-
eral knowledge about the interaction between related nodes.
Perhaps the most widely used such constraint is the Neigh-
borhood Constraint: “two nodes match if nodes in their neigh-
borhood also match”, where the neighborhood is defined to
be the children, the parents, or both [NM01,MBR01,MZ98]
(see Table 1). Another example is the Union Constraint: “if
all children of a node A match node B, then A also matches
B”. This constraint is specific to the taxonomy context. It ex-
ploits the fact that A is the union of all its children. Domain-
dependent constraints convey our knowledge about the in-
teraction between specific nodes in the taxonomies. Table 1
shows examples of three types of domain-dependent constraints.

To incorporate the constraints into the relaxation label-
ing process, we model each constraint ci as a feature fi of
the neighborhood of node X . For example, consider the con-
straint c1: “two nodes are likely to match if their children
match”. To model this constraint, we introduce the feature
f1(MX , ∆K , X, L) that is the percentage of X’s children
that match a child of L, under the given MX mapping. Thus
f1 is a numeric feature that takes values from 0 to 1. Next,
we assign to fi a positive weight αi. This has the intuitive
effect that, all other things being equal, the higher the value
fi (i.e., the percentage of matching children), the higher the
probability of X matching L is.

As another example, consider the constraint c2: “if node
Y is a descendant of node X , and Y matches PROFESSOR,
then it is unlikely that X matches ASST-PROFESSOR”.
The corresponding feature, f2(MX , ∆K , X, L), is 1 if the
condition “there exists a descendant of X that matches PRO-
FESSOR” is satisfied, given the MX mapping configuration,

and 0 otherwise. Clearly, when this feature takes value 1, we
want to substantially reduce the probability that X matches
ASST-PROFESSOR. We model this effect by assigning to
f2 a negative weight α2.

6.3 Efficient Implementation of Relaxation Labeling

In this section we discuss why previous implementations of
relaxation labeling are not efficient enough for ontology match-
ing, then describe an efficient implementation for our context.

Recall from Section 6.1 that our goal is to compute for
each node X and label L the probability P (X = L|δK),
using Equation 8. A naive implementation of this compu-
tation process would enumerate all labeling configurations
MX , then compute fk(MX , δK , X, L) for each of the con-
figurations.

This naive implementation does not work in our context
because of the vast number of configurations. This is a prob-
lem that has also arisen in the context of relaxation labeling
being applied to hypertext classification ([CDI98]). The solu-
tion in [CDI98] is to consider only the top k configurations,
that is, those with highest probability, based on the heuristic
that the sum of the probabilities of the top k configurations is
already sufficiently close to 1. This heuristic was true in the
context of hypertext classification, due to a relatively small
number of neighbors per node (in the range 0-30) and a rela-
tively small number of labels (under 100).

Unfortunately the above heuristic is not true in our match-
ing context. Here, a neighborhood of a node can be the entire
graph, thereby comprising hundreds of nodes, and the num-
ber of labels can be hundreds or thousands (because this num-
ber is the same as the number of nodes in the other ontology
to be matched). Thus, the number of configurations in our
context is orders of magnitude more than that in the context of
hypertext classification, and the probability of a configuration
is computed by multiplying the probabilities of a very large
number of nodes. As a consequence, even the highest proba-
bility of a configuration is very small, and a huge number of
configurations have to be considered to achieve a significant
total probability mass.
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Hence we developed a novel and efficient implementation
for relaxation labeling in our context. Our implementation re-
lies on three key ideas. The first idea is that we divide the
space of configurations into partitions C1, C2, . . . , Cm, such
that all configurations that belong to the same partition have
the same values for the features f1, f2, . . . , fn. Then, to com-
pute P (X = L|δK), we iterate over the (far fewer) partitions
rather than over the huge space of configurations.

The one problem remaining is to compute the probabil-
ity of a partition Ci. Suppose all configurations in Ci have
feature values f1 = v1, f2 = v2, . . . , fn = vn. Our sec-
ond key idea is to approximate the probability of Ci with
∏n

j=1 P (fj = vj), where P (fj = vj) is the total probability
of all configurations whose feature fj takes on value vj . Note
that this approximation makes an independence assumption
over the features, which is clearly not valid. However, the as-
sumption greatly simplifies the computation process. In our
experiments with GLUE, we have not observed any problem
arising because of this assumption.

Now we focus on computing P (fj = vj). We compute
this probability using a variety of techniques that depend on
the particular feature. For example, suppose fj is the number
of children of X that map to some child of L. Let Xj be the
jth child of X (ordered arbitrarily) and nX be the number of
children of the concept X . Let Sm

j be the probability that of
the first j children, there are m that are mapped to some child
of L. It is easy to see that Sm

j ’s are related as follows,

Sm
j = P (Xj = L′)Sm−1

j−1 + (1 − P (Xj = L′))Sm
j−1

where P (Xj = L′) =
∑nL

l=1 P (Xj = Ll) is the probability
that the child Xj is mapped to some child of L. This equation
immediately suggests a dynamic programming approach to
computing the values Sm

j and thus the number of children of
X that map to some child of L. We use similar techniques to
compute P (fj = vj) for the other types of features that are
described in Table 1.

7 Empirical Evaluation

We have evaluated GLUE on several real-world domains. Our
goals were to evaluate the matching accuracy of GLUE, to
measure the relative contribution of the different components
of the system, and to verify that GLUE can work well with a
variety of similarity measures.

Domains and Taxonomies: We evaluated GLUE on three
domains, whose characteristics are shown in Table 2. The
domains Course Catalog I and II describe courses at Cor-
nell University and the University of Washington. The tax-
onomies of Course Catalog I have 34 - 39 nodes, and are
fairly similar to each other. The taxonomies of Course Cat-
alog II are much larger (166 - 176 nodes) and much less
similar to each other. Courses are organized into schools and
colleges, then into departments and centers within each col-
lege. The Company Profile domain uses ontologies from Ya-
hoo.com and TheStandard.com and describes the current busi-

ness status of companies. Companies are organized into sec-
tors, then into industries within each sector3.

In each domain we downloaded two taxonomies. For each
taxonomy, we downloaded the entire set of data instances,
and performed some trivial data cleaning such as removing
HTML tags and phrases such as “course not offered” from
the instances. We also removed instances of size less than 130
bytes, because they tend to be empty or vacuous, and thus do
not contribute to the matching process. We then removed all
nodes with fewer than 5 instances, because such nodes cannot
be matched reliably due to lack of data.

Similarity Measure & Manual Mappings: We chose to
evaluate GLUE using the Jaccard similarity measure (Sec-
tion 4), because it corresponds well to our intuitive under-
standing of similarity. Given the similarity measure, we man-
ually created the correct 1-1 mappings between the taxonomies
in the same domain, for evaluation purposes. The rightmost
column of Table 2 shows the number of manual mappings
created for each taxonomy. For example, we created 236 one-
to-one mappings from Standard to Yahoo!, and 104 mappings
in the reverse direction. Note that in some cases there were
nodes in a taxonomy for which we could not find a 1-1 match.
This was either because there was no equivalent node (e.g.,
School of Hotel Administration at Cornell has no equivalent
counterpart at the University of Washington), or when it is
impossible to determine an accurate match without additional
domain expertise.

Domain Constraints: We specified domain constraints for
the relaxation labeler. For the taxonomies in Course Catalog
I, we specified all applicable subsumption constraints (see Ta-
ble 1). For the other two domains, because their sheer size
makes specifying all constraints difficult, we specified only
the most obvious subsumption constraints (about 10 constraints
for each taxonomy). For the taxonomies in Company Profiles
we also used several frequency constraints.

Experiments: For each domain, we performed two exper-
iments. In each experiment, we applied GLUE to find the
mappings from one taxonomy to the other. The matching ac-
curacy of a taxonomy is then the percentage of the manual
mappings (for that taxonomy) that GLUE predicted correctly.

7.1 Matching Accuracy

Figure 5 shows the matching accuracy for different domains
and configurations of GLUE. In each domain, we show the
matching accuracy of two scenarios: mapping from the first
taxonomy to the second, and vice versa. The four bars in each
scenario (from left to right) represent the accuracy produced
by: (1) the name learner alone, (2) the content learner alone,
(3) the meta-learner using the previous two learners, and (4)

3 Many ontologies are also available from research resources
(e.g., DAML.org, semanticweb.org, OntoBroker [ont], SHOE, On-
toAgents). However, they currently have no or very few data in-
stances.
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Taxonomies # nodes # non-leaf
nodes

depth
# instances

in
taxonomy

max # instances
at a leaf

max #
children
of a node

# manual
mappings
created

Cornell 34 6 4 1526 155 10 34Course Catalog
I Washington 39 8 4 1912 214 11 37

Cornell 176 27 4 4360 161 27 54Course Catalog
II Washington 166 25 4 6957 214 49 50

Standard.com 333 30 3 13634 222 29 236Company
Profiles Yahoo.com 115 13 3 9504 656 25 104

Table 2 Domains and taxonomies for our experiments.
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Fig. 5 Matching accuracy of GLUE.

the relaxation labeler on top of the meta-learner (i.e., the com-
plete GLUE system).

The results show that GLUE achieves high accuracy across
all three domains, ranging from 66 to 97%. In contrast, the
best matching results of the base learners, achieved by the
content learner, are only 52 - 83%. It is interesting that the
name learner achieves very low accuracy, 12 - 15% in four
out of six scenarios. This is because all instances of a con-
cept, say B, have very similar full names (see the description
of the name learner in Section 5.2). Hence, when the name
learner for a concept A is applied to B, it will classify all in-
stances of B as A or A. In cases when this classification is
incorrect, which might be quite often, using the name learner
alone leads to poor estimates of the joint distributions. The
poor performance of the name learner underscores the im-
portance of data instances and multi-strategy learning in on-
tology matching.

The results clearly show the utility of the meta-learner
and relaxation labeler. Even though in half of the cases the
meta-learner only minimally improves the accuracy, in the
other half it makes substantial gains, between 6 and 15%. And
in all but one case, the relaxation labeler further improves
accuracy by 3 - 18%, confirming that it is able to exploit the
domain constraints and general heuristics. In one case (from
Standard to Yahoo), the relaxation labeler decreased accuracy
by 2%. The performance of the relaxation labeler is discussed
in more detail below. In Section 7.4 we identify the reasons
that prevent GLUE from identifying the remaining mappings.

In the current experiments, GLUE utilized on average
only 30 to 90 data instances per leaf node (see Table 2). The
high accuracy in these experiments suggests that GLUE can
work well with only a modest amount of data.

7.2 Performance of the Relaxation Labeler

In our experiments, when the relaxation labeler was applied,
the accuracy typically improved substantially in the first few
iterations, then gradually dropped. This phenomenon has also
been observed in many previous works on relaxation labeling
[HZ83,Llo83,Pad98]. Because of this, finding the right stop-
ping criterion for relaxation labeling is of crucial importance.
Many stopping criteria have been proposed, but no general
effective criterion has been found.

We considered three stopping criteria: (1) stopping when
the mappings in two consecutive iterations do not change (the
mapping criterion), (2) when the probabilities do not change,
or (3) when a fixed number of iterations has been reached.

We observed that when using the last two criteria the ac-
curacy sometimes improved by as much as 10%, but most of
the time it decreased. In contrast, when using the mapping
criterion, in all but one of our experiments the accuracy sub-
stantially improved, by 3 - 18%, and hence, our results are
reported using this criterion. We note that with the mapping
criterion, we observed that relaxation labeling always stopped
in the first few iterations.
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Fig. 6 The accuracy of GLUE in the Course Catalog I domain, using the most-specific-parent similarity measure.

In all of our experiments, relaxation labeling was also
very fast. It took only a few seconds in Catalog I and un-
der 20 seconds in the other two domains to finish ten itera-
tions. This observation shows that relaxation labeling can be
implemented efficiently in the ontology-matching context. It
also suggests that we can efficiently incorporate user feed-
back into the relaxation labeling process in the form of addi-
tional domain constraints.

We also experimented with different values for the con-
straint weights (see Section 6), and found that the relaxation
labeler was quite robust with respect to such parameter changes.

7.3 Most-Specific-Parent Similarity Measure

So far we have experimented only with the Jaccard similar-
ity measure. We wanted to know whether GLUE can work
well with other similarity measures. Hence we conducted an
experiment in which we used GLUE to find mappings for tax-
onomies in the Course Catalog I domain, using the following
similarity measure:

MSP (A, B) =

{

P (A|B) if P (B|A) ≥ 1 − ε
0 otherwise

This measure is the same as the the most-specific-parent sim-
ilarity measure described in Section 4, except that we added
an ε factor to account for the error in approximating P (B|A).

Figure 6 shows the matching accuracy, plotted against ε.
As can be seen, GLUE performed quite well on a broad range
of ε. This illustrates how GLUE can be effective with more
than one similarity measure.

7.4 Discussion

The accuracy of GLUE is quite impressive as is, but it is nat-
ural to ask what limits GLUE from obtaining even higher ac-
curacy. There are several reasons that prevent GLUE from

correctly matching the remaining nodes. First, some nodes
cannot be matched because of insufficient training data. For
example, many course descriptions in Course Catalog II con-
tain only vacuous phrases such as “3 credits”. While there
is clearly no general solution to this problem, in many cases
it can be mitigated by adding base learners that can exploit
domain characteristics to improve matching accuracy.

Second, the relaxation labeler performed local optimiza-
tions, and sometimes converged to only a local maximum,
thereby not finding correct mappings for all nodes. Here, the
challenge will be in developing search techniques that work
better by taking a more “global perspective”, but still retain
the runtime efficiency of local optimization.

Third, the two base learners we used in our implementa-
tion are rather simple general-purpose text classifiers. Using
other learners that perform domain-specific feature selection
and comparison can also improve the accuracy.

We note that some nodes cannot be matched automati-
cally because they are simply ambiguous. For example, it is
not clear whether “networking and communication devices”
should match “communication equipment” or “computer net-
works”. A solution to this problem is to incorporate user in-
teraction into the matching process [NM00,DDH01,YMHF01].

Finally, GLUE currently tries to predict the best match for
every node in the taxonomy. However, in some cases, such a
match simply does not exist (e.g., unlike Cornell, the Univer-
sity of Washington does not have a School of Hotel Adminis-
tration). Hence, an additional extension to GLUE is to make
it be aware of such cases, and not predict an incorrect match
when this occurs.

8 Extending GLUE to Complex Matching

GLUE finds 1-1 mappings between two given taxonomies.
However, complex mappings are also widespread in practice.
Hence, we extend GLUE to find such mappings. As earlier,
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1. Let the initial set of candidates C be the set of all nodes of O2. Set highest sim = 0.
2. Loop

(a) Compute similarity score between each candidate of C and A.
(b) Let new highest sim be the highest similarity score of candidates of C.
(c) If |new highest sim−highest sim| ≤ ε, for a pre-specified ε, then stop, returning the candidate with the highest similarity

score in C.
(d) Otherwise, select the k candidates with the highest score from C. Expand these candidates to create new candidates. Add the

new candidates to C. Set highest sim = new highest sim.

Fig. 7 Finding the best mapping candidate for a node A of taxonomy O1.

we focus on complex mappings between taxonomies, such as
“Courses of the CS Dept Australia taxonomy maps to the
union of Undergrad-Courses and Grad-Courses of the CS
Dept US taxonomy” (Figure 1). Finding other types of com-
plex mappings (e.g., “attribute name maps to the concatena-
tion of first-name and last-name”) is the subject of future
research.

We consider the following specific matching problem: for
each node A of a given taxonomy O1, find the best map-
ping over the nodes of another taxonomy O2 – be it a 1-1
or complex mapping. A 1-1 mapping has the form A = X
where X is a node of O2. A complex mapping has the form
A = X1 op1 X2 op2 . . . opn−1 Xn, where the Xi are nodes
of O2 and the opi are pre-defined operators. (In future work
we shall consider many-to-many complex mappings such as
A1 op1A2 = X1 op2 X2 op3 X3.) Since a taxonomic node is
usually interpreted as a set of instances, we shall take the opi

to be set-theoretic operators: union, difference, complemen-
tary, etc.

In our matching context, we shall refer to a “composite
concept” such as X1 op1 X2 op2 . . . opn−1 Xn as a mapping
candidate. Since any set-arithmetic expression can be rewrit-
ten using only the union and difference operators, it follows
that for any node A of O1, we only need to consider mapping
candidates that are built using these two operators.

Further, in the rest of this section we make the assumption
that the children of any taxonomic node are mutually exclu-
sive and exhaustive. That is, the children C1, C2, . . . , Ck of
any node D (of O1 or O2) satisfy the conditions Ci ∩ Cj =
∅, 1 ≤ i, j ≤ k and i 6= j, and C1 ∪ C2 ∪ . . . ∪ Ck = D.
In Section 8.4 we discuss removing this assumption, but here
we note that the assumption holds for many real-world tax-
onomies, in which the further specialization of a node usu-
ally provides a partition of the instances of that node. In many
other real-world taxonomies, such as the “course catalog” and
“company profiles” domains we have considered in this pa-
per, very few sibling nodes share instances, and the set of
such instances is usually small. Thus, for these domains we
can also make this approximating assumption.

With the above assumption, it is easy to show that any
mapping candidate can be rewritten to be a union of nodes.
Thus, for each node A of taxonomy O1, our goal is to find the
most similar mapping candidate from the set of candidates
that are unions of nodes of taxonomy O2.

8.1 The CGLUE System

To find the best mapping candidate for node A of taxonomy
O1, we can simply enumerate all “union” candidates over tax-
onomy O2, compute for each candidate its similarity with re-
spect to A, using the learning methods described in Section 5,
then return the candidate with the highest similarity. How-
ever, since the number of candidates is exponential in terms
of the number of nodes of O2, the above brute-force approach
is clearly impractical. Thus, we consider an approximate ap-
proach that casts the matching problem as that of searching
through the huge space of candidates. To conduct an efficient
search, we adapt the beam search technique commonly used
in AI. The basic idea of beam search is that at each stage
in the search process, we limit our attention to only k most
promising candidates, where k is a pre-specified number.

The adapted beam search algorithm to find the best map-
ping candidate for a node A of O1 is described in Figure 7.
Here, in Step 2.a the algorithm computes the similarity score
between a mapping candidate and node A using the learning
method described in Section 5. This computation has been
implemented on top of the current GLUE system. In Step 2.c,
ε is currently set to be zero. In Step 2.d, for each candidate C
in the set of selected k candidates, the algorithm unions C
with nodes of O2, thus generating |O2| potential new can-
didates. Next, it removes previously seen candidates as well
as those that contain duplicate nodes. Since each candidate
is just a union of nodes of O2, the removal process could be
implemented efficiently.

We have extended GLUE to build CGLUE, a system that
employs the above beam search solution to find complex map-
pings. While CGLUE exploits information in the data and the
taxonomic structures for matching purposes, it has not yet
exploited domain constraints (and so does not use relaxation
labeling). In Section 8.4 we briefly discuss future work on
exploiting domain constraints. In what follows we describe
experiments with the current CGLUE system.

8.2 Empirical Evaluation

We have evaluated CGLUE on three real-world domains, whose
characteristics are shown in Table 3. The first domain is “Course
Catalog I” that we used in our GLUE experiments for 1-1
matching. This domain was described in Table 2 and repro-
duced in Rows 1-2 of Table 3. We found that this domain
has a fair number of complex mappings (7-11 out of 34-39
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# manual mappings created 
Taxonomies # nodes # non-leaf 

nodes 
depth # instances 

in taxonomy 

max # 
instances  
at a leaf 

max #  
children  
of a node complex 1-1 total 

Cornell 34 6 4 1526 155 10 11  23 34 Course Catalog 
I Washington 39 8 4 1912 214 11 7  32 39 

Standard 48 10 3 2441 353 10 7 41 48 Company 
Profiles I Yahoo 22 6 3 2461 656 12 9 13 22 

Standard 248 23 3 11079 557 24 20 228 248 Company 
Profiles II Yahoo 95 11 3 8817 656 25 43 3 46 

 

 
Table 3 Domains and taxonomies for experiments with CGLUE.

mappings), and that we could find the correct complex map-
pings fairly quickly. The domain therefore is well-suited for
our purpose.

In contrast, we found that domain “Company Profiles” for
the 1-1 matching case (Table 2) contains few complex map-
pings and that the correct complex mappings were extremely
difficult to detect. Without knowing the correct complex map-
pings (i.e., the “gold standard”), however, we would not be
able to evaluate CGLUE.

Therefore, we modified the domain so that we can find the
set of all correct complex mappings. Our goal is to use these
mappings to evaluate the mappings that CGLUE returns. We
removed and merged certain nodes, and created two smaller
versions – “Company Profiles I” and “Company Profiles II”,
which are described in Rows 3-6 of Table 3. The latter do-
main is much larger than the former (95-248 nodes vs. 22-48).
Both of them contain a fair number of complex mappings (7-
43).

Similar to the 1-1 matching case, we chose to evaluate
CGLUE using the Jaccard similarity measure. Given this
measure, we manually created the correct mappings between
the taxonomies. The last three columns of Table 3 show the
number of complex and 1-1 mappings (and the total num-
ber of mappings) that we created for each taxonomy. The do-
mains and manual mappings will be made available at the
Illinois Semantic Integration Archive
(http://anhai.cs.uiuc.edu/archive).

8.3 Matching Accuracy

For each domain, we applied CGLUE to find semantic map-
pings. For “Course Catalog I”, for example, we applied CGLUE
to find mappings from Washington to Cornell, then from Cor-
nell to Washington. Thus for the three domains we have a total
of six matching scenarios.

Accuracy for Complex Mappings: Figure 8.a shows the
matching accuracies for the six scenarios. These accuracies
were evaluated on complex mappings only, excluding 1-1 map-
pings. Consider the first scenario, W2C (shorthand for “from
Washington to Cornell”), which has four accuracy bars. The
first bar shows the percentage of complex mappings that
CGLUE predicted correctly. Specifically, it says that CGLUE
correctly produced 57% of complex mappings for Washing-

ton (4 out of 7). We will explain the meaning of the remaining
three bars shortly.

For now, focusing on the first accuracy bars of the six
matching scenarios, we can draw several conclusions. First,
CGLUE achieved accuracy 50-57% on half of the matching
scenarios: the W2C and the two S2Y ones. This is significant
considering that each complex mapping involves 4-5 nodes
and yet CGLUE managed to predict these nodes correctly in
more than half of the cases, choosing from a very large pool
of mapping candidates.

Second, CGLUE did not do as well on the remaining
three scenarios, achieving accuracy of 16-27%. Upon close
examination, we found that in each of these scenarios, there
were several “errant” nodes that appeared in numerous pre-
dictions made by CGLUE, thus rendering these predictions
incorrect. For example, in the C2W scenario, the node Greek-
Courses appears in 45% of the complex mappings made by
CGLUE. Such nodes appear to contain very little or vacuous
data, leaving little room for learning techniques to classify
them correctly. We observed that “errant” nodes can be easily
detected by the user from a quick inspection of the mappings
produced by CGLUE. Once detected, they can be removed
and CGLUE can be rerun to produce more accurate map-
pings. Indeed, for the above three matching scenarios, after
detecting “errant” nodes (we currently define these nodes to
be those that appear in more than 40% of the mappings), re-
moving them, and reapplying CGLUE, we obtained accura-
cies of 50-51%, an improvement of 23-29% over the initial
accuracies.

Relaxing the Notion of Correct Matching: While exper-
imenting, we observed that our definition of matching accu-
racy is in fact a pessimistic estimation of the usefulness of
CGLUE. Suppose the correct mapping for node A is A =
(B ∪C ∪D). Then CGLUE may predict A = (B ∪C ∪E),
which we so far have discarded as incorrect. However, often
when CGLUE produces such a mapping, the user can im-
mediately tell (from the names of the nodes) that B and C
should be included in a mapping for A, and that E should be
excluded. Thus, even a partially correct mapping such as the
one above could prove very useful for the user.

To examine the extent to which CGLUE produces par-
tially correct mappings, we consider looser notions of cor-
rectness. Suppose that the correct (manual) mapping for A
is the set of nodes Mc and that CGLUE predicts the set of
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Fig. 8 Matching accuracy of CGLUE.

nodes Mp. We define the precision of this prediction to be
|Mp ∩Mc|/|Mp|, and its recall to be |Mp ∩Mc|/|Mc|. Then
we say that under correctness level t, a predicted mapping is
correct if both of its precision and recall are greater or equal
to t%. We use “PRt” to refer to the matching accuracy that is
computed using correctness level t.

Returning to Figure 8.a, we have discussed the first bar of
each matching scenario, which corresponds to accuracy level
PR100. The remaining three bars of each scenario correspond
to accuracy levels PR75, PR50, and PR25, respectively. As
can be seen, excluding the 50-57% of mappings that CGLUE
predicted correctly (as we discussed earlier), CGLUE also
was partially correct for an overwhelming majority of re-
maining mappings. At PR25, CGLUE was partially correct
for 90-100% of the remaining mappings.

Accuracy for 1-1 Mappings: Since CGLUE can mistak-
enly issue complex-mapping predictions for nodes whose cor-
rect mappings are 1-1, we wanted to know how well CGLUE
makes predictions for such nodes. Figure 8.b shows match-
ing accuracies in a way similar to that of Figure 8.a, except
that here the accuracies are evaluated over the 1-1 mappings.
For example, the first bar of this figure says that out of 32 1-
1 mappings of taxonomy Washington (see Table 3), CGLUE
correctly predicted 25, achieving an accuracy of 78%.

As can be seen from the figure, CGLUE achieves high
accuracy in half of the matching scenarios (W2C and the two
S2Ys), ranging from 50-85%. It achieves lower accuracies of
0-35% in the remaining scenarios. (Though the accuracy 0%
of the last S2Y scenario should be discounted because here
we have only three 1-1 mappings; excluding this scenario
the accuracy is 17-35%.) Again, this low accuracy is largely
due to the fact that several “errant” nodes appear in numer-
ous mappings, rendering them incorrect. Removing these “er-
rant” nodes yields accuracies 46-52%, thus resulting in an
improvement of 17-29%.

Figure 8.b further shows that at PR25 CGLUE achieves
accuracy of 52-84%. By definition, any prediction that CGLUE
makes that is correct at PR25 would contain at most four

nodes and must contain the correct matching node. As such,
the prediction would be useful to the user, because he or
she often could quickly identify the correct matching node.
Thus, the above result is significant because it suggests that
CGLUE could help the user locate the correct node for 52-
84% of the 1-1 mappings.

8.4 Discussion

The above experiments show that with the current simple so-
lution that uses beam search, CGLUE already achieves good
results for both 1-1 and complex matching. These results can
be improved in a variety of ways, one of which is to incorpo-
rate domain constraints. For example, we observed that many
mappings made by CGLUE include semantically unrelated
nodes, such as “Oil-Utilities = Oil-Equipments-Companies
∪ Food-Companies”. Clearly, if we can exploit the con-
straint “concept Oil-Utilities is semantically unrelated to Food-
Companies”, we should be able to “clean” the above map-
ping by removing the node Food-Companies, thus improv-
ing the overall matching accuracy.

We now discuss removing the assumption that the chil-
dren of any taxonomic node are mutually exclusive and ex-
haustive. Without this assumption we must consider the space
of candidates that are built using both union and difference
operators. Our beam-search approach can be extended to han-
dle the difference operator. The only key difficulty is in the
implementation of Step 2.a of the algorithm in Figure 7.

Consider a mapping candidate that is the difference of two
nodes B and C. Step 2.a computes the similarity between
this candidate and the input node A. This can be done only
if we can compute the difference between B and C, which
in turn requires solving the object identification problem: de-
ciding if any two given instances from B and C match. Ob-
ject identification is a long-standing and difficult problem in
databases and AI. We note that this problem is not peculiar
to our approach. Indeed, it appears that any satisfactory so-
lution to complex matching for taxonomies must address this
problem.
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In many specialized cases, the object identification prob-
lem can be solved by exploiting domain regularities. For ex-
ample, in “company profiles” domains we can infer that two
companies match if their urls match. In the “course catalog”
domains two courses match if the sets of their course ids over-
lap. In such cases, our beam-search solution can be imple-
mented without any difficulty.

Finally, we note that CGLUE (and in fact the vast major-
ity of automatic ontology/schema matching tools) only sug-
gests mappings to the user. Developing techniques to help the
user efficiently post-process such suggested mappings to ar-
rive at the final correct mappings would be an interesting and
important topic for future research.

9 Related Work

We now describe related work to GLUE from several per-
spectives.

Ontology Matching: Many works have addressed ontol-
ogy matching in the context of ontology design and integra-
tion (e.g., [Cha00,MFRW00,NM00,MWJ99]). These works
do not deal with explicit notions of similarity. They use a vari-
ety of heuristics to match ontology elements. They do not use
machine learning and do not exploit information in the data
instances. However, many of them [MFRW00,NM00] have
powerful features that allow for efficient user interaction, or
expressive rule languages [Cha00] for specifying mappings.
Such features are important components of a comprehensive
solution to ontology matching, and hence should be added to
GLUE in the future.

Several recent works have attempted to further automate
the ontology matching process. The Anchor-PROMPT sys-
tem [NM01] exploits the general heuristic that paths (in the
taxonomies or ontology graphs) between matching elements
tend to contain other matching elements. The HICAL system
[RHS01] exploits the data instances in the overlap between
the two taxonomies to infer mappings. [LG01] computes the
similarity between two taxonomic nodes based on their sig-
nature TF/IDF vectors, which are computed from the data in-
stances.

Schema Matching: Schemas can be viewed as ontologies
with restricted relationship types. The problem of schema
matching has been studied in the context of data integration
and data translation (e.g., [DR02,BM02,EJX01,CHR97,RS01],
see also [RB01] for a survey). Several works [MZ98,MBR01,
MMGR02] have exploited variations of the general heuristic
“two nodes match if nodes in their neighborhood also match”,
but in an isolated fashion, and not in the same general frame-
work we have in GLUE.

GLUE is related to LSD, our previous work on schema
matching [DDH01]. LSD illustrated the effectiveness of multi-
strategy learning for schema matching. However, it assumes
that we can use a set of manually given mappings on several
sources as training examples for learners that predict map-
pings for subsequent sources. In GLUE since our problem is

to match a pair of ontologies, there are no manual mappings
for training, and we need to obtain the training examples for
the learner automatically. Further, since GLUE deals with a
more expressive formalism (ontologies versus schemas), the
role of constraints is much more important, and we innovate
by using relaxation labeling for this purpose. Finally, LSD
did not consider in depth the semantics of a mapping, as we
do here.

Notions of Similarity: The similarity measure in [RHS01]
is based on κ statistics, and can be thought of as being de-
fined over the joint probability distribution of the concepts in-
volved. In [Lin98] the authors propose an information-theoretic
notion of similarity that is based on the joint distribution.
These works argue for a single best universal similarity mea-
sure, whereas GLUE allows for application-dependent simi-
larity measures.

Ontology Learning: Machine learning has been applied to
other ontology-related tasks, most notably learning to con-
struct ontologies from data and other ontologies, and extract-
ing ontology instances from data [Ome01,MS01,PRV01]. Our
work here provides techniques to help in the ontology con-
struction process [MS01]. [Mae01] gives a comprehensive
summary of the role of machine learning in the Semantic Web
effort.

1-1 and Complex Matching: The vast majority of cur-
rent works focus on finding 1-1 semantic mappings. Sev-
eral works (e.g., [MZ98]) deal with complex matching in the
sense that such matchings are hard-coded into rules. The rules
are systematically tried on the elements of given representa-
tions, and when such a rule fires, the system returns the com-
plex mapping encoded in the rule. The Clio system [MHH00,
YMHF01,PVH+02] creates complex mappings for relational
and XML data. Clio however relies heavily on user interac-
tion and does not use machine learning techniques. Thus, our
work with CGLUE is in a sense complementary to that of
Clio.

10 Conclusion and Future Work

With the proliferation of data sharing applications that in-
volve multiple ontologies, the development of automated tech-
niques for ontology matching will be crucial to their success.
We have described an approach that applies machine learning
techniques to match ontologies. Our approach, as embodied
by the GLUE system, is based on well-founded notions of se-
mantic similarity, expressed in terms of the joint probability
distribution of the concepts involved. We described the use of
machine learning, and in particular, of multi-strategy learn-
ing, for computing concept similarities.

We introduced relaxation labeling to the ontology-matching
context, and showed that it can be adapted to efficiently ex-
ploit a variety of heuristic knowledge and domain-specific
constraints to further improve matching accuracy. Our exper-
iments showed that GLUE can accurately match 66 - 97% of
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the nodes on several real-world domains. Finally, we have ex-
tended GLUE to build CGLUE, a system that finds complex
mappings between ontologies. We described experiments with
CGLUE that show the promise of the approach.

Aside from striving to improve the accuracy of our meth-
ods, our main line of future research involves extending our
techniques to handle more sophisticated mappings between
ontologies, such as those involving attributes and relations.
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