
UWCSE BRIDGE
WorkshopWorkshop
Aug. 31 – Sept. 3, 2009

Hal Perkins
Computer Science & Engineering

University of WashingtonUniversity of Washington
perkins@cs.washington.edu

What’s Up?p

In a week:
Learn how to write programs in Python
Learn how digital images are stored in the computer
Use Python programs to change images and create
new ones!

Of course we won’t learn everything there is to
know in a few days, but we’ll make quite a start!!know in a few days, but we ll make quite a start!!

Credits and Links

These slides and ideas are largely taken from
the media computation project at Georgia Tech

For software, links, etc. (for home – we already have
what we need on the lab computers for today):what we need on the lab computers for today):
http://www.mediacomputation.org

Links to these slides and workshop materials:Links to these slides and workshop materials:
http://www.cs.washington.edu/homes/perkins/bridge/2009/

Thanks to Mark Guzdial and to Barbara Ericson
for suggestions and advice

If you like this…y

Get the book!
More Python
More about images
Movies, sound
More CSE!

Workshop Planp
Today

P h b iPython basics
Python as a calculator; variables, expressions and assignment
Defining simple functions

Digital images
Representing pictures: pixels, rgb values
Simple image transformations: loops

Rest of the week
More programming, more complex image manipulation;
image coordinates, whatever we discover or want toimage coordinates, whatever we discover or want to
pursue…

Some talking, plenty of hands-on tinkering

Introductions

Who are you?
Where are you from?
What’s your plan at UW?y
What do you want to get out of this workshop?

Pythony
The programming language we will be using is
called Pythoncalled Python

We didn’t invent Python—it was invented (and named) by researchers
across the Internet
http://www.python.org
It’s used by companies like Google Industrial Light & MagicIt s used by companies like Google, Industrial Light & Magic, …
Named after Monty Python – not after some sort of snake

The kind of Python we’re using is called Jython
It’s Java based PythonIt s Java-based Python

(We didn’t invent that, either.)
http://www.jython.org

We’ll be using a specific tool to make PythonWe ll be using a specific tool to make Python
programming easier, called JES.

We didn’t invent that either (the folks at GATech did)

We will program in JESp g
JES: Jython
Environment forEnvironment for
Students
A simple editor
(f t i i(for entering in
our programs or
recipes): the
program area
A command
area for
entering in
commands for
Python to y
execute.

Python understands commandsy

We can name data with =
We can print values, expressions, anything with
print

Using JESg

>>> print 34 + 56
90
>>> print 34.1/46.5p
0.7333333333333334
>>> print 22 * 33
726726
>>> print 14 - 15
-1

i ll>>> print "Hello"
Hello
>>> print "Hello" + "Y′all"p
HelloY′all

Command Area Editingg

Up/down arrows walk through command history
You can edit the line at the bottom

and then hit Return/Enter
that makes that last line execute

Expressionsp

A formula to compute a value
Example: 17 + 21 * 2

Python has the usual arithmetic operations
* / l i ti di id+ - * / plus, minus, times, divide

% modulus (or remainder)
** exponentiation

The usual precedence (ordering) rules apply
17 + 3 * 42 means 17 + (3 * 42)

You can write parentheses to change the grouping or
make your meaning clear: (17 + 3) * 42

Division and Integers vs Floatsg
Computer arithmetic is mostly like regular math –
b t not entirel A co ple of differencesbut not entirely. A couple of differences:
If we use integers (whole numbers), / and % give us
integer quotient and remainder: 7/3 7%3g q
We also have floating-point numbers with fractions
and/or exponents: 1.0, 0.0, 3.14, 10e6

Th t i ti t l bThe computer approximation to real numbers
Arithmetic with floats or a mix of floats and integers gives a
floating-point result

Compare: 1/3 vs 1.0/3.0, 7%3 vs 7.0%3.0
What happens if you mix them? 7.0/3

Try it!y

Variables – Naming Thingsg g

It often helps to give names to things
farenheit = 72.0
celsius = (farenheit – 32.0) * 5.0 / 9.0

Pick whatever names you want! (l)Pick whatever names you want! (almost)

Anything that starts with a letter followed by zero or
more letters, digits, underscores (), except…, g , (_), p
There are a handful of reserved words (keywords)
that mean something special to Python (if, for, def,

t t) Y ’t th freturn, etc.). You can’t use these for your names.
A python-savvy editor will display them in a different color

Assignmentg

What does variable = expression mean?
1. First calculate the value of expression
2. Then store that value in variable
Things happen in that order.
So, what does this mean? x = x + 1

(Hint: never pronounce “=” as “equals”. It means “gets” or
“becomes” in an assignment – say it that way!!)

If the variable had a previous value it isIf the variable had a previous value it is
replaced

Functions

Python includes a lot of functions for math and
other things

For instance: sqrt, sin, cos, max, min, …
Use them in formulas

largest = max(a,b,c)
distance = sqrt(x**2 + y**2)distance = sqrt(x 2 + y 2)

Technicality: in standard Python you need to write “ from math import * ”
(without the quotes) before you can use these functions. In JES this isn’t
needed for the common ones.needed for the common ones.

Writing Functionsg

Suppose we want to convert a bunch of
temperatures from Fahrenheit to Celsius

Could type the formula over and over
A littl i if th d dit b t till iA little easier if we use the up-arrow and edit, but still a pain

Better: define our own function
(We’ll call it f2c for now)(We ll call it f2c for now)
Then we can write

hot = f2c(110)()
cold = f2c(-10)
nice = f2c(75)

Writing a recipe:Writing a recipe:
Making our own functions

To make a f nction se theTo make a function, use the
command def
Then, the name of the function,
and the names of the input

def f2c(temp):
return (temp 32 0) * 5 0/9 0and the names of the input

values between parentheses
(“(temp)”)
End the line with a colon (“:”)

return (temp-32.0) 5.0/9.0

The body of the recipe is
indented (Hint: Use two or
three spaces – a tab)

Th t’ ll d bl kThat’s called a block

Making functions the easy wayg y y

Get something working by typing commands in
the command window (bottom half of JES)
Enter the def command in the editing window
(top part of JES)
Copy-paste the right commands up into the

irecipe

Blocking is indicated for you in JESg y

Statements that are
i d t d th iindented the same, are in
the same block.
Statements in the sameStatements in the same
block as the cursor are
enclosed in a blue box.

Different Ways to do Thingsy g

There are many ways Examples:
to name things and
do things

def vol1(l,w,h):
return l*w*h

Try to write your code
so it’s easy for others
(including yourself!) to

def vol2(length, width, height):
return length*width*height

(including yourself!) to
understand def vol3(length, width, height):

area = length * width
vol = area * height
return vol

Saving Functionsg

Once you’ve typed in your functions you need to
save them in a file, the tell JES to “load” them

Use the regular File > Save command
A fil i i P h d h ld ll hA file containing Python code should normally have a
name ending in “.py”
After saving the file click the “Load Program” buttonAfter saving the file, click the Load Program button

JES will tell you if it detects any punctuation (syntax) errors
If it does, fix, save, and reload

You can reuse the functions next time by
opening and reloading the file

Your Turn

Log in, copy JES to your desktop, and start it
See the “Getting started” sheet, watch the demo, and
ask questions

Th d th fi t t f iThen do the first set of exercises
Use JES as a calculator, then
Define and use some functionsDefine and use some functions

I P iImage Processing

GoalsGoals:
Give you a basic understanding of image processing,
including how pictures are represented in a computerincluding how pictures are represented in a computer
Experiment with some interesting image
transformations

We won’t put Photoshop, GIMP, ImageMagik out
of business…

But you will have a much better idea of what they’re
doing!

Sh i Pi t i JESShowing a Picture in JES

file = pickAFile()
picture = makePicture(file)p ()
show(picture)

What does this do?
1. Variable file accesses the

picture jpeg file on the diskp jp g
2. Variable picture is the picture

bits copied to memory
3 Show draws the picture bits on3. Show draws the picture bits on

the screen

Another Function

Since we’ll do this a lot, let’s make a function so
we don’t have to type it over and over again

We’ll return a reference to the picture in memory so we can
work with itwork with it

def pickAndShow():
filename = pickAFile()
picture = makePicture(filename)
show(picture)
return picture

Grabbing media from the Webg

Right-click (Windows)
or Control-Click (Mac)
Save Target As…
C l d JPEGCan only do JPEG
images (.jpe, .jpg,
jpeg).jpeg)

Most images on the Internet are

Nudge, nudge.
Wink, wink…Most images on the Internet are

copyright. You can download and
use them only for your own use
unless you have permission.

,

Digitizing pictures as bunches of
little dots

We digitize pictures into lots of little dotsWe digitize pictures into lots of little dots
Enough dots and it looks like a continuous
whole to our eyewhole to our eye

Our eye has limited resolution
Our background/depth acuity is particulary lowg p y p y

Each picture element is referred to as a pixel
Pixels are picture elementsPixels are picture elements

Each pixel object knows its color
It also knows where it is in its picture

Encoding colorg

Each pixel encodes color at that position in the picture
Lots of encodings for color

Printers use CMYK: Cyan, Magenta, Yellow, and blacK.
Others use HSB for Hue, Saturation, and Brightness (also called
HSV for Hue, Saturation, and Brightness

We’ll use the most common for computers
RGB: Red, Green, Blue

Encoding Color: RGBg
In RGB, each color has three
component colors:component colors:

Amount of redness
Amount of greenness
Amount of blueness

Each does appear as a
separate dot on most devices,
but our eye blends them.
In most computer-based
models of RGB, a single byte
(8 bits) is used for each

So a complete RGB color isSo a complete RGB color is
24 bits, 8 bits of each

Encoding RGBg
Each component color
(red green and blue) is(red, green, and blue) is
encoded as a single byte
Colors go from (0,0,0) to
(255 255 255)(255,255,255)

If all three components are
the same, the color is in
greyscalegreyscale

(50,50,50) at (2,2)
(0,0,0) (at position (1,2) in
example) is blackexample) is black
(255,255,255) is white

Use a loop!p
Our first picture recipe

def decreaseRed(picture):
for p in getPixels(picture):
value=getRed(p)value=getRed(p)
setRed(p,value*0.5)

Used like this:
>>> file=pickAFile()>>> file=pickAFile()
>>> picture=makePicture(file)
>>> show(picture)

 d R d(i t)>>> decreaseRed(picture)
>>> repaint(picture)

def clearRed(picture):

Examples:

def clearRed(picture):
for pixel in getPixels(picture):
setRed(pixel,0)

def greyscale(picture):
for p in getPixels(picture):
redness=getRed(p)redness=getRed(p)
greenness=getGreen(p)
blueness=getBlue(p)
luminance=(redness+blueness+greenness)/3
setColor(p,

makeColor(luminance,luminance,luminance))

def negative(picture):
for px in getPixels(picture):
red=getRed(px)
green=getGreen(px)green=getGreen(px)
blue=getBlue(px)
negColor=makeColor(255-red,255-green,255-blue)
setColor(px,negColor)

How do you make an omelet?y

Something to do with eggs…
What do you do with each of the eggs?
And then what do you do?y

All useful recipes involve repetitionAll useful recipes involve repetition
- Take four eggs and crack them….
- Beat the eggs until…

We need these repetition (“iteration”)
constructs in computer algorithms tooconstructs in computer algorithms too

- Today we will introduce one of them

D i th d i i tDecreasing the red in a picture

Recipe: To decrease the red
Ingredients: One picture, name it pictIngredients: One picture, name it pict
Step 1: Get all the pixels of pict. For each pixel p in the
set of pixels…
Step 2: Get the value of the red of pixel p and set it toStep 2: Get the value of the red of pixel p, and set it to
50% of its original value

Use a for loop!p
Our first picture recipe

def decreaseRed(pict):def decreaseRed(pict):
allPixels = getPixels(pict)
for p in allPixels:
value = getRed(p) The loopg (p)
setRed(p, value * 0.5)

e oop

- Note the
indentation!

How for loops
are written def decreaseRed(pict):

allPixels = getPixels(pict)
for p in allPixels:

l tR d()

for is the name of the command

value = getRed(p)
setRed(p, value * 0.5)

for is the name of the command
An index variable is used to hold each of the different
values of a sequence
The word in
A function that generates a sequence

The index variable will be the name for one value in theThe index variable will be the name for one value in the
sequence, each time through the loop

A colon (“:”)
And a block (the indented lines of code)And a block (the indented lines of code)

What happens when a for loop is
executed

The index variable is set to an item in the
sequencesequence
The block is executed

The variable is often used inside the blockThe variable is often used inside the block
Then execution loops to the for statement, where
the index variable gets set to the next item in thethe index variable gets set to the next item in the
sequence
Repeat until every value in the sequence was p y q
used.

getPixels returns a sequence of g
pixels

Each pixel knows itsEach pixel knows its
color and place in the
original picture
Change the pixel you

def decreaseRed(picture):
allPixels = getPixels(picture)
f i llPi lChange the pixel, you

change the picture
So the loops here

i th i d

for p in allPixels
originalRed = getRed(p)
setRed(p, originalRed * 0.5)

assign the index
variable p to each
pixel in the picture
i t t ti

or equivalently…

picture, one at a time. def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
setRed(p originalRed * 0 5)setRed(p, originalRed * 0.5)

Do we need the variable
originalRed?

No: Having removed allPixels, we can also do without
originalRed in the same way:

W l l t th i i l d t i ht h dWe can calculate the original red amount right when we are ready
to change it.
It’s a matter of programming style. The meanings are the same.

def decreaseRed(picture):
for p in getPixels(picture):

i i lR d tR d()

def decreaseRed(picture):

originalRed = getRed(p)
setRed(p, originalRed * 0.5)

def decreaseRed(picture):
for p in getPixels(picture):

setRed(p, getRed(p) * 0.5)

Let’s walk that through slowly…g y

Here we take a pictureHere we take a picture
object in as a parameter
to the function and call it

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
tR d(i i lR d * 0 5) picturesetRed(p, originalRed * 0.5)

picture

Now, get the pixels, g p

W t ll th i l fWe get all the pixels from
the picture, then make p
be the name of each one

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
tR d(i i lR d * 0 5) one at a timesetRed(p, originalRed * 0.5)

picture

Pixel,
color

135

Pixel,
color

133

Pixel,
color

134

getPixels()

r=135
g=131
b=105

r=133
g=114
b=46

r=134
g=114
b=45

…

p

Get the red value from pixel

We get the red value of
pixel p and name it

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
tR d(i i lR d * 0 5)

p p
originalRedsetRed(p, originalRed * 0.5)

picture

Pixel,
color

135

Pixel,
color

133

Pixel,
color

134

getPixels()

…r=135
g=131
b=105

r=133
g=114
b=46

r=134
g=114
b=45

…

value = 135p

Now change the pixelg p

Set the red value of pixel
p to 0.5 (50%) of
originalRed

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
tR d(i i lR d * 0 5) originalRed

picture

setRed(p, originalRed * 0.5)

Pixel,
color

67

getPixels()Pixel,
color

133

Pixel,
color

134r=67
g=131
b=105

…r=133
g=114
b=46

r=134
g=114
b=45

p value = 135

Then move on to the next pixelp

Move on to the next pixel
and name it p

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
tR d(i i lR d * 0 5)

picture

setRed(p, originalRed * 0.5)

getPixels()Pixel,
color

67

Pixel,
color

133

Pixel,
color

134 …r=67
g=131
b=105

r=133
g=114
b=46

r=134
g=114
b=45

p value = 135

Get its red value
Get its red value

Set originalRed to the
red value at the new p,
then change the red at

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
tR d(i i lR d * 0 5) then change the red at

that new pixel.
setRed(p, originalRed * 0.5)

picture

getPixels()Pixel,
color

67

Pixel,
color

133

Pixel,
color

134 …r=67
g=131
b=105

r=133
g=114
b=46

r=134
g=114
b=45

ppp value = 133

And change this red valueg

Change the red value at pixel

def decreaseRed(picture):
for p in getPixels(picture):

originalRed = getRed(p)
tR d(i i lR d * 0 5) Change the red value at pixel

p to 50% of valuesetRed(p, originalRed * 0.5)

picture

getPixels()Pixel,
color

67

Pixel,
color

66

Pixel,
color

134 …r=67
g=131
b=105

r=66
g=114
b=46

r=134
g=114
b=45

ppp value = 133

And eventually, we do all pixelsy, p
We go from this… to this!

“Tracing/Stepping/Walking through” g pp g g g
the program

What we just did is called “stepping” or “walking through”What we just did is called stepping or walking through
the program

You consider each step of the program, in the order that the
computer would execute itcomputer would execute it
You consider what exactly would happen
You write down what values each variable (name) has at each
pointpoint.

It’s one of the most important debugging skills you can
have.

And everyone has to do a lot of debugging especially at firstAnd everyone has to do a lot of debugging, especially at first.

Clearing Blueg

def clearBlue(picture):
for p in getPixels(picture):
setBlue(p, 0)setBlue(p, 0)

Again this will work for Again, this will work for
any picture.

Try stepping through Try stepping through
this one yourself!

Clearing Blue – Trace it yourself!g y

def clearBlue(picture):
for p in getPixels(picture):
setBlue(p, 0)

picture

setBlue(p, 0)

Pixel,
color

135

Pixel,
color

133

Pixel,
color

134

getPixels()

r=135
g=131
b=105

r=133
g=114
b=46

r=134
g=114
b=45

…

p

Can we combine these?Can we combine these?
Why not!

How do we turn this
beach scene into a
sunset?sunset?
What happens at sunset?

At first, I tried increasing
the red but that madethe red, but that made
things like red specks in
the sand REALLY
prominent.

Wrap-around
New Theory: As the sun
sets, less blue and green is
visible which makes thingsvisible, which makes things
look more red.

A Sunset-generation Functiong

def makeSunset(picture):def makeSunset(picture):
for p in getPixels(picture):
value = getBlue(p)
setBlue(p, value * 0.7)setBlue(p, value 0.7)
value = getGreen(p)
setGreen(p, value * 0.7)

Creating a negativeg g

Let’s think it through
R, G, B go from 0 to 255
Let’s say Red is 10. That’s very light red.

Wh t’ th it ? LOTS f R d!What’s the opposite? LOTS of Red!

The negative of that would be 245: 255-10
So for each pixel if we negate each colorSo, for each pixel, if we negate each color
component in creating a new color, we negate
the whole picture.p

Creating a negativeg g

def negative(picture):
for px in getPixels(picture):

red = getRed(px)
 tG ()green = getGreen(px)

blue = getBlue(px)
negColor = makeColor(255-red, 255-green, 255-blue)
setColor(px negColor)setColor(px, negColor)

Original, negative, double negativeg , g , g

(This gives us a quick way to test our function:
Call it twice and see if the result is equivalentCall it twice and see if the result is equivalent
to the original)

We call this a lossless transformation.

Converting to grayscaleg g y

We know that if red=green=blue, we get gray
But what value do we set all three to?

Wh t d i l ti th d k f thWhat we need is a value representing the darkness of the
color, the luminance
There are many ways, but one way that works reasonablyThere are many ways, but one way that works reasonably
well is dirt simple—simply take the average:

Why can’t we get back again?
Converting to grayscale is different fromConverting to grayscale is different from
computing a negative.

A negative transformation retains information.A negative transformation retains information.
With grayscale, we’ve lost information

We no longer know what the ratios are between the g
reds, the greens, and the blues
We no longer know any particular value.

Media compressions are one kind of transformation.
Some are lossless (like negative);Some are lossless (like negative);
Others are lossy (like grayscale)

But that’s not really the best grayscaley g y

In reality, we don’t perceive red, green, and blue
as equal in their amount of luminance: Howas equal in their amount of luminance: How
bright (or non-bright) something is.

We tend to see blue as “darker” and red as “brighter”
Even if, physically, the same amount of light is
coming off of each

Photoshop’s grayscale is very nice: Very similar p g y y y
to the way that our eye sees it

B&W TV’s are also pretty good
A reasonable grayscale is to replace r g and bA reasonable grayscale is to replace r, g, and b
with luminance = r*0.299 + g*0.587 + b*0.114

Based on research into human vision

Saving Picturesg

Changing a picture only changes the bits in
memory – it does not change the original file
If you want to save a picture, you need to write
the picture bits to a disk file

setMediaPath() # pick directory for file - only need to
do once, or whenever you change it

writePictureTo(picture, “filename.jpg”)
write file – pick the name you want

Lots and lots of filters

There are many wonderful examples that we
can do at this point.
Your turn!

Try out some of the transformations we’ve seen
Create some new ones (see the exercise sheet)

Increasing Redg

def increaseRed(picture):
for p in getPixels(picture):
value = getRed(p)

What happened
here?!?

value = getRed(p)
setRed(p, value * 1.2)

Remember that the
limit for redness is
255.

If you go beyondIf you go beyond
255, all kinds of
weird things might
hhappen

Let’s try making Barbara a redhead!y g

We could just try increasing the redness, but as
we’ve seen, that has problems.

Overriding some red spots
A d h ’ h j h h iAnd that’s more than just her hair

If only we could increase the redness only of the
brown areas of Barb’s headbrown areas of Barb s head…

Treating pixels differentlyg p y

We can use the if statement to treat some pixels
diff tldifferently.
For example, color replacement: Turning
Barbara into a redheadBarbara into a redhead

We used the MediaTools to find the RGB values for
the brown of Barbara’s hair
We then look for pixels that are close to that color
(within a threshold), and increase by 50% the redness
in those

Making Barb a redhead Original:g

def turnRed():
brown = makeColor(57,16,8)
file = r"C:\My Documents\mediasources\barbara.jpg"file r C:\My Documents\mediasources\barbara.jpg
picture=makePicture(file)
for px in getPixels(picture):
color = getColor(px) Digital makeover:g (p)
if distance(color, brown) < 50.0:

redness=getRed(px)*1.5
setRed(px,redness)

show(picture)
return(picture)

Talking through the program slowlyg g p g y

Why aren’t we taking any input? Don’t want any: Recipe isWhy aren t we taking any input? Don t want any: Recipe is
specific to this one picture.
The brown is the brownness that I figured out from MediaTools
I need the picture to work withI need the picture to work with

def turnRed():
brown = makeColor(57,16,8)
file = r"C:\My Documents\mediasources\barbara.jpg"
picture=makePicture(file)
for px in getPixels(picture):

color = getColor(px)
if distance(color bro n) < 50 0if distance(color, brown) < 50.0:
redness=getRed(px)*1.5
setRed(px,redness)

show(picture)

Walking through the for loopg g p

Now, for each pixel px in the picture, we
Get the color
See if it’s within a distance of 50 from the brown
we want to make more red

def turnRed():

we want to make more red
If so, increase the redness by 50%

()
brown = makeColor(57,16,8)
file = r"C:\My Documents\mediasources\barbara.jpg"
picture=makePicture(file)
for px in getPixels(picture):
color = getColor(px)
if distance(color, brown) < 50.0:

redness=getRed(p)*1 5redness=getRed(px)*1.5
setRed(px,redness)

show(picture)
return(picture)

How an if works

if is the command nameif is the command name
Next comes an
expression: Some kind of
t f l itrue or false comparison
Then a colon

if distance(color, brown) < 50.0:

Then the bod of the if

redness=getRed(px)*1.5
blueness=getBlue(px)
greenness=getGreen(px)Then the body of the if—

the things that will happen
if the expression is true

greenness getGreen(px)

Expressions
B l !

p
Bug alert!

= means “make them equal!”

Can test equality with ==

q
== means “are they equal?”

Can also test <, >, >=, <=, <> (not equals)
In general, 0 is false, 1 is trueg , ,

So you can have a function return a “true” or “false”
value.

Returning from a functionReturning from a function
At the end, we show and return the pictureAt the end, we show and return the picture
Why are we using return?

Because the picture is created within the functionBecause the picture is created within the function
If we didn’t return it, we couldn’t get at it in the
command area

if distance(color brown) < 50 0:

We could print the result, but we’d more likely
assign it a name

if distance(color, brown) < 50.0:
redness=getRed(px)*1.5
setRed(px,redness)

show(picture)(p)
return(picture)

Things to changeg g

Lower the threshold to get more pixels
But if it’s too low, you start messing with the wood
behind her

I th t f dIncrease the amount of redness
But if you go too high, you can go beyond the range
of valid color intensities (i e more than 255)of valid color intensities (i.e. more than 255)

R l i l i ifReplacing colors using if
We don’t have to do one-to-one changes or
replacements of color
We can use if to decide if we want to make a
changechange.

We could look for a range of colors, or one specific
color.
We could use an operation (like multiplication) to set
the new color, or we can set it to a specific value.

It all depends on the effect that we wantIt all depends on the effect that we want.

Experiment!Experiment!

Posterizing:g
Reducing the range of colors

Posterizing: How we do itg

We look for a range of colors, then map them to
a single color.

If d i b t 63 d 128 t it t 95If red is between 63 and 128, set it to 95
If green is less than 64, set it to 31
......

This requires many if statements, but the idea is
pretty simple.
The end result is that many colors, get reduced
to a few colors

Posterizing functionPosterizing function
def posterize(picture):
#loop through the pixels
for p in getPixels(picture):

#check and set green values
if(green < 64):

tG (31)for p in getPixels(picture):
#get the RGB values
red = getRed(p)
green = getGreen(p)
bl tBl ()

setGreen(p, 31)
if(green > 63 and green < 128):

setGreen(p, 95)
if(green > 127 and green < 192):

blue = getBlue(p)

#check and set red values
if(red < 64):

setGreen(p, 159)
if(green > 191 and green < 256):

setGreen(p, 223)

setRed(p, 31)
if(red > 63 and red < 128):

setRed(p, 95)
if(red > 127 and red < 192):

#check and set blue values
if(blue < 64):

setBlue(p, 31)
if(blue > 63 and blue < 128):()

setRed(p, 159)
if(red > 191 and red < 256):

setRed(p, 223)

if(blue > 63 and blue < 128):
setBlue(p, 95)

if(blue > 127 and blue < 192):
setBlue(p, 159)

if(blue > 191 and blue < 256):if(blue > 191 and blue < 256):
setBlue(p, 223)

What’s with this “#” stuff?

Any line that starts with # is ignored by Python.
This allows you to insert comments: Notes to
yourself (or another programmer) that explain
what’s going on here.

When programs get longer, and have lots of separate
pieces it’s gets hard to figure out from the code alonepieces, it s gets hard to figure out from the code alone
what each piece does.
Comments can help explain the big picture.

Generating sepia-toned printsg p p

Pictures that are sepia-toned have a yellowish
tint to them that we associate with older
photographs.
It’s not just a matter of increasing the amount of
yellow in the picture, because it’s not a one-to-
one correspondenceone correspondence.

Instead, colors in different ranges get converted to
other colors.
We can create such convertions using if

Example of sepia-toned printsp p p

Here’s how we do it
def sepiaTint(picture):
#Convert image to greyscale#Convert image to greyscale
greyScale(picture)

#loop through picture to tint pixels

#tint midtones
if (red > 62 and red < 192):

red = red*1.15
blue = blue*0.85for p in getPixels(picture):

red = getRed(p)
blue = getBlue(p)

blue blue 0.85

#tint highlights
if (red > 191):

red = red*1 08
#tint shadows
if (red < 63):

red = red*1.1

red = red 1.08
if (red > 255):

red = 255

bl bl *0 93blue = blue*0.9 blue = blue*0.93

#set the new color values
setBlue(p, blue)
setRed(p, red)Bug alert!

Make sure you indent the right amount

Reviewing: All the Programming We’ve
SSeen

Assigning names to values with =
Printing with print
Looping with for
Testing with ifTesting with if
Defining functions with def

Making a real function with inputs uses ()
Making a real function with outputs uses return

Using functions to create programs (recipes) and
executing themexecuting them

What we can’t do (yet!)(y)

What if we want to copy of modify part of an
image? Or combine images? Or flip an image
upside down or sideways?
So far all we can do is go through the pixels and
change them regardless of their position
T d d t k h th i lTo do more we need to know where the pixels
are in the image

A Picture is a matrix of pixelsp

It’s not a continuous
line of elements, that is,
an array
A picture has twoA picture has two
dimensions: Width and
Heightg
We need a two-
dimensional array: a
matrix

Just the upper left hand
corner of a matricorner of a matrix.

Referencing a matrix
We talk about positions
in a matrix as (x,y), or
(h i t l ti l)(horizontal, vertical)
Element (2,1) in the
matrix at left is thematrix at left is the
value 12
Element (1,3) is 6(,)

Pixel Functions

Given a picture p, Given a pixel,
Retrieve the width
and height

Get it’s coordinates
x = getX(pixel)

tY(i l)w = getWidth(p)
h = getHeight(p)

Access a pixel at a

y = getY(pixel)

All th th f tiAccess a pixel at a
location

pixel =

All the other functions
to get/set colors, etc.
work as usual

getPixel(p,xpos,ypos)
work as usual

Working the pixels by numberg p y
decreaseRed, but with explicit coordinates…
We’ll have to use nested loopsWe ll have to use nested loops

One to walk the width, the other to walk the height
Be sure to watch your blocks carefully!

def decreaseRed2(picture):def decreaseRed2(picture):
for x in range(1,getWidth(picture)):
for y in range(1,getHeight(picture)):

Pi l(i)px = getPixel(picture,x,y)
value = getRed(px)
setRed(px,value/2)(p ,)

The function rangeg

Range returns a sequence between its first two
inputs, possibly using a third input as the
increment

>>> print range(1,4)
[1, 2, 3]
>>> print range(-1,3)
[-1 0 1 2][1, 0, 1, 2]
>>> print range(1,10,2)
[1, 3, 5, 7, 9]

That thing in [] is a sequenceg [] q

>>> a=[1,2,3][, ,]
>>> print a
[1, 2, 3]
>>> a = a + 4

We can assign names to
sequences, print them,
add sequences and>>> a = a + 4

An attempt was made to call a
function with a parameter of an

add sequences, and
access individual pieces
of them.

invalid type
>>> a = a + [4]
>>> print a

We can also use for
loops to process each
element of a sequencep

[1, 2, 3, 4]
>>> a[0]
1

element of a sequence.

1

Replacing colorsReplacing colors
in a range

def turnRedInRange():def turnRedInRange():
brown = makeColor(57,16,8)
file=r"C:\Documents and Settings\Mark Guzdial\My

Documents\mediasources\barbara.jpg"

Get the range
using Documents\mediasources\barbara.jpg

picture=makePicture(file)
for x in range(70,168):
for y in range(56,190):

MediaTools

px=getPixel(picture,x,y)
color = getColor(px)
if distance(color,brown)<50.0:

redness=getRed(px)*1.5
setRed(px,redness)

show(picture)
return(picture)return(picture)

Could we do this withoutCould we do this without
nested loops?

Yes, but
complicated IF
AND we

def turnRedInRange2():
brown = makeColor(57,16,8)
file=r"C:\Documents and Settings\Mark Guzdial\My

D t \ di \b b j "AND we
process many
unneeded

Documents\mediasources\barbara.jpg"
picture=makePicture(file)
for p in getPixels(picture):
x = getX(p)

pixels
g (p)

y = getY(p)
if x >= 70 and x < 168:
if y >=56 and y < 190:
color = getColor(p)color = getColor(p)
if distance(color,brown)<100.0:
redness=getRed(p)*2.0
setRed(p,redness)

show(picture)
return picture

Removing “Red Eye”g y
When the flash of the camera
catches the eye just rightcatches the eye just right
(especially with light colored
eyes), we get bounce back
from the back of the retina.
This results in “red eye”
We can replace the “red” with
a color of our choosing.
Fi t fi t h thFirst, we figure out where the
eyes are (x,y) using
MediaTools

Removing Red Eyeg y
def removeRedEye(pic,startX,startY,endX,endY,replacementcolor):
red = makeColor(255 0 0)red = makeColor(255,0,0)
for x in range(startX,endX):
for y in range(startY,endY):
currentPixel = getPixel(pic x y) Why use a currentPixel getPixel(pic,x,y)
if (distance(red,getColor(currentPixel)) < 165):
setColor(currentPixel,replacementcolor)

y
range? Because
we don’t want to
replace her red

What we’re doing here:

replace her red
dress!

• Within the rectangle of pixels (startX,startY)
to (endX, endY)

• Find pixels close to red, then replace them
with a new color

“Fixing” it: Changing red to blackg g g

removeRedEye(jenny, 109,
91, 202, 107,
makeColor(0 0 0))makeColor(0,0,0))
Jenny’s eyes are actually
not black—could fix that
Eye are also not mono-color

A better function would handle
gradations of red and replacegradations of red and replace
with gradations of the right
eye color

If you know where the pixels are:If you know where the pixels are:
Mirroring

Imagine a mirror horizontally across the picture,
or vertically
What would we see?
How do generate that digitally?

We simply copy the colors of pixels from one place to
another

Mirroring a pictureg p
Slicing a picture down the middle and sticking a mirror on the slice
D it b i l t diffDo it by using a loop to measure a difference

The index variable is actually measuring distance from the mirrorpoint
Then reference to either side of the mirror point using the difference

Recipe for mirroringp g

def mirrorVertical(source):
mirrorpoint = int(getWidth(source)/2)mirrorpoint = int(getWidth(source)/2)
for y in range(1,getHeight(source)):
for xOffset in range(1,mirrorpoint):
pright = getPixel(source, xOffset+mirrorpoint,y)
pleft = getPixel(source, mirrorpoint-xOffset,y)
c = getColor(pleft)c getColor(pleft)
setColor(pright,c)

Doing something useful with mirroringg g g

Mirroring can be used to
create interesting effectscreate interesting effects,
but it can also be used to
create realistic effects.
C id thi i fConsider this image from
a trip to Athens, Greece.

Can we “repair” the temple
b i i th l tby mirroring the complete
part onto the broken part?

Figuring out where to mirrorg g
Use MediaTools to find the mirror point and the range
th t t tthat we want to copy

Program to mirror the templeg p

def mirrorTemple():
source = makePicture(getMediaPath("temple.jpg"))
mirrorpoint = 277p
lengthToCopy = mirrorpoint - 14
for x in range(1,lengthToCopy):
for y in range(28,98):y g (,)

p = getPixel(source,mirrorpoint-x,y)
p2 = getPixel(source,mirrorpoint+x,y)
setColor(p2,getColor(p))setColor(p2,getColor(p))

show(source)
return source

Did it really work?y
It clearly did the mirroring,
b t th t d ’t tbut that doesn’t create a
100% realistic image.
Check out the shadows:Check out the shadows:
Which direction is the sun
coming from?

Time for an exercise

Write a function to take an image and flip it
horizontally (left to right)

More Picture Methods

Compositing and scaling
Necessary for making a collage

Copying pixelspy g p

In general, what we want to do is to keep track
f X d Y d t tX dof a sourceX and sourceY, and a targetX and

targetY.
We increment (add to them) in pairsWe increment (add to them) in pairs

sourceX and targetX get incremented together
sourceY and targetY get incremented together

The tricky parts are:The tricky parts are:
Setting values inside the body of loops
Incrementing at the bottom of loops

Copying Barb to a canvaspy g

def copyBarb():
Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg")canvasf getMediaPath(7inX95in.jpg)
canvas = makePicture(canvasf)
Now, do the actual copying
targetX = 1
f X i (1 Wid h(b b))for sourceX in range(1,getWidth(barb)):

targetY = 1
for sourceY in range(1,getHeight(barb)):
color = getColor(getPixel(barb,sourceX,sourceY))g (g (, ,))
setColor(getPixel(canvas,targetX,targetY), color)
targetY = targetY + 1

targetX = targetX + 1
sho (barb)show(barb)
show(canvas)
return canvas

Copying into the middle of the canvaspy g

def copyBarbMidway():
Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)barb makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg")
canvas = makePicture(canvasf)
Now, do the actual copying
t tX 100targetX = 100
for sourceX in range(1,getWidth(barb)):
targetY = 100
for sourceY in range(1,getHeight(barb)):g (,g g ())
color = getColor(getPixel(barb,sourceX,sourceY))
setColor(getPixel(canvas,targetX,targetY), color)
targetY = targetY + 1

targetX = targetX + 1targetX = targetX + 1
show(barb)
show(canvas)
return canvas

Copying: How it workspy g
Here’s the initial setup:

Copying: How it works 2py g
After incrementing the

Y d t tYsourceY and targetY
once (whether in the for
or via expression):p)

Copying: How it works 3py g
After yet another
i t f Y dincrement of sourceY and
targetY:
When we finish thatWhen we finish that
column, we increment
sourceX and targetX, and
start on the next columnstart on the next column.

Copying: How it looks at the endpy g

Eventually, we copy
i levery pixel

Blank Imagesg

A couple of ways to get a blank picture to use
when creating images

Sample images contain empty images with names
like 640x480 jpglike 640x480.jpg
JES has a makeEmptyPicture(width,height) function
that creates a picture without having to read a filep g

Making a collageg g
Could we do something
t th i tto the pictures we copy
in?

Sure! Could either apply pp y
one of those functions
before copying, or do
something to the pixels
during the copy.

Could we copy more than
one picture!one picture!

Of course! Make a collage!

def createCollage():
flower1=makePicture(getMediaPath("flower1.jpg"))

#Third picture, flower1 negated
negative(flower1)
targetX=200
for sourceX in range(1 getWidth(flower1)):print flower1

flower2=makePicture(getMediaPath("flower2.jpg"))
print flower2
canvas=makePicture(getMediaPath("640x480.jpg"))
print canvas
#First picture at left edge

for sourceX in range(1,getWidth(flower1)):
targetY=getHeight(canvas)-getHeight(flower1)-5
for sourceY in range(1,getHeight(flower1)):
px=getPixel(flower1,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))#First picture, at left edge

targetX=1
for sourceX in range(1,getWidth(flower1)):
targetY=getHeight(canvas)-getHeight(flower1)-5
for sourceY in range(1,getHeight(flower1)):
px=getPixel(flower1,sourceX,sourceY)

setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
#Fourth picture, flower2 with no blue
clearBlue(flower2)
targetX=300p g (, ,)

cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
#Second picture, 100 pixels over

100

for sourceX in range(1,getWidth(flower2)):
targetY=getHeight(canvas)-getHeight(flower2)-5
for sourceY in range(1,getHeight(flower2)):
px=getPixel(flower2,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx getColor(px))targetX=100

for sourceX in range(1,getWidth(flower2)):
targetY=getHeight(canvas)-getHeight(flower2)-5
for sourceY in range(1,getHeight(flower2)):
px=getPixel(flower2,sourceX,sourceY)
cx=getPixel(canvas targetX targetY)

setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
#Fifth picture, flower1, negated with decreased red
decreaseRed(flower1)
targetX=400cx=getPixel(canvas,targetX,targetY)

setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1

g
for sourceX in range(1,getWidth(flower1)):
targetY=getHeight(canvas)-getHeight(flower1)-5
for sourceY in range(1,getHeight(flower1)):
px=getPixel(flower1,sourceX,sourceY)
cx=getPixel(canvas,targetX,targetY)
setColor(cx,getColor(px))
targetY=targetY + 1

targetX=targetX + 1
show(canvas)
return(canvas)

Page 76-77

Cropping: Just the facepp g

d f B b F ()def copyBarbsFace():
Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)()
canvasf = getMediaPath("7inX95in.jpg")
canvas = makePicture(canvasf)
Now, do the actual copying
targetX = 100targetX = 100
for sourceX in range(45,200):

targetY = 100
for sourceY in range(25,200):
color = getColor(getPixel(barb,sourceX,sourceY))
setColor(getPixel(canvas,targetX,targetY), color)
targetY = targetY + 1

targetX = targetX + 1targetX = targetX + 1
show(barb)
show(canvas)
return canvas

Again, swapping the loop works fineg , pp g p

d f B b F 2()def copyBarbsFace2():
Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf) We can use targetX ()
canvasf = getMediaPath("7inX95in.jpg")
canvas = makePicture(canvasf)
Now, do the actual copying
sourceX = 45

and targetY as the
for loop index
variables andsourceX = 45

for targetX in range(100,100+(200-45)):
sourceY = 25
for targetY in range(100,100+(200-25)):

variables, and
everything works
the same.

color = getColor(getPixel(barb,sourceX,sourceY))
setColor(getPixel(canvas,targetX,targetY), color)
sourceY = sourceY + 1

sourceX = sourceX + 1sourceX = sourceX + 1
show(barb)
show(canvas)
return canvas

Scalingg

Scaling a picture (smaller or larger) has to do
with sampling the source picture differently

When we just copy, we sample every pixel
If ll ki i lIf we want a smaller copy, we skip some pixels

We sample fewer pixels

If we want a larger copy we duplicate some pixelsIf we want a larger copy, we duplicate some pixels
We over-sample some pixels

Scaling the picture downg p

def copyBarbsFaceSmaller():
S t th d t t i t# Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)
canvasf = getMediaPath("7inX95in.jpg")g (jpg)
canvas = makePicture(canvasf)
Now, do the actual copying
sourceX = 45
for targetX in range(100 100+((200 45)/2)):for targetX in range(100,100+((200-45)/2)):
sourceY = 25
for targetY in range(100,100+((200-25)/2)):
color = getColor(getPixel(barb,sourceX,sourceY))
setColor(getPixel(canvas,targetX,targetY), color)
sourceY = sourceY + 2

sourceX = sourceX + 2
show(barb)show(barb)
show(canvas)
return canvas

Scaling Up: Growing the pictureg p g p

To grow a picture, we
simply duplicate some
pixels >>> print int(1)pixels
We do this by
incrementing by 0 5

1
>>> print int(1.5)
1incrementing by 0.5,

but only use the
integer part.

1
>>> print int(2)
2
>>> i t i t(2 5)g p >>> print int(2.5)
2

Scaling the picture upg p p

def copyBarbsFaceLarger():def copyBarbsFaceLarger():
Set up the source and target pictures
barbf=getMediaPath("barbara.jpg")
barb = makePicture(barbf)

f tM di P th("7i X95i j ")canvasf = getMediaPath("7inX95in.jpg")
canvas = makePicture(canvasf)
Now, do the actual copying
sourceX = 45
for targetX in range(100,100+((200-45)*2)):

sourceY = 25
for targetY in range(100,100+((200-25)*2)):
color = getColor(getPixel(barb int(sourceX) int(sourceY)))color = getColor(getPixel(barb,int(sourceX),int(sourceY)))
setColor(getPixel(canvas,targetX,targetY), color)
sourceY = sourceY + 0.5

sourceX = sourceX + 0.5
show(barb)
show(canvas)
return canvas

Scaling up: How it worksg p
Same basic setup as

i d t ticopying and rotating:

Scaling up: How it works 2g p
But as we increment by

l 0 5 d thonly 0.5, and we use the
int() function, we end up
taking every pixel twice.g y p
Here, the blank pixel at
(1,1) in the source gets
copied twice onto thecopied twice onto the
canvas.

Scaling up: How it works 3g p
Black pixels gets copied
once…

Scaling up: How it works 4g p
And twice…

Scaling up: How it ends upg p p
We end up in the same
l i th b tplace in the source, but

twice as much in the
target.g
Notice the degradation:

Gaps that weren’t there
previouslypreviously
Curves would get “choppy”:
Pixelated

One Last Transformation - Bluringg

There are many ways to blur an image
Here’s a simple one – replace the r,g,b values in
each pixel with the average of that pixel’s rgb
values and the ones above, below, to the left,
and to the right
BUT ’t d thi i i lBUT: we can’t do this in a single pass over an
image, we need to make a copy. Why?

The Code
def blur(source):

"""Return a new picture that is a blured copy of source """
target = makeEmptyPicture(getWidth(source), getHeight(source))
for x in range(2, getWidth(source)):

for y in range(2, getHeight(source)):
top = getPixel(source,x,y-1)
left = getPixel(source x-1 y)left getPixel(source,x 1,y)
bottom = getPixel(source,x,y+1)
right = getPixel(source,x+1,y)
center = getPixel(source,x,y)
newRed = (getRed(top) + getRed(left) + getRed(bottom) + getRed(right) + getRed(center)) / 5
newGreen = (getGreen(top) + getGreen(left) + getGreen(bottom) + getGreen(right) + getGreen(center)) / 5
newBlue = (getBlue(top) + getBlue(left) + getBlue(bottom) + getBlue(right) + getBlue(center)) / 5
newPixel = getPixel(target,x,y)
setColor(newPixel, makeColor(newRed, newGreen, newBlue))

return targetreturn target

Unlike the other transformations, this creates a new image and
returns it. The caller can show it, save it, or whatever
Notice that we’re careful not to reference x, y coordinates off the
edge of the picture

Better Bluringg

Photoshop, GIMP and others have more
elaborate blurring algorithms that take more
neighbors into account and weigh the pixels
more the closer they aremore the closer they are.
For instance, we could use the following weights
to calculate each pixel from the 3x3 grid thatto calculate each pixel from the 3x3 grid that
surrounds it (multiply the colors by these weights
then divide by the sum)then divide by the sum)

1 2 1
2 4 22 4 2
1 2 1

More Transformations
More Python

We’ve barely gotten started
There’s a whole world of digital media and g
algorithms out there
There’s more to programming

But we’ve hit some real key points: expressions,
variables, assignment, conditionals, loops, functions

N t b d f t ft ! C t l ti !!!Not bad for two afternoons! Congratulations!!!

Homework Assignment!g
Create a collage where the same picture appears at
least three times:least three times:

Once in its original form
Then with any modification you want to make to it

Scale crop change colors grayscale edge detect posterizeScale, crop, change colors, grayscale, edge detect, posterize,
etc.

Then mirror the whole canvas
Creates an attractive layoutCreates an attractive layout
Horizontal, vertical, or diagonal (if you want to work it
out…)

Hint: write functions – particularly if you wind upHint: write functions – particularly if you wind up
copying and pasting the same code a lot

Can you simplify things by creating a function and calling it
several times with different arguments?several times with different arguments?

