Tensor Logic
The Language of Al

Pedro Domingos
University of Washington

Fields Take Off When They Find Their Language

* Physics: Calculus

* Electrical engineering: Complex numbers
* Digital circuits: Boolean logic

* Chip design: HDLs

* Networking: Internet Protocol

* Web: HTML

e Databases: Relational algebra
 Computer science: High-level languages
* Etc.

What a Field’s Language Does

* Saves time

* Makes key things obvious
* Focuses attention

* Decreases entropy

* Avoids hacking

* Unites the field

* Changes how people think

Has Al Found Its Language?

* LISP, Prolog?

* Graphical models?

* Markov logic networks?

* Python?

* NumPy, PyTorch, TensorFlow, Keras, JAX, etc.?
* Neurosymbolic Al?

What Should the Language of Al Do?

* Hide everything that’s not Al
* Easily incorporate knowledge
e Reason automatically

e Learn automatically

* Make models transparent

* Ensure reliability

* Scale effortlessly

What Should the Language of Al Do?

* Hide everything that’s not Al
e Easily incorporate knowledge

* Reason automatically Symbolic Al

e Learn automatically
* Make models transparent

* Ensure reliability

* Scale effortlessly

Tensor Logic = Tensor Algebra + Logic Programming

l l

Deep Learning Symbolic Al

Logic Programming

* Logic program = Rules + Facts
* Fact: Relation(Object,, ..., Object,)

E.g.: Parent(Bob,Chris), Ancestor(Alice,Bob)
* Rule: Head :- Body

Or: Consequent :- Antecedent,, ..., Antecedent,

E.g2.: Ancestor(x,y) :- Parent(x,y)

Ancestor(x,z) :- Ancestor(x,y),Parent(y,z)

* Prolog: arguments may be constants, variables or functions
* Datalog: no functions

The Database View

* |n database terms, a rule is a series of joins followed by a projection

* The join of relations R and S is the set of all tuples formed from tuples in R

and S having the same values of the same arguments

E.g.:

* The projection of a relation R onto a subset G of its arguments is the relation
obtained by discarding all arguments of R not in G

E.g:

X y
Alice | Bob
Alice Ed

y Z
Bob Chris
Bob Dan

X y Z
Alice | Bob | Chris
Alice | Bob Dan

X, Z

=)

=

X y Z
Alice Bob Chris
Alice Bob Dan

X

Alice

Chris

Alice

Dan

Inference in Logic Programming

* Forward chaining:
Repeatedly apply all rules until no new facts can be inferred

* Backward chaining:
Given query, check if it’s a fact
If not, find rule(s) with head = query & repeat with their bodies

* E.g.: Query: Ancestor(Alice,Chris)?
Answer: True

* E.g. Query: Ancestor(Alice,x)?
Answer: {Bob,Chris}

Inductive Logic Programming

* Input: Database
* Output: Logic program

* Inverse deduction: What rules would allow inferring target predicate
from evidence?

e Search: greedy, beam, etc.

* Objective: accuracy, information gain, simplicity, etc.
* Prior knowledge is easy to incorporate

* Declarative bias: predefined form for rules, etc.

* Predicate invention: discovering hidden relations

Tensor Algebra

* Neural networks = Tensor algebra + Univariate nonlinearities

* A tensor is defined by its type (real, integer, Boolean, etc.)
and shape (#indices and #elements along each index)

* Tensorsum: (= Ajji. + Bijk..
* Tensor product: C;jp /1. = Agji. Birjrr .

e Other operations: elementwise product, tensor contraction,
operations on matrices and vectors, etc.

Einstein Summation (Einsum)

* All these operations are special cases of Einstein summation

* Einstein notation: omit all summation signs and sum over all repeated
indices

* E.g., matrix multiplication: A B =); A;; Bjx = A;j Bjk
* So neural networks = Einsum + Univariate nonlinearities
* Implemented in NumPy, PyTorch, TensorFlow, etc.

Tensor Decompositions

* Singular value decomposition: M;; = Ay, Bjg Spq

* Tucker decomposition: Tijx. = Aip Bjg Crr - Spgr... Factor

Data tensor ﬂ «—— mMmatrices

Core
tensor

0
>

1

First Key Idea

* Q: What is the relation between tensors and relations?
* A: Arelation is a compact representation of a sparse Boolean tensor

Q X2
Fef

Alice |0 1]0]0
Alice Bob
Bob | 0| 0|11 .
» Bob Chris
Chris |0 0]0]|0 Bob Dan

Dan |0 0[0|O0

Second Key Idea

e Q: What is the relation between rules and einsums?

* A: Rules are einsums over Boolean tensors, with a step function
as the nonlinearity

Aunt(x,z) :- Sister(x,y), Parent(y,z) <— Prolog
Ay, =H(Sxy B,;) <— Einsum

Aunt([x,z] = step(Sister[x,y] Parent[y,z]) <— Tensor Logic

Tensor Logic

* Tensor projection: ,(T) = ZB Tap
* Tensor join: (U X V),p, = Uyp Vp,

* A tensor equation is:
* A series of tensor joins
* Followed by a tensor projection onto the LHS indices
* Optionally followed by a univariate nonlinearity, applied elementwise

Tensor, = f(Tensor, ... Tensor,)

* A tensor logic program is a set of tensor equations

* Tensor elements are 0 by default

* Equations with same LHS are summed

* Tensor types and shapes may be declared or inferred

Syntactic Sugar

* Multiple terms in one equation: Y = step(WI[i] X[i]+C)
* Index functions: X[it+1] = W[i,j] X[j,t]
 Normalization: Y[i] = softmax(X[i])

e Other tensor functions: Y[k] = concat(X[i,j])

* Alternate aggregations: +=, max=, avg=

* Procedural attachment

* Prolog syntax

* Etc.

Neural Networks in Tensor Logic

* Perceptron (complete program):
Y = step(WI[i] X]i])
W =[0.2,1.9,-0.7, 3]
X=1[0,1,1,0] (or: X(1),X(2))
Y?
* Multilayer perceptron:
X[i,j] = sig(W[i,j,k] X[i-1,k])
e Recurrent neural network:
X[i,t+1] = sig(W[i,jI X[j,t] + VI[i,j] U[j,t])

Tensor Logic Is Turing-Complete

* RNNs are Turing-complete (Siegelmann & Sontag, 1995)
* RNNs can be implemented in tensor logic

* Therefore tensor logic is Turing-complete

e But Datalog is not

e Kolmogorov-Arnold representation theorem:
Every multivariate function is a sum of univariate ones

* Prolog puts functions inside predicates, Tape of infinite length

A
tensor logic puts them outside (

B Xl X5 X2

o)

Tape Symbols N\ ~_ R/W head

Finite
Control

Inference

* Forward chaining (cf. Datalog, Rete):

* Treat program as linear code
* At each step compute tensor elements whose inputs are available
* Repeat until no new elements can be computed

* Backward chaining (cf. Prolog):
* Treat each tensor equation as a function
* Query is top-level call
e Recurse until query is answered

* Best choice depends on application

Learning

* Gradients via tensor equations:

dy dY;;
y=ax = Ed: a Yij = My Xy; = aMlL = ijay
Y=WwJX; =—-=4% Y. =T X' X ...Xn_ = ——==X X2 ..

* The gradient of a tensor logic program is a tensor logic program:

dLoss B dLoss OLHS 1—[¥

oT JLHS ORHS
RHSST {X€RHS}\T

* Backpropagation through structure
* Predicate invention by Tucker decomposition
 Split tensors into constant, data and learnable

Convnets in Tensor Logic

* Convolutional layer:
Features[x,y] = relu(Filter[dx,dy,ch] Image[x+dx,y+dy,ch])

* Sum-pooling layer:
Pooled[x/S,y/S] = Features[x,y]

Graph Neural Networks in Tensor Logic

* Graph: Neig(Alice,Bob), Neig(Bob,Chris), etc.

* Initialization: Emb[n,0,d] = X[n,d] (node, layer, dimension)
* MLP: Z[n,l,d’'] = relu(W,[l,d’,d] Emb[n,I,d]) , etc.

* Aggregation: Agg[n,l,d] = Neig(n,n’) Z[n’,1,d’]

* Update: Emb[n,I+1,d] = relu(W, . Agg[n,|,d]+W¢.Z[n,l,d])

* Node classification: Y[n] = sig(W,,[d]Emb][n,L,d])

e Edge prediction: Y[n,n’] =sig(Embl[n,L,d] Emb[n’,L,d])

* Graph classification: Y =sig(W,,[d]Emb][n,L,d])

Attention in Tensor Logic

Query([p,d,] = W[d,,d] X[p,d]
Key[pldk] = WK[dkid] X[pld]
Val[pldv] = WV[dvld] X[p,d]

Comp[p,p’.] = softmax(Query[p,d,] Key[p’,d,]/sqrt(D,))
Attn[p,d,] = Comp[p,p’] Val[p’,d,]

Transformers in Tensor Logic

* Input: X(p,t)
 Embedding: XE[p,d] = X(p,t) Emb(t,d]
e Positional encoding:
PE[p,d] = Even(d)sin(p/(L*(d/D,))) +O0dd(d)cos(p/(L((d-1)/D,)))
* Residual stream: Stream[0,p,d] = XE[p,d]+PE[p,d]
* Attention:
Query[b,h,p,d,] = Wq[b,h,d,,d]Stream[b,p,d], etc.
Compl[b,h,p,p’.] = softmax(Query[b,h,p,d,] Key[b,h,p’,d,]/sqrt(D,))
Attn[b,h,p,d,] = Comp[b,h,p,p’]Val[b,h,p’,d,]
* Merge and layer norm:
Merge[b,p,d] = concat(Attn[b,h,p,d,])
Stream[b,p,d.] = norm(W([b,d,d] Merge[b,p,d]+Stream(b,p,d])
* MLP: MLP[b,p,d’] = relu(W,[b,p,d’,d]Stream[b,p,d]), etc.
* Output: Y[p,t.] = softmax(W,[t,d] Stream[B,p,d])

Symbolic Al in Tensor Logic

Just write it in Prolog.

Embedded Databases

* Embedding objects: Emb[obj,dim]
 Embedding relations: EmbRel[i,j] = Rel(x,y) Embl[i,x] Emb][j,y]
e This is a Tucker decomposition of the relation
« EmbRel is the core tensor of Rel
e Can be constructed in O(#tuples) time
* Relation symbols can also be embedded
* Reified database: DB(rx,y)
* Embedded database:
EmbDB[h,i,j] = DB(r,x,y) Emb[h,r] Embl[i,x] Emblj,y]

Embedded Knowledge Bases and Reasoning

* To embed a rule, replace antecedents & consequent by their embeddings:
EmbCons]...] = EmbAnt,[...] EmbAnt,[...] ... EmbANt [...]

* All reasoning can be done in embedding space:
1. Embed query and evidence
2. Reason with embedded rules
3. Extract answer

* Works because einsum factors are commutative and associative:
(Rel(x,y) Embl[i,x] Emb[j,y]) Emb[i,x'] EmbIj,y’] = Rel(x’,y’), etcC. A
* Combines symbolic and analogical reasoning Embeddings are random unit vectors
 Similarity of two objects = Dot product of their embeddings
* Transparent and reliable

Kernel Machines in Tensor Logic

 Kernel machine: Y[Q] = f(A[i] Y[i]K[Q,i] +B)

* Polynomial kernel: K[i,i'] = (X[i,j1 X[i’,j])*n

e Gaussian kernel: K[i,i’] = exp(-(X[i,j]-X[i",j])"2 / Var)
e Structured prediction: Y[Q,n]

Graphical Models in Tensor Logic

Graphical Models

Potential Tensor
Marginalization Projection
Pointwise product Join

Join tree Tree-like program

Pr(Query | Evidence) Prog(Q,E) / Prog(E)

* To encode a Bayes net, add an equation for each variable V:
Pr[var] = CondPr[var,pary,...,par,] Pr[par,]...Pr[par,]

* Sum-product theorem (Friesen & Domingos, 2016):
No tensor appears in more than one RHS
= Tensor logic program computes correct probabilities in linear time

* Otherwise: forward chaining = belief propagation (or sample paths, etc.)

Beyond Al

e Science: tensor logic minimizes distance from equations to code
* Scientific computing is tensor operations wrapped in logic

* To make the logic learnable, use tensor logic

* To make anything learnable, write it in tensor logic

Scaling Up

e Option 1: Separation of concerns
* Dense subtensors: GPUs
* Sparse subtensors: database query engines, etc.

* Option 2: All on GPUs via Tucker decomposition
* Exponential efficiency gains
* Bounded error probability
* Dovetails with embedding and learning

Driving Adoption

* Al is no longer a niche - Ride the wave

e Backward compatibility with Python

* Cure the big pains (e.g., hallucinations)

* Killer apps (e.g., reasoning models, code, math)

* IDEs for coding, data wrangling, modeling, evaluation, etc.
* Open source community

* Vendor competition

* Education

Next Steps

* CUDA implementation

* Applications

* Libraries

* Extensions

* New research directions

Summary

* One language for all of Al

* Tensor logic program = Set of tensor equations

* Tensor equation = Numeric Datalog rule = Einsum
* Reasoning and learning out of the box

* Transparent and reliable

* Don’t leave home without it

tensor-logic.org

