Sparse plus low-rank graphical models of time series

Presented by Rahul Nadkarni Joint work with Nicholas J. Foti, Adrian KC Lee, and Emily B. Fox University of Washington August 14th, 2016

Brain Interactions from MEG

Magnetoencephalography (MEG) captures weak magnetic field.

Goal: Infer functional connectivity

Graphical Models

Graph G=(V, E) encodes conditional independence statements.
nodes edges

No edge $(i, j) \leftrightarrow X_i$, X_j conditionally independent given rest of variables.

 $X_1 \perp\!\!\!\perp X_2 | X_3, X_4, X_5$

Graphical Models of Time Series

No edge $(i,j) \Rightarrow$ time series X_i , X_j conditionally independent given *entire trajectories* of other series.

• Accounts for interactions at all lags.

• Removes linear effects of other series.

Natural property for **functional connectivity**

Examples of existing work:

Bach et al. 2004, Songsiri & Vandenberghe 2010, Jung et al. 2015, Tank et al. 2015

Latent structure

Examples of existing work:

Chandrasekaran et al. 2012, Jalali & Sanghavi 2012, Liégois et al. 2015

Encoding graph structure

Gaussian random vectors

- For Gaussian random vector $|X \sim \mathcal{N}(0,\Sigma)|$

Conditional independence encoded in the precision matrix.

 X_i , X_j conditionally independent given rest of variables.

Gaussian stationary processes

How is conditional independence encoded?

Model in the Frequency Domain

Lagged covariance matrix $\Gamma(h) = \operatorname{Cov}(X(t), X(t+h)) \longrightarrow S(\lambda) = \sum_{h=-\infty}^{\infty} \Gamma(h) e^{-i\lambda h}$

Encoding structure in frequency domain

Learning structure from data

Penalized likelihood expression

What's our likelihood in the frequency-domain case?

Likelihood in the Frequency Domain

Time Domain Likelihood

Frequency Domain Likelihood

$$p(X(1), \dots, X(T) | [\Gamma(h)]_{h=0}^{T-1}) \longrightarrow p(d_0, \dots, d_{T-1} | \{S(\lambda_k)\}_{k=0}^{T-1})$$

Fourier coefficients

Fourier coefficients are asymptotically independent, complex Normal random vectors (Brillinger, 1981)

Penalized likelihood expression in frequency domain

Spectral graphical LASSO (Jung et al. 2015)

solved with: ADMM (Jung et al. 2015)

Incorporating latent processes

Latent structure in MEG

- MEG recordings affected by neural activity unrelated to task
- Mapping from recordings to brain activity introduces "point spread"

These issues can be addressed by adding a latent component to the model

Sparse plus low-rank decomposition

Sparse plus low-rank penalized likelihood

solved with ADMM (Ma et al. 2013)

Latent variable spectral GLASSO

negative log-likelihood:

$$\sum_{k=0}^{T-1} \left(-\log \det(\Psi[k] - L[k]) + \operatorname{tr}\left\{ \hat{S}[k](\Psi[k] - L[k]) \right\} \right)$$

Whittle approximation

sparse penalty:

low-rank penalty:

$$\sum_{i < j} \sqrt{\sum_{k=0}^{T-1} |\Psi[k]_{ij}|^2}$$

 $\sum_{k=0}^{T-1} \operatorname{tr} \left\{ L[k] \right\}$

Group LASSO penalty

Used ADMM to solve this convex formulation

Analysis pipeline

Synthetic data results

p = 149, h = 1, 5 runs

p = 149, h = 5, 5 runs

MEG Auditory Attention Analysis

Maintain or Switch attention (Left/Right, High/Low pitch)

- 16 subjects, 10-50 trials each.
- Each trial results in a 149-dimensional time series.

Summary

- Frequency domain for conditional independence structure and likelihood
- Modeling latent component gives sparser, more interpretable graphs
- Latent variable, spectral models are important in neuroscience