
Learning Source Descriptions for Data Integration

AnHai Doan, Pedro Domingos, Alon Levy
Department of Computer Science and Engineering

University of Washington, Seattle, WA 98195
{anhai, pedrod, alon}@cs.washington.edu

ABSTRACT
To build a data-integration system, the application designer
must specify a mediated schema and supply the descrip-
tions of data sources. A source description contains a source
schema that describes the content of the source, and a map-
ping between the corresponding elements of the source schema
and the mediated schema. Manually constructing these map-
pings is both labor-intensive and error-prone, and has proven
to be a major bottleneck in deploying large-scale data in-
tegration systems in practice. In this paper we report on
our initial work toward automatically learning mappings
between source schemas and the mediated schema. Specif-
ically, we investigate finding one-to-one mappings for the
leaf elements of source schemas. We describe LSD, a sys-
tem that automatically finds such mappings. LSD consults
a set of learner modules – where each module looks at the
problem from a different perspective, then combines the pre-
dictions of the modules using a meta-learner. We report on
experimental results of applying LSD to five sources in the
real-estate domain.

1. INTRODUCTION
The rapid growth of information available online has spurred
numerous research activities on developing data integration
systems (e.g., [4, 8, 5, 7, 6]). A data integration system
provides a uniform interface to a multitude of data sources:
given a user query formulated in this interface, the system
accesses and combines data from the sources to produce an-
swers to the query.

To build a data integration system, the application designer
begins by developing a mediated schema that captures the
relevant aspects of the domain of interest. Along with the
mediated schema, the application designer needs to supply
descriptions of the data sources. A source description spec-
ifies the semantic mapping between the schema of the data
source and the mediated schema.

Constructing source descriptions is one of the key bottle-
necks in creating data integration applications that query a
large number of sources. Currently, source descriptions are
created manually in a very labor-intensive and error-prone
process. As data sharing on the WWW becomes perva-
sive with the adoption of XML, the problem of reconciling
schemas (DTDs, XML schemas) is only exacerbated.

In this paper we report the first results of our work on using
machine learning to (semi-)automatically compute seman-

tic mappings between schemas. The idea underlying our
approach is that after a set of data sources have been man-
ually mapped to a mediated schema, the system should be
able to glean significant information from these mappings
and to successfully propose mappings for subsequent data
sources.

Example 1: Consider a data integration system that helps
users find houses on the real-estate market. A mediated
schema for this domain may contain elements house address,
price, and contact phone, listing the address of a house, the
price, and the phone of the contact person, respectively (see
Figure 1).

Suppose we have a source realestate.com, for which we pro-
vide the source description manually. Specifically, suppose
the source contains the elements house location, listed price,
and agent phone (Figure 1), and the mapping specifies that
these elements match the elements house address, price, and
contact phone of the mediated schema, respectively.

There are several things that a machine learning program
can glean from such a mapping. First, if it looks at the data
in the source, it now has many examples of home addresses,
home prices and phone numbers, and it can therefore cre-
ate recognizers for these elements. Second, the system can
learn by looking at the names of the elements. For exam-
ple, knowing that source element agent phone matches con-
tact phone, it may hypothesize that the word “agent” (as
well as “phone”) in an element name is indicative of that el-
ement being contact phone. The system can also learn from
the properties of the data. For example, small numbers tend
to indicate numbers of rooms, not prices of houses. As an-
other example, when the phone numbers of a given element
have significant commonalities, the phone numbers are more
likely to be the office phones of employees, rather than home
phones. Finally, the program can learn from the proximity
of elements. For example, in the real-estate domain it often
happens that a long text field at the beginning of the house
entry is the house description, or that agent phones tend to
appear next to the name of the real-estate agency.

�

In general, there are many different types of information
that a learner can exploit, such as names, formats, word
frequencies, positions, and characteristics of value distribu-
tion. Clearly, no single learner will be able to exploit effec-
tively all such types of information. Hence, our work takes
a multi-strategy learning approach. We apply a set of learn-

realestate.com

 ...
<house>
 < house_location/> 235 Fairview Ave.
 <listed_price/> $ 250,000
 <agent_phone/> (206) 729 0831
</house>
 ...

house_location listed_price agent_phone

235 Fairview Ave. $ 250,000 (206) 729 0831
...

house_address price contact_phone

the mediated schema

Figure 1: Source realestate.com returns data that is in its local schema, which then needs to be mapped to
the mediated schema of the data integration system.

ers, each of which learns well certain kinds of patterns, and
then the predictions of the learners are combined using a
meta-learner. In addition to providing accuracy superior to
any single learner, this technique has the advantage of being
extensible when new learners are developed.

We describe the LSD (Learning Source Descriptions) system
that we built for testing this approach, and our initial exper-
imental results. The results show that with the current set
of three learners, we already obtain predictive accuracy of
62-75% prediction in a fairly complex domain of real-estate
data sources. Our work currently focuses on finding one-to-
one mappings for the leaf elements of source schemas.

Learning Source Descriptions versus Wrapper Learn-
ing: We emphasize that the learning problem we consider
here is different from the problem of learning wrappers.
Wrappers are programs that convert data coming from a
source (say, in HTML format) into some structured rep-
resentation that a data integration system can manipulate
(e.g., XML). In wrapper learning, the focus is on extract-
ing the structure from the HTML pages. By contrast, here
the focus is on finding the semantic mapping between the
tags/attributes in the data source and those in the mediated
schema. Hence, throughout the discussion we assume that
the data in the source is already given to us in XML.

2. THE SCHEMA-MATCHING PROBLEM
Schema Definition: We model a schema with a tree the
nodes of which are XML tag names. Figure 2 shows a frag-
ment of a mediated schema G and a fragment of a source
schema M. We also refer to the nodes of the schema tree
as schema elements. Each schema element has a name and
values (also called instances). In a schema tree, element B
being a child of element A simply means that an instance
of A may contain an instance of B. For example, in G the
name of the schema element corresponding to the address
of a house is house address, and its instances are text strings
specifying the address, such as “123 Fairview Ave., Seat-
tle, WA 98135” or “4028 13th Str.”. The former string
contains an instance of element city (“Seattle”), while the
latter does not. As such, our schema language can be con-
sidered a simplified version of XML DTD, where parent =
child1?child2?...childn?.

The Schema-Matching Problem: Given a mediated-

schema tree G and a source-schema tree M, both expressed
in the above schema language, in general the schema match-
ing problem is to find some mappings between the two schemas.
The simplest type of mapping is 1-1 mapping between a
node in the source-schema tree and a node in the mediated-
schema tree, such as the mappings shown in Figure 1 and
mentioned in Example 1. More complex types of mapping
include mappings from a node in a tree into several nodes
in the other tree (e.g., num bathrooms in one schema is the
sum of num full bathrooms and num half bathrooms in the
other), and mappings between a node in a schema and the
values of another node in the other schema (e.g., handi-
cap equipped with values “yes/no” in one schema maps into
the value “handicap equipment available” of amenities in an-
other schema).

As the first step, we focus on finding all 1-1 mappings be-
tween the nodes (elements) of the two schema trees. Specifi-
cally, in this paper, we limit our investigations to finding 1-1
mappings for the leaf elements of source schemas. Matching
source-schema elements at higher levels requires developing
learning methods that deal with structures, a topic we are
currently exploring.

3. THE LSD APPROACH
We now explain in detail how our machine-learning approach
works. In our discussion we shall use labels to refer to
mediated-schema elements. We refer to the process of match-
ing a source-schema element as classifying the element and
assigning to it a proper label.

The Learning Phase: Suppose we start with the real-
estate mediated schema G shown in Figure 3.a. We create
training data for the learning process by manually match-
ing schema elements of source P with the elements of the
mediated schema. Figure 3.c shows that source element a

has been matched with mediated-schema element A, and b

matched with B.

Next, we extract a set of house objects from source P. Fig-
ure 3.d shows two extracted house objects in XML. We train
the learners using the extracted data. Each learner tries to
learn the mediated-schema elements A and B, so that when
presented with an element from a new source, the learner
can predict whether it is A, B, or neither.

house

house_location listed_price contact_info

house

house_address price contact_phone

house_number street city state zip_code agent_name agent_phone

(b)(a)

Figure 2: Schema fragments for the real-estate domain: (a) mediated schema, (b) source schema.

Source schema P

house

a b

Mediated schema G

HOUSE

A B

a

b

A

B

<house>
 <a/> a1
 b1
</house>
<house>
 <a/> a2
 b2
</house>

L1 <a1,A>
<b1,B>
<a2,A>
<b2,B>

L2 <a,A>
<b,B>

L3

Extracted data Training data for
 each learner

Matchings

(a) (b) (c)

(d) (e)

Figure 3: The learning phase for LSD.

Even though the goal of all learners is the same, each of
them learns from a different type of information available in
the extracted data. So each learner processes the extracted
data into a different set of training examples. For exam-
ple, learner L1 may deal only with instances, so it extracts
the instances a1, a2, b1, b2 and forms the training exam-
ples shown in Figure 3.e. Example 〈a1, A〉 means that if a
source element contains an instance a1, then that source el-
ement matches A. L1 can form this example because a1 is
an instance of source element a, and we have told it that a

matches A.

As another example, suppose learner L2 deals only with ele-
ment names. Then it forms two training examples as shown
in Figure 3.e. Example 〈a, A〉 means that if element name
is a, then it matches A.

The Classification Phase: Once the learners have been
trained, we are ready to perform schema matching on new
sources. Suppose we would like to classify schema element
m of source Q (Figure 4.a). We begin by extracting a set
of house objects from Q. Figure 4.b shows three extracted
house objects. Next, we consider each house object in turn.
Take the first house object in Figure 4.b. From this house
object we extract and send each learner appropriate infor-
mation about schema element m (Figure 4.c). Since learner
L1 can only deal with instances, we send it instance m1;
since learner L2 can only deal with names, we send it the
name m, and so on.

Each learner will return a prediction list {〈A, s1〉, 〈B, s2〉},
which says that based on the data of the first house object,
it predicts that schema element m matches A with confi-

dence score s1, and matches B1 with score s2. The higher
the confidence score, the more certain the learner is in its
prediction.

A meta learner then combines the predictions of all learners
to form a final prediction (Figure 4.d). For example, the
meta learner may predict A, which means that based only
on data of the first house object, the learners, combined,
think that m matches A.

We proceed in a similar manner for subsequent house ob-
jects. At the end of this process, we have obtained a predic-
tion list for m that contain one prediction per house object
(Figure 4.e). A prediction combiner then uses the list to
predict a final matching result for element m. For example,
the list shown in Figure 4.e is {A, A, B}. Based on this list,
the prediction combiner may decide that m best matches A

(Figure 4.f).

The Learners: In principle, any learner that can issue
label predictions weighted by confidence score can be used.
The current implementation of LSD has four modules: a
nearest neighbor Whirl learner, a Naive Bayesian learner, a
name matcher, and a county-name recognizer.

The Whirl Learner classifies an input instance based on
the labels of its nearest neighbors in the training set [2]. It
uses the TF/IDF similarity measure commonly employed in
information retrieval. Whirl performs best on schema ele-
ments whose values are verbose and textual , such as house
descriptions (free-text paragraphs), or limited but uniquely
indicative of the type of the element, such as color (red,
green, yellow, etc).

L2

Lk

L1

Learners

Meta Learner

 A
 A
 B

Prediction CombinerA

prediction lists

(b)

corresponding global element

Source schema Q

item

m p

(b)

<item>
 <m/> m1
 <n/> n1
 <p/> p1
</item>
<item>
 <m/> m2
 <n/> n2
 <p/> p2
</item>
<item>
 <m/> m3
 <n/> n3
 <p/> p3
</item>

prediction
for each object

(c)

(d)

(e)

(f)

n

Figure 4: The classification phase for LSD.

The Naive Bayesian Learner exploits word frequencies
[3], and works best when there are words that are strongly
indicative of the correct label, by the virtue of their frequen-
cies. For example, it works for house descriptions which fre-
quently contain words such as “beautiful” and “fantastic” –
words that seldom appear in other elements. It also works
well when there are only weakly suggestive words, but many
of them. It does not work well for short or numeric fields,
such as color, zip code, or number of bathrooms.

The Name Matcher matches schema elements based on
the similarity of their names, allowing synonyms. It also
uses the TF/IDF similarity measure. This learner works
well on unambiguous names (e.g., price or house location),
and fails on names that are either ambiguous (e.g., office to
indicate office phone) or too general (e.g., item).

The County-Name Recognizer searches a database pulled
from the Web to verify if an instance is a county name. This
module illustrates how recognizers with a narrow and spe-
cific area of expertise can be incorporated into our system.

The Meta Learner: The meta learner combines the pre-
dictions of the base-level learners using a machine learning
method called stacking [14, 13]. In LSD, the meta learner is
a linear discriminant machine. It uses the training data to
learn for each combination of label and base-level learner a
weight that indicates the relative importance of that learner
for that label. Details of this learning process can be found
in [13].

Then given an input instance, for each label the meta learner
computes the weighted sum of the confidence scores that the
base-level learners give for that label. It assigns the label
with the highest weighted sum to the input instance.

The Prediction Combiner: This module uses the fol-
lowing simple heuristic to assign label to a source-schema
element Q: Let T be the set of instances of Q that have
been labeled. Suppose the label associated with the highest

number of instances in T is L1, and the label with the next
highest number of instances is L2. If L1 is the label of at
least p% of instances in T, and |L1 −L2| ≥ q, where p and q

are prespecified thresholds, then assign label L1 to Q. Oth-
erwise, report failure to assign label to Q. This heuristic is
similar to the heuristic used in [12] for the same purpose.

4. EXPERIMENTS
We have carried out preliminary experiments to evaluate the
feasibility of our approach. We tested LSD on five real-estate
sources that list houses for sale. Figure 5 shows the sources
and their characteristics. These sources have a broad range
of schema elements, from short ones such as num bathrooms
(numeric values) to very long ones such as house description
(free-text paragraphs). They contain elements of special
formats, such as phone number and email, as well as ele-
ments whose successful classification requires knowledge be-
yond what is available in the schema and data. Finally, they
also contain elements that do not have 1-1 matchings in the
mediated schema. In short, these five real-estate sources
present a challenging test domain for schema-matching al-
gorithms.

We started by extracting 300 house objects from each source.
Next we performed ten experiments, in each of which we
picked three sources for training and two sources for testing.
The system is trained on data from the training sources, and
tested on data from the remaining sources.

The last two columns of Figure 5 show the average accuracy
rate for each source. For example the numbers 24/31 in
the first row means that on average the system correctly
classified 24 out of 31 classifiable leaf elements of source
realestate.yahoo. (An element is classifiable if it has an 1-1
matching in the mediated schema.) This corresponds to a
77% classification accuracy.

The results show that LSD performed quite well on the five
sources, with accuracies ranging from low 60% to high 70%.
It is important to emphasize that 100% accuracy is unlikely
to be reached, simply because it is difficult even for humans

Sources Coverage
#

elem
s

leaf
elems

class.
elems

Min-
max

Heavy
textual

Numeric
Spe
cial

Domain
Know.

Avg.
Accuracy

Per
cent

realestate.yahoo national 31 31 31 1 – 152 3 6 10 0 24/31 77%

homeseekers.
com

national 33 31 31 1 – 138 2 5 8 0 20/31 64%

nkymls.com
Northern
Kentucky

82 64 28 1 – 56 2 6 6 0 21/28 75%

texasproperties.
com

Texas 56 52 42 1 – 110 2 10 14 4 26/42 62%

windermere.com Northwest 39 35 35 1 – 87 3 4 8 1 22/35 63%

Figure 5: The characteristics and average classification accuracies of the five real-estate sources: # elems: number of source-

schema elements; # leaf elems: number of leaf elements; # class. elems: number of leaf elements that are classifiable, i.e., having

matching mediated-schema elements; Min-max: the minimal and maximal length of element instances, measured in words; Heavy

textual: number of classifiable elements that are heavily textual; Numeric: number of classifiable elements that are numeric; Special:

number of classifiable elements that have special format (such as phone number); Domain Know.: number of classifiable elements

that require domain knowledge to be successfully classified; Avg. Accuracy: number of correctly classified leaf elements/number

of classifiable leaf elements; Percent: average accuracy, in terms of percentage.

to reach that accuracy level. So the questions we consider
now are (a) how much higher accuracy we can obtain, and
(b) how to achieve that degree of accuracy.

To answer these questions, we are currently identifying rea-
sons that prevent LSD from correctly matching the remain-
ing 30-40% of the elements, and considering extensions to
help obtain higher accuracy. A major reason that causes
LSD to fail on some elements is unfamiliarity with that el-
ement type. For example, LSD could not match element
suburb because it has never seen the word “suburb” in the
name of an element before, nor did it recognize the instances
of this element to be the names of the suburbs. This prob-
lem could be handled by adding more recognizers. LSD also
did not do very well where there are only subtle or sub-
jective distinctions, or no clear boundary among elements.
For example, it failed to distinguish between lot descrip-
tion and house description (both free-text paragraphs). A
quick fix to this is to concatenate all the instances of an ele-
ment together to form a mega document, then classify mega
documents instead of individual instances. We believe that
concatenating instances may amplify the subtle distinction
among elements to the extent that the current learners can
distinguish them.

5. RELATED WORK
Work on (partially) automating the schema matching pro-
cess can be classified into rule-based and learner-based ap-
proaches. Works in the rule-based approach include [10, 11,
1]. The Transcm system [10] performs matching based on
the name and structure of schema elements. Both schemas
M and G are represented with tree structures with labeled
nodes, a node X in M matches a node Y in G if X la-
bel matches Y label (allowing synonymous labels) and/or
certain child nodes of X also match certain child nodes of
Y. Therefore, in the case node X of M is a leaf element,
Transcm’s work amounts to using only the name matcher to
match X. The Artemis system [1] uses names, structures, as
well as domain types of schema elements to match schemas.
In general, existing rule-based systems utilize only informa-
tion inherent in the schemas, whereas our approach exploits

both schemas and data (i.e., values of schema elements), to
perform matching.

Works in the learner-based approach include [9, 12]. The
Semint system [9] uses a neural-net learner. The ILA sys-
tem [12] matches schemas based on comparing objects that
it knows to be the same in both the source and the medi-
ated schema. Both ILA and Semint employ a single type of
learner and therefore have limited applicability. For exam-
ple, ILA works only if sources share some objects and these
objects can be identified. Object identification cannot be
done effectively in the real-estate domain, where many bro-
kerage firms go to great length to conceal house identity (by
giving only a partial house address) to avoid being left out
of the process. Another example is that the neural net of
Semint cannot deal effectively with textual elements. How-
ever, we note that learners that have been studied by works
in this approach can be easily incorporated into our system.
In fact, in the next version of LSD we intend to add the
object-based learner of ILA.

6. CONCLUSIONS AND FUTURE WORK
We aim to build data integration systems that can explore
the Web, find relevant sources, add them to the systems, and
automatically learn their descriptions. Towards this end,
we have built LSD, a prototype system that uses machine
learning to automatically match source schemas with the
mediated schema. LSD employs a diverse range of learners
each of which draws knowledge from a different source. As
such, LSD can easily incorporate the previous approaches,
and provides a broader range of applicability. We applied
LSD to five sources in the real-estate domain. The exper-
imental results demonstrate the feasibility and promise of
our approach.

In this paper we have focused on finding 1-1 mappings for
the leaf elements of source schemas. In the near future we
would like to explore a range of learning issues. We plan
to continue working on improving LSD’s classification accu-
racy. We want to add more learners to LSD and develop
new methods to combine the learners effectively. We are

also interested in learning recognizers with narrow areas of
expertise, which can be applied to many domains. We plan
to investigate the impact of such recognizers on classification
accuracy.

Next, we plan to work on incorporating domain knowledge
such as semantic integrity constraints into the learning pro-
cess. Real-world domains usually contain considerable amount
of nested structure among elements. It is very important
that we develop techniques to exploit such structure, so
that we can effectively match elements higher up in source-
schema trees. Finally, we shall also look at learning match-
ings that are more complex than 1-1 matchings, and consider
extensions to the mediated schema. In particular, mediated-
schema elements usually form a natural hierarchy of con-
cepts. We would like to investigate how to exploit such
hierarchies to improve learning.

7. ACKNOWLEDGMENTS
This work is supported in part by ARPA/Rome Labs Grant
F30602–95–1–0024, NSF grant IRI–9523649, NSF grant IIS-
9978567, and a Sloan fellowship.

8. REFERENCES
[1] S. Castano and V. D. Antonellis. A schema analysis

and reconciliation tool environment for heterogeneous
databases. In Proc. of the Int. Database Engineering
and Applications Symposium (IDEAS-99), pages
53–62.

[2] W. W. Cohen and H. Hirsh. Joins that generalize:
Text classification using whirl. In Proc. of the Fourth
Int. Conf. on Knowledge Discovery and Data Mining
(KDD-98), 1998.

[3] P. Domingos and M. Pazzani. Beyond independence:
Conditions for the optimality of the simple Bayesian
classifier. In Proceedings of the Thirteenth
International Conference on Machine Learning, pages
105–112, Bari, Italy, 1996. Morgan Kaufmann.

[4] H. Garcia-Molina, Y. Papakonstantinou, D. Quass,
A. Rajaraman, Y. Sagiv, J. Ullman, and J. Widom.
The TSIMMIS project: Integration of heterogeneous
information sources. Journal of Intelligent
Information Systems, 8(2):117–132, 1997.

[5] Z. G. Ives, D. Florescu, M. A. Friedman, A. Y. Levy,
and D. S. Weld. An adaptive query execution system
for data integration. In Proc. of ACM SIGMOD Int.
Conf. on Management of Data (SIGMOD), pages
299–310. ACM Press, 1999.

[6] C. Knoblock, S. Minton, J. Ambite, N. Ashish,
P. Modi, I. Muslea, A. Philpot, and S. Tejada.
Modeling web sources for information integration. In
Proc. of the National Conference on Artificial
Intelligence (AAAI), 1998.

[7] E. Lambrecht, S. Kambhampati, and
S. Gnanaprakasam. Optimizing recursive information
gathering plans. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI),
1999.

[8] A. Y. Levy, A. Rajaraman, and J. Ordille. Querying
heterogeneous information sources using source
descriptions. In Proc. of the Int. Conf. on Very Large
Data Bases (VLDB), pages 251–262, 1996.

[9] W.-S. Li and C. Clifton. Semantic integration in
heterogeneous databases using neural networks. In
J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Proc.
of the 20th Int. Conf. on Very Large Data Bases
(VLDB-94), pages 1–12, 1994.

[10] T. Milo and S. Zohar. Using schema matching to
simplify heterogeneous data translation. In Proc. of
the 24th Int. Conf. on Very Large Data Bases
(VLDB-98), pages 122–133, 24–27 Aug. 1998.

[11] L. Palopoli, D. Sacca, and D. Ursino. Semi-automatic,
semantic discovery of properties from database
schemes. In Proc. of the Int. Database Engineering and
Applications Symposium (IDEAS-98), pages 244–253.

[12] M. Perkowitz and O. Etzioni. Category translation:
Learning to understand information on the Internet.
In Proc. of IJCAI-95, pages 930–936, 1995.

[13] K. M. Ting and I. H. Witten. Issues in stacked
generalization. Journal of Artificial Intelligence
Research, 10:271–289, 1999.

[14] D. Wolpert. Stacked generalization. Neural Networks,
5:241–259, 1992.

