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Abstract

Serverless computing simplifies cloud programming by manag-
ing infrastructure and providing basic primitives for building dis-
tributed components. However, these efforts tend to increase com-
plexity as developers create large, interdependent applications. The
highly distributed nature of serverless computations makes it chal-
lenging for developers to comprehend the granular behavior of their
applications. To address this problem, we present our vision for an
always-on recording framework for serverless computations. Our
goal is to efficiently capture low-level details of serverless computa-
tions by refining the ideas of traditional record-replay approaches
while exploiting the properties of serverless environments. This
envisioned approach is poised to provide greater serverless com-
putation visibility for developers to diagnose faults, understand
interactions between components, conduct performance analysis,
and ensure security and efficiency. Fully tapping this potential will
require exploring several research directions, ranging from low-
cost recording, storage, and data management systems to practical
replay analysis tools.
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1 Introduction

Serverless computing is emerging as a popular cloud computing
paradigm [35] for building highly distributed cloud applications,
such as machine learning [10, 16, 17, 34, 55], video processing [11,
27], data analytics [37, 38], and code compilation [26]. In this model,
developers upload self-contained, stateless logical units of their
applications known as serverless functions, which are triggered by
user-defined events and executed in short-lived, stateless sandboxes
(e.g., containers [22]).

One of the key promises of serverless computing is to ensure a
radically simplified cloud programming experience. Serverless plat-
forms fulfill this promise by managing the underlying infrastructure
and providing basic primitives for building distributed components,
allowing developers to focus on their application’s business logic.
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However, developers often use these basic primitives to build large,
complex applications [32], which span multiple interdependent
components across heterogeneous execution environments. These
complex interactions between components, the limited visibility
into code execution, and the lack of control over the underlying
infrastructure jointly hinder the developers’ ability to comprehend
the granular details of function execution. Thus, these limitations
impede developers from diagnosing faults, analyzing performance,
auditing security, and conducting other necessary tasks for reliable,
secure, and efficient execution of serverless applications.

Encouragingly, there has been notable progress in distributed
system analysis techniques in the last decade. In particular, re-
search on distributed tracing [19, 25, 50], failure injection [36],
performance monitoring [8], log analysis [28], and profiling [45]
has made great strides and shown that even limited information
can help developers significantly.

However, existing techniques are often designed for general dis-
tributed systems and are not well-suited for the unique challenges
and opportunities presented by serverless computing environments.
For instance, the serverless functions’ short-lived nature implies
that even small, constant overheads can easily dominate the end-
to-end latency [47]. As a result, techniques that require verbose
execution logs (e.g., [28]) may incur prohibitive performance penal-
ties. Similarly, since such ephemeral function instances are created
and destroyed on-demand, it can be challenging for distributed
tracing systems that rely on persistent identifiers [19, 25, 50] to ac-
curately correlate and trace requests across component boundaries.
Furthermore, serverless frameworks often share resources among
functions at the level of the OS, libraries, and processes, making it
challenging to discern which events correspond to which logical
units, i.e., functions. Lastly, techniques such as failure injection
may not be feasible due to the limited control over the underlying
infrastructure in serverless platforms. As a result, there is a need for
systems that can efficiently provide effective and accurate analysis
of serverless computations.

Record-replay systems are particularly helpful for providing
low-level insights into program execution, diagnosing faults, repro-
ducing intermittent failures, and even performing forensic analy-
sis [14, 23, 39, 43, 44]. Building on record-replay system, developers
can implement diagnosis frameworks such as reverse debugging
tools allowing practical analysis of fault, for instance. However, as
these systems require fine-grained recording of programs, they can
incur significant performance overhead. In fact, the traditional high
overhead associated with such record-replay systems, which can
reach 2x [44], generally precludes their use outside of debugging
environments where large performance overheads are tolerable.
This overhead can be prohibitive for production runs, where even
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a small performance penalty per invocation can accumulate, poten-
tially compounding tail latency and degrading overall application
performance. Despite these traditional concerns with record-replay,
we see in serverless computing unique opportunities that could
reduce the typical overheads of record-replay and open the door
for a range of use cases.

In this paper, we aim to understand the feasibility of an always-
on recording framework for serverless computations, which can
provide valuable insights into distributed serverless applications. In
Section 2, we begin by discussing the challenges of applying tradi-
tional record-replay systems to the serverless context. In Section 3,
we explore potential use cases for such a framework. In Section 4,
we identify key properties of serverless computations that can
address the performance limitations of traditional record-replay
system. In Section 5, we discuss the opportunities, challenges, and
long-term future directions of an always-on recording framework.
In Section 6, we discuss how such a recording framework can be
used in a commercial setting. Finally, we conclude our study with a
review of related works in Section 7.

2 Traditional Record-Replay

The record-replay technique [14, 23, 39, 43, 44] involves two stages,
the recording and the replay stage, and aims to ensure that users
can replay a given program execution at a later time. Record-replay
allows users and analysis frameworks to re-execute the exact ex-
ecution, outside of the production run, where performance is not
critical and invasive program analysis techniques (e.g., reverse de-
bugging, data-flow analysis) can be employed, allowing users to
diagnose failures and other executions of interest.

During the recording stage, the record-replay system captures
in a trace file all sources of non-determinism that can impact pro-
gram output and state. These sources include user input and other
relevant events, such as system calls, signals, and context switches.
Using the resulting trace file, the record-replay system can subse-
quently replay the execution by faithfully reproducing the recorded
sequence of events, enabling the developer to observe the program’s
behavior and pinpoint the exact moment when specific issues occur
(e.g., faults, performance bottlenecks, and security attacks).

Mozilla’s RR Background. RR [44] is an efficient record-replay
framework developed by Mozilla to enable lightweight recording
and deterministic debugging of Linux applications. It is known for
its maturity, completeness, and low overhead on real-world low-
parallelism workloads. Across a range of real-world benchmarks,
the record overheads, the most critical overheads in an always-on
setting, were measured to range from 1.49X to 7.85x [44]. Although
these are prohibitive overheads for deployment settings, they are
an order of magnitude lower than prior record-replay techniques
and make RR already practical for testing scenarios.

RR is implemented entirely in user space and runs on stock
hardware, compilers, runtime, and operating systems, making RR
easy to deploy and practical. Although other record-replay systems
are available, we chose to focus in this paper on RR as an example
because of its emphasis on efficiency and deployability. However,
we expect our ideas to be generalizable to other implementations.

RR implements record-replay by combining several techniques.
In particular, it employs ptrace to record program inputs (e.g.,
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system calls and signals), preemptively schedules one thread at
a time to avoid non-deterministic data races, and uses CPU per-
formance hardware counters to measure application progress and
deliver asynchronous signals and context switches at the right time
during replay. RR also handles corner cases that arise in real-world
applications, such as non-deterministic instructions (e.g., RDSTC
and RDRAND), on a per-instruction basis to ensure accurate replay.

Using ptrace typically imposes significant overheads. For in-
stance, when recording system calls with RR, ptrace traps induce
four context switches between the tracee process (application) and
the tracer process (RR). As a result, such context switches can im-
pose high overheads and become system performance bottlenecks.
RR mitigates this overhead source by implementing an in-process
system-call interception library, which intercepts system calls di-
rectly in the tracee process. As a result, RR avoids frequent context
switching between the tracee and the tracer process, improving
performance and reducing overhead.

3 Real-World Serverless Use Cases

An always-on recording system for serverless computations has the
potential to bring forth a wide range of benefits in the serverless
ecosystem by enabling developers to understand the behavior of
their applications better. To make this vision a reality, we need to
build low-cost recording mechanisms that integrate into serverless
frameworks and analysis tools that align with the ease of develop-
ment and use that characterizes serverless computing.

Reverse-Execution Debugging. Reverse-execution debugging
is a powerful technique that allows developers to step backward
through the execution history of a program to identify the root
cause of a bug. With traditional debugging methods, developers
must recreate the conditions that caused the error, which can be
time-consuming and complex. However, with the always-on exe-
cution recording framework, developers can replay the recorded
history for a particular function invocation step-by-step and iden-
tify the point at which the error occurred. This ability not only
reduces debugging time but also improves the accuracy of the de-
bugging process. Moreover, since serverless applications can be
complex and have many function invocations, this technique can
be particularly beneficial in the serverless computing environment.

Reproducing Non-deterministic Failures. Non-determinism
(e.g., inter-lambdas schedules), can lead to intermittent failures,
which do not occur predictably or consistently and are consequen-
tially difficult to reproduce and debug. Thus, diagnosing and re-
solving such failures require significant effort and time on the de-
veloper’s end. Reproducing such failures is incredibly challenging
when dealing with complex distributed systems where reasoning
about the underlying behavior is often challenging. However, with
an always-on recording system, developers can replay the record-
ing using a debugger (e.g., GDB) and pinpoint the exact cause and
any environmental factors that may have contributed to the failure.
As a result, such a system can be especially useful to help diagnose
and resolve rare and hard-to-reproduce failures. In addition, an
always-on recording framework can also aid in integration and
end-to-end testing, where non-deterministic factors such as timing
and concurrency can lead to flaky results.
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Replay Testing on Patches. Much of the program inputs that
record-replay systems, like RR, capture during the recording phase
(Section 2) are already stored in the serverless platform’s data plane.
In addition to leveraging this insight to enhance the efficiency of
the recording phase, developers can use the data along with the
recorded function invocations to check whether the bug can still
be reproduced in the patched candidate version. As a result, such
a validation technique can enable efficient and effective failure
diagnosis and debugging in complex distributed systems.

Diagnosing Hardware Failures. Distributed systems are com-
posed of many interconnected components, each with its respective
hardware and software stacks. Hence, it can become challenging to
diagnose hardware failures in highly distributed systems running
in data centers. Thus, having access to a comprehensive record
of applications’ execution running on the infrastructure can be
crucial in identifying behavior patterns that may indicate hardware
failures. Moreover, such recordings can help cloud providers audit
the fault tolerance of their systems and ensure the required quality
of service to the customers.

Uncovering Performance Bottlenecks. Performance analysis
is a crucial task for the proper functioning of distributed systems.
With the rise of serverless computing, identifying and diagnosing
such bottlenecks has become more challenging due to the lack of
visibility into the underlying infrastructure. Always-on recording
can help assess performance and address bottlenecks by enabling
more fine-grained system analysis. Furthermore, recording at dif-
ferent levels of granularity can assist developers in pinpointing the
exact location of a problem and diagnosing its root cause.

Comprehensive Security Audit. Security is paramount, espe-
cially in today’s multi-tenant environments, and with the increasing
use of third-party components [12, 53]. Always-on recording can
enable developers to identify potential application vulnerabilities
and weaknesses. First, developers can replay particularly malicious-
looking invocations for behavior patterns that indicate an attack or
an attempt at a security breach. Moreover, the recorded execution
can also be used to reconstruct the sequence of events leading up
to the incident, which can help identify the root cause and prevent
similar incidents from happening.

4 Deploying Record-Replay in Serverless

Environments
In this section, we explore the feasibility of using traditional record-
replay systems in serverless computing environments. Specifically,
we explore different approaches to build a serverless record-replay
framework by integrating core components of RR (Section 2) with
OpenFaa$, an open-source serverless platform, measuring its per-
formance and identifying associated costs.

4.1 Straw Man Design and Experimental Setup
As a straw man design, we integrated RR with a modified version
of OpenFaaS$ [5] as shown in shown Figure 1. Our modifications
enabled OpenFaasS to deploy containers with the necessary ptrace
capability and unconfined seccomp profile for RR to function effec-
tively. Within each container, we employed a dispatcher process
written in Python using the Flask [2] framework.
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Figure 1: Straw man system design.

As Figure 5 shows, the client invokes the function (1)), which
passes through OpenFaaS’s gateway ((2)), and is intercepted by the
dispatcher. The dispatcher is configured to spawn a new RR process
(@) for each function invocation, and the function handler runs
as the child process of the RR process. Once the execution of the
function handler completes, the recording of the execution is saved
to an object store (e.g., MinIO [4]) (4)), and the response is returned
to the dispatcher ((5)). The dispatcher subsequently returns the
response to the gateway (@), which returns it to the client (@).
Our modified version of OpenFaaS is deployed on a Kubernetes
cluster using FaaS-Netes [6], OpenFaaS’s provider for Kubernetes.
Finally, our Kubernetes cluster runs in a docker container using
the kind (Kubernetes in Docker) project.

We conducted all system measurements on a virtual machine
(VM) instance of Ubuntu 20.04.5 LTS (focal) that had 4 vCPUs, 8192
MiB of memory, and 50 GiB of disk space with the perf setting of
perf_event_paranoid set to 1. The VM was hosted on a machine
running Ubuntu 22.04 (jammy) LTS with 128 GiB of RAM on a 2.8
GHz AMD EPYC 7402P 24-Core processor.

4.2 Latency Overhead

Our experiments show that significant latency overhead arises
when recording function invocations for deployed serverless func-
tions using the straw man design (Figure 3). Specifically, we measure
the client-side latency of two functions that are representative of
compute-bound and I0-bound workloads: (1) a compute-bound
Python function that multiplies a matrix (MatrixMultiplication),
which was ported from the FaaSDOM benchmark suite [42], and
(2) an I0-bound Python function (Uploader) that uploads a file
from a provided URL to an object store, which was ported from the
SeBS benchmark suite [20]. We use RR to perform the fine-grained
recording of the function handler to measure the overhead induced
in serverless computations accurately.

We ran both functions in two modes: with recording (represented
by the orange line graph) and without recording (represented by
the blue line graph) for 100 requests each. We observe that for the
matrix multiplication workload, the recording enabled function
invocation takes 328.20 ms on average with a standard deviation of
77.36 ms. In comparison, the recording disabled function invocation
takes 169.86 ms on average, with a standard deviation of 5.63 ms. As
a result, we can compute that the function invocation incurs 1.93x
latency overhead when recording is enabled. Similarly, we observe
that for the uploader workload, the recording enabled function
invocation takes 838.80 ms on average with a standard deviation of
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Figure 2: Client-side latency comparison between recording-
enabled (using RR) and recording-disabled execution of the
function handler for a matrix multiplication workload. The
initial request experiences intermittently high overheads.
Despite this initial instability, the system stabilizes quickly
after the first request.

70.70 ms, while the recording disabled function invocation takes
456.00 ms on average with a standard deviation of 181.58 ms. As a
result, we can compute that the function invocation incurs 1.84x
latency overhead when recording is enabled. Thus, our findings
confirm that RR, in its current form, imposes a high overhead that
is prohibitive for always-on recording serverless computations of
deployed functions.

We note that we focus on the recording stage cost because that
is the main performance consideration for always-on production
settings. This observation is made under the assumption that record-
ing would happen more often than replaying, and recording would
potentially operate on client-facing applications and workloads,
which are generally performance critical. Furthermore, as RR is
not multi-threaded, the latency increase also results in decreased
throughput and corresponding increased CPU usage.

4.3 Overhead Sources

Interestingly, there are only a few primary overhead sources for
recording computations with RR. However, some sources play a
significant role in the overall system performance.

Instrumentation Mechanism. Because RR uses the ptrace ker-
nel mechanism to intercept program events, in particularly system
call IO, this process involves significant context switching between
the application process (tracee) and the RR process (tracer) caused
by the ptrace traps. The context switch overhead is especially detri-
mental to system calls that execute faster than the typical cost of a
context switch, some of which are common (e.g., gettimeofday).
RR tries to mitigate this overhead using an in-process system-call
interception library, which intercepts system calls directly in the
tracee process and shares the I/O of the system call with RR via a
shared buffer. However, the short-lived nature of serverless com-
putations undermines most of the performance gains of this op-
timization because short-lived processes pay the cost of library
initialization but terminate before patching becomes mainstream.

Capturing Program Inputs. In order to accurately capture all
the relevant program inputs, the system needs to record the inputs
provided to the program through the system call interface.
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Figure 3: Client-side latency comparison between recording-
enabled (using RR) and recording-disabled execution of the
function handler for a file upload workload.

During the system call traps, RR usually duplicates the system
call output (i.e., inputs to the program) buffers to per-thread scratch
buffers in order to prevent race conditions between the kernel’s
write to the output buffers and the running thread. After the com-
pletion of the system call, RR copies the contents of the scratch
memory to the real user-space destinations, thereby keeping a copy
of it. As the RR process blocks the running thread when copying
the contents of the buffer to scratch memory, and subsequently to
the actual user-space destination, this mechanism adds overhead
to program recording, which can be particularly pronounced for
10-bound applications.

Uniprocessor Scheduling. Concurrency is typically a major con-
tributor to the overhead incurred by RR, especially on highly con-
current programs. Since RR preemptively leverages uni-processor
scheduling (i.e., it only allows a single thread to execute at a time) to
resolve data races during recording, forcing a deterministic sched-
ule [44], applications with high parallelism incur high overheads.

Other Overheads. Special instructions (e.g. RDTSC) present an-
other source of program non-deterministic input that must be
recorded for accurate replay. RR records such instructions by patch-
ing them explicitly. For instance, RR configures the CPU to trap
RDTSC using Linux’s prctl APL While dealing with special instruc-
tions requires custom patches to be written and maintained by RR
developers, these patches do not significantly increase the recording
overhead.

To better assess the overhead of a record-replay technique, we
compared the overhead of RR with the overhead of only using
strace on the function. Unlike RR, strace records both the input and
output and relies exclusively on ptrace. As Table 1 shows, recording
system results through ptrace, the traditional interposition mech-
anism, is very expensive for a default-on technique that is aimed
to be deployed at scale. However, this experiment also shows that
the other sources of overhead used by RR further and drastically
increase the overheads when compared with the strace approach
for ephemeral functions.

5 Opportunities and Challenges for Always-On
Recording

As discussed in Section 4, RR in its current form has a high overhead,
rendering it impractical to use outside debugging environments.
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Function Baseline With RR With strace
Matrix 169.9 ms (1.00X) 328.2 ms (1.93%) 206.2 ms (1.21X)
Uploader 455.9 ms (1.00X) 838.8 ms (1.84X) 540.2 ms (1.18X)

Table 1: Overhead comparison for two functions, Matrix and
Uploader. Table compares the median per-request overhead
caused by RR and strace over the baseline (i.e., without RR).

Hence, it is imperative to re-think the record-replay approach to
make it cost-effective, given the unique properties of serverless
computing environments.

5.1 Towards Always-On Serverless
Record-Replay

This section explores the unique characteristics of serverless com-
puting that allow for cost-effective insights into application behav-
ior in production settings. Furthermore, it examines the challenges
of implementing an always-on approach.

Limited Concurrency. The design of serverless platforms natu-
rally encourages single-threaded execution by allowing developers
to simply use more lambdas for parallelism [30]. As a result, server-
less functions typically have limited (or no!) concurrency within the
execution pod (e.g., a single thread runs in a container). Moreover,
serverless functions are designed to be event-driven and invoked
on-demand for a specific task rather than running continuously in
the background.

Opportunity: The lack of intra-lambda concurrency significantly
(or entirely) reduces the need for schedule recording, a major source
of runtime overhead in traditional record-replay [9, 41, 44]. When
there is only a single thread of execution within a serverless function,
we obviate the need to record shared memory accesses or enforce
deterministic schedules during recording.

Although serverless functions typically have low-to-no concur-
rency within a single lambda, the serverless model allows develop-
ers to scale out computations by deploying multiple instances of
the same function concurrently (i.e., launching more lambdas in
parallel). This means that an effective record-replay technique still
needs to address inter-lambda concurrency, but this can be done
through data-plane recording, as we discuss next.

Dataflow-Aware Platforms. In the serverless model, I/O opera-
tions are prevalent in the data-plane of serverless platforms. This
means that large amounts of I/O data related to the serverless com-
putations is stored within the data-plane (e.g., key-value stores,
object stores). However, record-replay systems conduct expensive
operations to capture I/O data associated with system calls, which
negatively impact the performance of serverless applications, par-
ticularly in I/O-bound workloads.

Opportunity: Since much of the inter-lambda IO is already tracked
by the serverless infrastructure, we do not need special instrumen-
tation techniques to intercept this program input. Importantly, not
Just we avoid instrumentation costs, but it may also be possible to
leverage data already stored by serverless infrastructure, in particu-
lar, data stores, by exploiting the immutability of data in key-value
stores or through store versioning techniques (e.g., [21]).
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Figure 4: Levels of granularity for always-on recording.

Although the high-level IO arising from the interaction of the
lambdas with stores or other lambdas can be addressed with this ap-
proach, instrumentation may still be required for low-level program
IO, such as system calls made by libraries (e.g., getting the time
of day, getting process ID). We expect to be possible to avoid the
low-level IO overhead through dedicated runtimes that constrain
the interactions with the kernel, such as minimal library OSes [48]
or kernel extensions [13], or through optimized instrumentation
mechanisms.

Extensive Code Reuse and Execution Redundancy. In server-
less platforms, it is typical for developers to run multiple instances
of the same function. As these instances execute the same code
across similar inputs, there can be significant redundancy in the
function computations. In recent times, distributed systems have
employed techniques to aggregate knowledge distributed across
nodes, thereby improving system efficiency. For instance, prior
work leverages JIT aggregated runtime profiles across nodes to
start functions faster [18] and proposes optimized fork system calls
that generalize copy-on-write to the page tables [56].

Opportunity: The computation patterns of serverless computing
present an opportunity to enhance system-wide efficiency by aggre-
gating knowledge about unique sub-parts of the execution traces
and avoiding redundant analysis or binary patching.

Transient Function Executions. In production, serverless func-
tions typically have short-live executions [47], posing a challenge
for record-replay systems, which are optimized for long-running
computations. For instance, RR employs an in-process system-call
interception library to bypass expensive context switches when
recording system calls. However, this technique is ineffective in
serverless environments due to the short lifespan of serverless func-
tions, which prevent amortization of the library initialization cost,
as shown in Figure 3.

Opportunity: Reducing overheads by caching the in-process
system-call interception library. In the serverless model, the
checkpoint-restore technique has become prevalent. Various sys-
tems [51] use checkpoint-restore tools like CRIU to obtain the snap-
shot of the sandbox after the initialization is completed and subse-
quently use this snapshot to restore the state for future invocations,
effectively bypassing the cold start. Leveraging this approach, we
can obtain warm-starts and also cache record-replay system opti-
mizations that have a high initialization cost [18].

5.2 Recording Granularity
Serverless computations can be recorded at various levels of granu-
larity, each with their own advantages and disadvantages. Figure 4
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@app.route("/", defaults={"path": ""}, methods=["POST", "GET"I)
def main_route(path):

raw_body = os.getenv("RAW_BODY", "false")

as_text = True

if is_true(raw_body):

as_text = False

# Invoke the function handler by creating a child process per

< invocation with recording enabled.

result = subprocess.run("rr record python3

< /home/app/function/handler.py", shell=True,

< stdout=subprocess.PIPE)

output = result.stdout.decode()

return {"response": output}
Figure 5: Code snippet for dispatcher’s handling of a function
invocation. For each invocation, the dispatcher (implemented

using Flask) creates a new child process.

shows three levels of granularity, which range from fine-grained
(recording each function handler), to slightly more coarse-grained
(recording the dispatcher), and finally, coarse-grained (recording
the entire sandbox, a Kubernetes pod in our case).

Function Level. The finest-level of granularity consists of record-
ing at the function handler level. To achieve this level of granularity,
the dispatcher spawns a new function handler child process with
recording enabled per invocation. This model allows for a one-to-
one relation between recording and function invocation, making
it suitable for debugging and profiling. As each function invoca-
tion incurs the cost of launching a recorder process, recording at
such granularity can incur significant overhead, which may be
prohibitive for production environments.

Dispatcher Level. The slightly coarser level of granularity is
where we record the dispatcher, which is responsible for handling
requests for a particular serverless function. At this granularity,
we launch only one recorder process for all the invocations that
flow through the dispatcher. Figure 6 shows the latency overhead
that arises when recording the dispatcher for deployed serverless
functions. We use the same setup and methodology as the experi-
ment outlined in Section 4. Compared to unrecorded invocations,
we observe that the compute-bound function incurs an overhead
of 8% and the I0-bound function incurs an overhead of 17%, which
are both much lower than the overhead of recording with fine-
grained granularity. Furthermore, recording at this granularity may
enable interesting applications such as differential request analysis
through request annotation. However, as the scope of recording
increases, we may also have higher storage requirements and incur
slowdowns caused by multi-threading in the dispatcher (but not
lambda functions).

Sandbox Level. At the coarsest level of granularity, the record-
ing is done at the sandbox level. This involves launching a single
recorder process for the entire lifecycle of the serverless function.
While it provides a comprehensive view of the environment and is
useful for identifying infrastructure and network issues, recording
the entire pod for the function’s entire lifecycle can add consider-
able overhead. Moreover, the record-replay system may experience
slowdowns due to multi-threaded executions, making it challenging
for production deployments.
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5.3 Long-term Research Directions

Besides the opportunities that we identify in the previous section,
suggesting the viability of an always-on record framework for
serverless, we further elaborate on potential long-term research
directions that address open problems in this setting.

Prevalence of Managed Runtimes. Most serverless functions are
written in high-level languages, which run on managed runtimes
within the sandboxes. For example, in AWS Lambda [31], 89% of all
serverless functions are written in Node.js and Python [49]. One
challenge of managed runtimes is that they add significant complex-
ity, which may hinder analysis during replay. This complexity arises
from their advanced features and complex language requirements
and includes notable examples such as garbage collection, just-in-
time compilation, and dynamic class loading. Hence, it is important
to build techniques that can provide actionable data to developers
when such executions are replayed, especially if failures arise from
subtle interactions between the language and the runtimes (e.g.,
failures dependent on the memory layout or JIT optimizations).

Disparate Traffic Patterns. Due to the event-driven nature of
serverless computing, there is a high variance in traffic patterns of
different workloads. This variance can be particularly challenging
in burst-parallel applications, such as data analytics, video encoding,
and code compilation [54], which trigger highly parallel tasks with
thousands of serverless functions. Such workloads can generate a
massive amount of data to record, which can result in large record-
ing volumes of data, making it challenging to store and manage the
data. As a result, it is crucial for an always-on recording framework
at the data center level to be sufficiently elastic to accommodate
workloads bursts of serverless applications and efficiently manage
recorded data.

Pervasive Heterogeneity. Serverless computing environments
can be heterogeneous with various combinations of hardware and
software, including operating systems and runtimes. This hetero-
geneity in serverless platforms, such as the one found in AWS
Lambda [31], Azure Functions [1], and Google Cloud Functions [3],
can present a hindrance in enabling efficient and reliable record-
ing of serverless computations. As a result, a practical always-on
recording framework needs to support hardware and software het-
erogeneity.

Sensitive Data and Code Execution. Serverless functions run
in highly consolidated multi-tenant environments [7], and there-
fore have rigorous security requirements. Incorporating always-on
recording adds another layer of complexity to the security land-
scape. By nature, recording the serverless computations captures
a wealth of data, including potentially sensitive user I/O, environ-
ment variables, and secrets. As a result, such recordings increase
the attack surface of the system and make it vulnerable to data
breaches. Furthermore, as replaying the code requires execution of
instructions, attackers can potentially tamper with the recordings
or falsify them to execute malicious code, potentially compromising
the integrity and security of the system. As a result, it is crucial
implement appropriate security measures, such as encryption and
access control mechanisms, to mitigate potential risks.

Trace Data Management. Serverless computations often involve
multiple small functions that interact with each other to accomplish
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a task, which can result in a large number of function invocations
and complex control flows. As a result, the always-on recording
framework can generate a significant amount of trace data that
needs to be processed and analyzed, which can be computationally
expensive and may become a bottleneck in the analysis pipeline. As
aresult, it is crucial to enhance the efficiency of trace data storage
and processing in order to avoid incurring prohibitive costs.

Serverless Testing. Despite extensive work on testing techniques
[24, 29, 40], serverless testing poses unique challenges due to the
distribution, heterogeneity, and scale of serverless workloads and
environments. A record-replay system could alleviate some con-
cerns with the testing space size by allowing developers to direct
testing toward faults observed in specific deployments [15].

6 Discussion

Always-on, selective-on, and pay-to-be-on in commercial
clouds. Our work explores the technical feasibility of building a
record-replay technique with sufficiently low overhead to be consid-
ered an always-on feature made available to all serverless functions.
A low-cost approach aims to ensure that the overall computational
cost of the technique is low and that the impact on end-users is
low for end-user-facing services. Despite our preliminary analysis
showing encouraging results, we still expect some overheads and
hence costs. A non-zero cost means that users are still incentivized
to selectively enable such a feature when the value outweighs the
costs. When enabled, the users would ultimately pay these costs
according to the provider’s business model in a commercial setting.
Furthermore, the record-replay mechanism we envision would add
value to the service, representing an added-value opportunity that
could be charged according to its utility. Thus, whether a low-cost
record replay mechanism becomes an always-on service or a pay-
to-be-on service will ultimately depend on the cloud provider and
developer choices.

7 Related Work

There is a growing body of work dedicated to understanding and
diagnosing the complex behaviors of distributed systems. One such
technique is distributed tracing, which is used to understand the
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high-level path of a request as it flows through the different com-
ponents of the system. Black-box systems [8, 46] conduct trac-
ing transparently to the application, however, may have impre-
cision and higher overheads due to their reliance on statistical
inference for determining causality. On the other hand, some ap-
proaches [19, 25, 50] modify libraries or other system layers to
determine causality. Distributed tracing systems often rely on per-
sistent identifiers to accurately trace requests across component
boundaries in a distributed environment. Fault injection is another
well-known technique, which is used to enable more effective test-
ing strategies for distributed systems to ensure their robustness
and dependability. Fault injection systems [36] are used which
deliberately introduce faults into the system, both hardware and
software, ranging from simple and deterministic to more complex
and non-deterministic.

Record-replay systems have been used for quite some time to
provide accurate low-level insights into the execution of a program.
These systems record all the sources of non-determinism such as
system calls, signals, and context switches during execution and
then replay these events to deterministically reproduce the behavior
of program. Several approaches [14, 23, 39] have limited deploya-
bility due to their coarse granularity and required modifications to
underlying hardware or software. RR [44] is a record-replay sys-
tem that is particularly well suited for mass deployment because
of its comprehensive support for real-world program features and
reduced overhead, especially for low-parallelism workloads.

Additionally, systems like Boki [33] and AFT [52] provide novel
mechanisms to manage the state of serverless functions and en-
hance the reliability of serverless applications. Some of the tech-
niques rely on intercepting environment interactions to improve
the guarantees of serverless functions. Unlike these approaches,
our goal is to record the entire function execution such that the
effects and state of the functions can be faithfully replayed.

8 Conclusion

To address the programming, debugging, and analysis challenges of
serverless computing, we have presented our vision for an always-
on recording framework that efficiently captures low-level details of
serverless computations, building upon traditional record-replay ap-
proaches. In this paper, we have examined the design considerations
for such a framework and discussed the potential opportunities and
challenges for building it. Additionally, we have outlined promising
future research directions for improving the system. We believe
that such a framework has the potential to provide greater visibil-
ity for developers, enabling them to diagnose faults, understand
interactions between components, conduct performance analysis,
and ensure security and efficiency.
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