
Tensor Logic
The Language of AI

Pedro Domingos
University of Washington

Fields Take Off When They Find Their Language

• Physics: Calculus

• Electrical engineering: Complex numbers

• Digital circuits: Boolean logic

• Chip design: HDLs

• Networking: Internet Protocol

• Web: HTML

• Databases: Relational algebra

• Computer science: High-level languages

• Etc.

What a Field’s Language Does

• Saves time

• Makes key things obvious

• Focuses attention

• Decreases entropy

• Avoids hacking

• Unites the field

• Changes how people think

Has AI Found Its Language?

• LISP, Prolog?

• Graphical models?

• Markov logic networks?

• Python?

• NumPy, PyTorch, TensorFlow, Keras, JAX, etc.?

• Neurosymbolic AI?

What Should the Language of AI Do?

• Hide everything that’s not AI

• Easily incorporate knowledge

• Reason automatically

• Learn automatically

• Make models transparent

• Ensure reliability

• Scale effortlessly

What Should the Language of AI Do?

• Hide everything that’s not AI

• Easily incorporate knowledge

• Reason automatically

• Learn automatically

• Make models transparent

• Ensure reliability

• Scale effortlessly

Symbolic AI

Deep Learning

Tensor Logic = Tensor Algebra + Logic Programming

Symbolic AIDeep Learning

Logic Programming

• Logic program = Rules + Facts

• Fact: Relation(Object1, ... , Objectk)

E.g.: Parent(Bob,Chris), Ancestor(Alice,Bob)

• Rule: Head :- Body

Or: Consequent :- Antecedent1, … , Antecedentn

E.g.: Ancestor(x,y) :- Parent(x,y)

Ancestor(x,z) :- Ancestor(x,y),Parent(y,z)

• Prolog: arguments may be constants, variables or functions

• Datalog: no functions

• In database terms, a rule is a series of joins followed by a projection

• The join of relations R and S is the set of all tuples formed from tuples in R
and S having the same values of the same arguments

E.g.:

• The projection of a relation R onto a subset G of its arguments is the relation
obtained by discarding all arguments of R not in G

E.g:

The Database View

x y

Alice Bob

Alice Ed

y z

Bob Chris

Bob Dan

x y z

Alice Bob Chris

Alice Bob Dan

x y z

Alice Bob Chris

Alice Bob Dan

x z

Alice Chris

Alice Dan

x, z

Inference in Logic Programming

• Forward chaining:
Repeatedly apply all rules until no new facts can be inferred

• Backward chaining:
Given query, check if it’s a fact
If not, find rule(s) with head = query & repeat with their bodies

• E.g.: Query: Ancestor(Alice,Chris)?

Answer: True

• E.g. Query: Ancestor(Alice,x)?

Answer: {Bob,Chris}

Inductive Logic Programming

• Input: Database

• Output: Logic program

• Inverse deduction: What rules would allow inferring target predicate
from evidence?

• Search: greedy, beam, etc.

• Objective: accuracy, information gain, simplicity, etc.

• Prior knowledge is easy to incorporate

• Declarative bias: predefined form for rules, etc.

• Predicate invention: discovering hidden relations

Tensor Algebra

• Neural networks = Tensor algebra + Univariate nonlinearities

• A tensor is defined by its type (real, integer, Boolean, etc.)
and shape (#indices and #elements along each index)

• Tensor sum: 𝐶𝑖𝑗𝑘… = 𝐴𝑖𝑗𝑘… + 𝐵𝑖𝑗𝑘…

• Tensor product: 𝐶𝑖𝑗𝑘…𝑖′𝑗′𝑘′… = 𝐴𝑖𝑗𝑘… 𝐵𝑖′𝑗′𝑘′…

• Other operations: elementwise product, tensor contraction,
operations on matrices and vectors, etc.

Einstein Summation (Einsum)

• All these operations are special cases of Einstein summation

• Einstein notation: omit all summation signs and sum over all repeated
indices

• E.g., matrix multiplication: 𝐴 𝐵 = σ𝑗 𝐴𝑖𝑗 𝐵𝑗𝑘 = 𝐴𝑖𝑗 𝐵𝑗𝑘

• So neural networks = Einsum + Univariate nonlinearities

• Implemented in NumPy, PyTorch, TensorFlow, etc.

Tensor Decompositions

• Singular value decomposition: 𝑀𝑖𝑗 = 𝐴𝑖𝑝 𝐵𝑗𝑞 𝑆𝑝𝑞

• Tucker decomposition: 𝑇𝑖𝑗𝑘… = 𝐴𝑖𝑝 𝐵𝑗𝑞 𝐶𝑘𝑟 . . . 𝑆𝑝𝑞𝑟…

T S

Core
tensor

Factor
matricesData tensor

First Key Idea

• Q: What is the relation between tensors and relations?

• A: A relation is a compact representation of a sparse Boolean tensor

0 1 0 0

0 0 1 1

0 0 0 0

0 0 0 0

Alice

Bob

Chris

Dan

Alice Bob

Bob Chris

Bob Dan

Second Key Idea

• Q: What is the relation between rules and einsums?

• A: Rules are einsums over Boolean tensors, with a step function
as the nonlinearity

Aunt(x,z) :- Sister(x,y),Parent(y,z)

Aunt[x,z] = step(Sister[x,y] Parent[y,z])

Prolog

Einsum

Tensor Logic

𝐴𝑥𝑧 = 𝐻(𝑆𝑥𝑦 𝑃𝑦𝑧)

Tensor Logic

• Tensor projection: 𝜋𝛼(𝑇) = σ𝛽 𝑇𝛼𝛽

• Tensor join: 𝑈 ⋈ 𝑉 𝛼𝛽𝛾 = 𝑈𝛼𝛽 𝑉β𝛾

• A tensor equation is:
• A series of tensor joins

• Followed by a tensor projection onto the LHS indices

• Optionally followed by a univariate nonlinearity, applied elementwise

• A tensor logic program is a set of tensor equations

• Tensor elements are 0 by default

• Equations with same LHS are summed

• Tensor types and shapes may be declared or inferred

Tensor0 = f(Tensor1 … Tensorn)

Syntactic Sugar

• Multiple terms in one equation: Y = step(W[i] X[i] + C)

• Index functions: X[i,t+1] = W[i,j] X[j,t]

• Normalization: Y[i] = softmax(X[i])

• Other tensor functions: Y[k] = concat(X[i,j])

• Alternate aggregations: +=, max=, avg=

• Procedural attachment

• Prolog syntax

• Etc.

Neural Networks in Tensor Logic

• Perceptron (complete program):
Y = step(W[i]X[i])

W = [0.2,1.9, -0.7,3]

X = [0,1,1,0] (or: X(1),X(2))
Y?

• Multilayer perceptron:

X[i,j] = sig(W[i,j,k] X[i-1,k])

• Recurrent neural network:

X[i,t+1] = sig(W[i,j]X[j,t] + V[i,j]U[j,t])

Tensor Logic Is Turing-Complete

• RNNs are Turing-complete (Siegelmann & Sontag, 1995)

• RNNs can be implemented in tensor logic

• Therefore tensor logic is Turing-complete

• But Datalog is not

• Kolmogorov-Arnold representation theorem:
Every multivariate function is a sum of univariate ones

• Prolog puts functions inside predicates,
tensor logic puts them outside

Inference

• Forward chaining (cf. Datalog, Rete):
• Treat program as linear code

• At each step compute tensor elements whose inputs are available

• Repeat until no new elements can be computed

• Backward chaining (cf. Prolog):
• Treat each tensor equation as a function

• Query is top-level call

• Recurse until query is answered

• Best choice depends on application

Learning

• Gradients via tensor equations:

𝑦 = 𝑎𝑥 ⇒
𝑑𝑦

𝑑𝑥
= 𝑎 𝑌𝑖𝑗 = 𝑀𝑖𝑘𝑋𝑘𝑗 ⇒

𝜕𝑌𝑖𝑗

𝜕𝑀𝑖𝑘
= 𝑋𝑘𝑗

𝑌 = 𝑊𝑖𝑋𝑖 ⇒
𝑑𝑌

𝑑𝑊𝑖
= 𝑋𝑖 𝑌… = 𝑇…𝑋

1
… 𝑋

2
… . . . 𝑋𝑛… ⇒

𝜕𝑌…

𝜕𝑇…
= 𝑋1…𝑋

2
… . . . 𝑋

𝑛
…

• The gradient of a tensor logic program is a tensor logic program:

• Backpropagation through structure

• Predicate invention by Tucker decomposition

• Split tensors into constant, data and learnable

𝜕𝐿𝑜𝑠𝑠

𝜕𝑇
= ෍

𝑅𝐻𝑆 ∋ 𝑇

𝜕𝐿𝑜𝑠𝑠

𝜕𝐿𝐻𝑆

𝜕𝐿𝐻𝑆

𝜕𝑅𝐻𝑆
ෑ

𝑋 ∈ 𝑅𝐻𝑆 ∖ T

𝑋

Convnets in Tensor Logic

• Convolutional layer:

Features[x,y] = relu(Filter[dx,dy,ch] Image[x+dx,y+dy,ch])

• Sum-pooling layer:

Pooled[x/S,y/S] = Features[x,y]

Graph Neural Networks in Tensor Logic

• Graph: Neig(Alice,Bob), Neig(Bob,Chris), etc.

• Initialization: Emb[n,0,d] = X[n,d] (node, layer, dimension)

• MLP: Z[n,l,d’] = relu(WP[l,d’,d] Emb[n,l,d]) , etc.

• Aggregation: Agg[n,l,d] = Neig(n,n’) Z[n’,l,d’]

• Update: Emb[n,l+1,d] = relu(WAgg Agg[n,l,d] + WSelf Z[n,l,d])

• Node classification: Y[n] = sig(WOut[d] Emb[n,L,d])

• Edge prediction: Y[n,n’] = sig(Emb[n,L,d] Emb[n’,L,d])

• Graph classification: Y = sig(WOut[d] Emb[n,L,d])

Attention in Tensor Logic

Query[p,dk] = WQ[dk,d] X[p,d]

Key[p,dk] = WK[dk,d] X[p,d]

Val[p,dv] = WV[dv,d] X[p,d]

Comp[p,p’.] = softmax(Query[p,dk] Key[p’,dk] / sqrt(Dk))

Attn[p,dv] = Comp[p,p’]Val[p’,dv]

Transformers in Tensor Logic
• Input: X(p,t)

• Embedding: XE[p,d] = X(p,t)Emb[t,d]

• Positional encoding:

PE[p,d] = Even(d)sin(p/ (L^(d/De)))+Odd(d)cos(p/(L^((d-1)/De)))

• Residual stream: Stream[0,p,d] = XE[p,d]+PE[p,d]

• Attention:

Query[b,h,p,dk] = WQ[b,h,dk,d]Stream[b,p,d], etc.

Comp[b,h,p,p’.] = softmax(Query[b,h,p,dk]Key[b,h,p’,dk]/sqrt(Dk))

Attn[b,h,p,dv] = Comp[b,h,p,p’]Val[b,h,p’,dv]

• Merge and layer norm:

Merge[b,p,dm] = concat(Attn[b,h,p,dv])

Stream[b,p,d.] = norm(WS[b,d,dm]Merge[b,p,dm]+Stream[b,p,d])

• MLP: MLP[b,p,d’] = relu(WP[b,p,d’,d]Stream[b,p,d]), etc.

• Output: Y[p,t.] = softmax(WO[t,d] Stream[B,p,d])

Symbolic AI in Tensor Logic

Just write it in Prolog.

Embedded Databases

• Embedding objects: Emb[obj,dim]

• Embedding relations: EmbRel[i,j] = Rel(x,y)Emb[i,x]Emb[j,y]

• This is a Tucker decomposition of the relation

• EmbRel is the core tensor of Rel

• Can be constructed in O(#tuples) time

• Relation symbols can also be embedded

• Reified database: DB(r,x,y)

• Embedded database:

EmbDB[h,i,j] = DB(r,x,y)Emb[h,r]Emb[i,x]Emb[j,y]

• To embed a rule, replace antecedents & consequent by their embeddings:
EmbCons[…] = EmbAnt1[…]EmbAnt2[…] ...EmbAntn[…]

• All reasoning can be done in embedding space:
1. Embed query and evidence
2. Reason with embedded rules
3. Extract answer

• Works because einsum factors are commutative and associative:
(Rel(x,y) Emb[i,x] Emb[j,y])Emb[i,x’] Emb[j,y’] ≈ Rel(x’,y’), etc.

• Combines symbolic and analogical reasoning Embeddings are random unit vectors

• Similarity of two objects = Dot product of their embeddings
• Transparent and reliable

Embedded Knowledge Bases and Reasoning

Kernel Machines in Tensor Logic

• Kernel machine: Y[Q] = f(A[i] Y[i] K[Q,i] + B)

• Polynomial kernel: K[i,i’] = (X[i,j] X[i’,j])^n

• Gaussian kernel: K[i,i’] = exp(-(X[i,j] - X[i’,j])^2 / Var)

• Structured prediction: Y[Q,n]

Graphical Models in Tensor Logic

• To encode a Bayes net, add an equation for each variable V:
Pr[var] = CondPr[var,par1,...,parn]Pr[par1]...Pr[parn]

• Sum-product theorem (Friesen & Domingos, 2016):
No tensor appears in more than one RHS
⇒ Tensor logic program computes correct probabilities in linear time

• Otherwise: forward chaining = belief propagation (or sample paths, etc.)

Graphical Models Tensor Logic

Potential Tensor

Marginalization Projection

Pointwise product Join

Join tree Tree-like program

Pr(Query | Evidence) Prog(Q,E) / Prog(E)

Beyond AI

• Science: tensor logic minimizes distance from equations to code

• Scientific computing is tensor operations wrapped in logic

• To make the logic learnable, use tensor logic

• To make anything learnable, write it in tensor logic

Scaling Up

• Option 1: Separation of concerns
• Dense subtensors: GPUs

• Sparse subtensors: database query engines, etc.

• Option 2: All on GPUs via Tucker decomposition
• Exponential efficiency gains

• Bounded error probability

• Dovetails with embedding and learning

Driving Adoption

• AI is no longer a niche → Ride the wave

• Backward compatibility with Python

• Cure the big pains (e.g., hallucinations)

• Killer apps (e.g., reasoning models, code, math)

• IDEs for coding, data wrangling, modeling, evaluation, etc.

• Open source community

• Vendor competition

• Education

Next Steps

• CUDA implementation

• Applications

• Libraries

• Extensions

• New research directions

Summary

• One language for all of AI

• Tensor logic program = Set of tensor equations

• Tensor equation = Numeric Datalog rule = Einsum

• Reasoning and learning out of the box

• Transparent and reliable

• Don’t leave home without it

tensor-logic.org

