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Brain	Interactions	from	MEG
Magnetoencephalography	(MEG)	captures	weak	magnetic	field.

Goal:	Infer	functional	connectivity
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Graphical	Models
• Graph	G=(V,	E)	encodes	conditional	independence	statements.
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edgesnodes

No	edge (i,	j) Xi ,	Xj conditionally independent
given rest	of	variables.

$

X1 ?? X2|X3, X4, X5



Graphical	Models	of	Time	Series
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No	edge (i,j) time	series Xi ,	Xj conditionally independent
given	entire	trajectories of	other	series.

)

• Accounts	for	interactions	at	all	lags.
• Removes	linear	effects of	other	series.

Natural	property	for	functional	connectivity

Examples	of	existing	work:
Bach	et	al.	2004,	Songsiri &	Vandenberghe 2010,	
Jung	et	al.	2015,	Tank	et	al.	2015



Latent	structure

observed	variables

latent	variables

+

marginalized	
over	latent	
variables

observed	component latent	component
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Examples	of	existing	work:
Chandrasekaran et	al.	2012,	Jalali &	Sanghavi 2012,	Liégois et	al.	2015



Encoding	graph	structure
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Gaussian	random	vectors
• For	Gaussian	random	vector
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X ⇠ N (0,⌃)

()

⌃�1 =

Conditional	independenceencoded	in	the	precision	matrix.

Xi ,	Xj conditionally independentgiven rest	of	variables.



Gaussian	stationary	processes
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...

X1(t)

X2(t)

Xp(t)

...

�(h) = Cov(X(t), X(t+ h))

lagged	covariance:

How	is	conditional	independence encoded?

�(h)
?



Model	in	the	Frequency	Domain

FFT

2.3 Stationary Time Series

Let X(t) = (X1(t), ..., Xp(t))
T 2 Rp for t 2 Z be a

multivariate Gaussian stationary time series such that:

E(X(t)) = µ 8t 2 Z (2)
Cov(X(t), X(t+ h)) = �(h) 8t, h 2 Z. (3)

A time series probabilistic graphical model (TGM), G =

(V,E), may be constructed by letting (i, j) /2 E denote
that the entire time series Xi(:) and Xj(:) are conditionally
independent given the remaining collection of time series
XZij where Zij = V \ {i, j}. For the Gaussian stationary
series we consider, one can show that conditional indepen-
dence holds between time series iff [8]

Cov(Xi(t), Xj(t+ h)|XZij ) = 0 8h 2 Z. (4)

The spectral density matrix of a stationary time series is
defined as the Fourier transform of the lagged covariance
matrices, �(h) = Cov(X(t), X(t+ h)):

S(�) =

1X

h=�1
�(h)e�i�h (5)

for � 2 [0, 2⇡] and S(�) 2 Cp⇥p and Hermitian positive
definite. The marginal dependencies between time series
are captured by S(�), and from Eq. (5), S(�)ij = 0 for
all � 2 [0, 2⇡] iff �(h)ij = 0 for all h 2 Z. Further-
more, conditional independence between Gaussian station-
ary time series holds iff

S(�)�1
ij = 0 8� 2 [0, 2⇡], (6)

implying that inferring zeros in the inverse spectral den-
sity matrices across frequencies equates with inferring the
TGM structure [8].

3 A Bayesian Approach

There are two standard approaches to Bayesian inference
in graphical models: (1) placing a prior that jointly spec-
ifies the graph structure and associated parameters or (2)
placing a prior on graph structures and then a prior on pa-
rameters given a graph; both rely on specifying a likelihood
model. We opt for the second approach and describe the
various components in this section. At a high level, our
methods combine existing Whittle likelihood based meth-
ods [13, 14] with the hyper Markov framework to Bayesian
graphical modeling [19, 18]. In the context of our TGMs,
we introduce a conjugate hyper complex inverse Wishart

prior on graph-constrained spectral density matrices. By
integrating out the spectral density matrices, we obtain a
marginal likelihood of the time series given the graph struc-
ture, G, allowing us to straightforwardly leverage state-of-
the-art computational methods for i.i.d. Bayesian structure
learning.

3.1 Whittle likelihood

Let X = [X(1), . . . , X(T )], with x(t) 2 Rp a realiza-
tion of a p-dimensional stationary Gaussian time series ob-
served at T time points, and X1:N = {X1, . . . ,XN} be
the collection of N independent realizations. We move to
the frequency domain by transforming each Xi using a dis-
crete Fourier transform. Let dnk 2 Cp denote the discrete
Fourier coefficient associated with the nth time series at
frequency �k =

2⇡k
T :

dnk =

1

T

T�1X

t=0

xn(t)e
�i�kt. (7)

The Whittle approximation [12] assumes the Fourier coef-
ficients are independent complex normal random variables

with mean zero and covariance given by the corresponding
spectral density matrix Sk = S(�k):

dnk ⇠ Nc(0, Sk) k = 0, . . . , T � 1, (8)

such that the likelihood of X1:N is approximated as

p(X1:N |S0:T�1) ⇡
NY

n=1

T�1Y

k=0

1

⇡p|Sk|
e�d⇤

nkS
�1
k dnk , (9)

where 1
⇡p|S|e

�z⇤S�1z is the density of a complex normal
distribution, Nc(0, S), with S 2 Cp⇥p and Hermitian posi-
tive definite. See the Supplement. The Whittle approxima-
tion holds asymptotically with large T [24, 25, 12]. This
approximation has been used in the Bayesian context in
[26, 27]

Recall that conditional independencies are encoded in the
off diagonal elements of S�1

k . If time series Xi(t) and
Xj(t) are conditionally independent, then the Whittle ap-
proximation says that as T gets large the ith and jth ele-
ments of the Fourier coefficients dnk are conditional inde-
pendent across all frequencies. Thus, if G is decomposable,
Eq. (9) can be rewritten as

p(X1:N |G,S0:(T�1)) ⇡ (10)
T�1Y

k=0

Q
C2C

1
⇡N|C||SkC |N e�trPkCS�1

kC

Q
S2S

1
⇡N|S||SkS |N e�trPkSS�1

kS

where

Pk =

NX

n=1

dnkd
⇤
nk (11)

is the aggregate periodogram over the N time series at fre-
quency 2⇡k

T . For A ⇢ V , SkA and PkA are the restriction
of both matrices to the elements in A and |A| denotes the
cardinality of the set A.

Spectral	density	matrix

X(t) dk

Lagged	covariance	matrix

S(�) =
1X

h=�1
�(h)e�i�h

9



Encoding	structure	in	frequency	domain
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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�1 �2 �k �T. . . . . .
complex inverse	spectral	density	matrices

(Dahlhaus,	2000)		For	Gaussian stationary	time series,	
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Figure 5: The graph used for a 16 channel iEEG electrode and corresponding traces
over 25 seconds of a seizure onset with colors indicating the inferred channel states. The
event states are shown below along with the associated innovation covariances. Vertical
dashed lines indicate the EEG transition times marked independently by an epileptologist.
Vertical and horizontal scale bars denote 1 mV and 1 second, respectively.

our event states provide an important global summary of the dynamics of
the seizure that augments the information conveyed from the channel state
sequences.

Clinical relevance. While interpreting these state sequences and covariances
from the model, it is important to keep in mind that they are ultimately
estimates of a system whose parsing even highly-trained physicians disagree
upon. Nevertheless, we believe that the event states directly describe the
activity of particular clinical interest.

In modeling the correlations between channels, the event states give in-
sight into how di↵erent physiologic areas of the brain interact over the course
of a seizure. In the clinical workup for resective brain surgery, these event
states could help define and specifically quantify the full range of ways in
which neurophysiologic regions initiate seizures and how others are recruited
over the numerous seizures of a patient. In addition, given fixed model pa-
rameters, our model can fit the channel and event state sequences of an
hour’s worth of 64-channel EEG data in a matter of minutes on a single
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⌃�1 =

For	Gaussian i.i.d.	random	variables,	

S(�)�1 :



Learning	structure	from	data
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Penalized	likelihood	expression
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+

X

i<j

| ij |� log det + tr

n

ˆS 
o

negative	log-likelihood	 of	Gaussian sparsity-inducing	penalty

� log (Likelihood( )) � · Penalty( )

What’s	our	likelihood in	the	frequency-domain	case?	

Graphical	LASSO (Friedman	et	al.	2007)

sample	covariance	matrix

inverse	covariance	matrix

solved	with:	many	existing	algorithms



Likelihood	in	the	Frequency	Domain
Time	Domain	Likelihood Frequency	Domain	Likelihood

Fourier	coefficients	are	asymptotically	independent,
complex	Normal	random	vectors	(Brillinger,	1981)

Sk ⌘ S(�k)

p(d0, . . . , dT�1|{S(�k)}T�1
k=0 )p(X(1), . . . , X(T )|[�(h)]T�1

h=0 )

Whittle	Approximation

p(d1, . . . , dT |{S(�k)}T�1
k=0 ) ⇡

13

T�1Y

k=0

1

⇡p|Sk|
e�d⇤

kS
�1
k dk

Fourier	coefficients



� log

 
T�1Y

k=0

1

⇡p|Sk|
e�d⇤

kS
�1
k dk

!
Penalized	likelihood	expression	in	frequency	domain
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+

Group	LASSO	penalty

� · Penalty( )

Spectral	graphical	LASSO (Jung	et	al.	2015)

sample	spectral	density	matrix

inverse	spectral	density	matrix

solved	with:	ADMM (Jung	et	al.	2015)

T�1
X

k=0

⇣

� log det [k] + tr

n

ˆS[k] [k]
o⌘ X

i<j

vuut
T�1X

k=0

| [k]ij |2



Incorporating	latent	processes
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Latent	structure	in	MEG

• MEG	recordings	affected	by	neural	
activity	unrelated	to	task

• Mapping	from	recordings	to	brain	
activity	introduces	“point	spread”

observed	variables

latent	variables

These	issues	can	be	addressed	by	adding	
a	latent	component	to	the	model

16



Sparse	plus	low-rank	decomposition

–
-1

⨉ ⨉

low-rank	(rank	r	<<	p)sparse

p r

S�1 = K =


KOO KOH

KHO KHH

�
=

KO =

observed-observed

hidden-observed
hidden-hidden

17

observed-hidden



Sparse	plus	low-rank	penalized	likelihood
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-1
⨉ ⨉tr{ }

sparse	penalty: low-rank	penalty:

| |ij
X

i<j

–
-1

⨉ ⨉

 L

� log det( � L) + tr

n

ˆS( � L)
o

Latent	variable	GLASSO (Chandrasekaran et	al.	2012)

solved	with	ADMM(Ma	et	al.	2013)

negative	log-likelihood:



T�1X

k=0

tr {L[k]}

Whittle	approximation

Group	LASSO	penalty

X

i<j

vuut
T�1X

k=0

| [k]ij |2

Latent	variable	spectral	GLASSO

19

Used	ADMM	to	solve	this	convex	formulation

sparse	penalty: low-rank	penalty:

negative	log-likelihood:
T�1
X

k=0

⇣

� log det( [k]� L[k]) + tr

n

ˆS[k]( [k]� L[k])
o⌘



Analysis	pipeline

Multivariate	time	series	data Estimated	spectral	density

sparse	component:

low-rank	component:

graph

time	domain frequency	domain

ADMM

20



Synthetic	data	results
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MEG	Auditory	Attention	Analysis

22

Maintain or	Switch attention
(Left/Right,	High/Low	pitch)

• 16	subjects,	10-50	trials	each.
• Each	trial	results	in	a	149-dimensional	 time	series.



Summary

• Frequency	domain	for	conditional	independence	structure	and	likelihood

• Modeling	latent	component	gives	sparser,	more	interpretable	graphs

• Latent	variable,	spectral	models	are	important	in	neuroscience

sparse	component:

low-rank	component:

graph
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