Learning dynamic functional connectivity networks from infant
magnetoencephalography data

Inferring brain interactions is an important problem in neuroscience with far-reaching applications, in-
cluding understanding neurological disorders such as autism. An open area of research is studying how brain
connectivity evolves in the early stages of learning and development. We approach this problem through
the lens of functional connectivity which describes the temporal correlation between patterns of activity
in two brain regions, and is an important measure for studying how the brain processes information [1].
Specifically, we are interested in learning functional connections from neuroimaging recordings collected via
magnetoencephalography (MEG), a popular technique that boasts high temporal resolution with fairly good
spatial resolution [2].

Our particular case involves two key modifications to the original setup of learning a functional connec-
tivity network from MEG data. The first is that we are interested in dynamic connectivity, as studying
how these connections change over time could yield insight that wouldn’t be possible from studying static
networks. The high temporal resolution of MEG recordings allows us to study the dynamics of the data even
over short time intervals. Additionally, we are interested in learning these connections from infant recordings
to improve our understanding of how the brain changes during early learning and development. Analyzing
infant data poses a number of additional problems, including (i) high intra-subject variability due to noise
from head size and head movements during recording sessions as well as (ii) high inter-subject variability as
a result of large variation in anatomy and early brain development across subjects.

A promising technique for learning dynamic functional connections from MEG data comes from a recently
proposed state-space modeling approach, which learns a linear dynamical system over estimates of cortical
signals and uses the learned dynamics as a measure of directed connectivity between particular regions of
interest, or ROIs [3]. Specifically, the ROI signals follow a time varying vector autoregressive model

Uy = Agty—1 + € et ~ N(0,Q), (1)

where u; € RP describes the activity across p ROIs at timepoint ¢, and A; € RP*P describes the dynamics
within and between ROIs at time ¢. Given the ROI signals, the sensor recordings are obtained according to

yp = Cug + 1y ne ~ N(0, R) (2)

where y; € R™ is a vector of recorded values across n MEG sensors, C € R"*P is a known matrix that
describes the transformation from p ROI locations to n sensors, and R € R™*" is a noise covariance matrix
that is a combination of variation in ROI activity and noise from the sensors themselves. Previous work
developed this state-space modeling approach to simultaneously learn connectivity while performing source
localization of signals from MEG sensor recordings [3]. Two significant advantages of this method over
traditional approaches are: (1) avoiding the two-step procedure that first involves an ill-posed mapping from
sensor space to source space, introducing numerous artifacts in the source-localized signals used to infer
connectivity in the second stage; and (2) capturing directed connectivity that changes over short time scales.

Although a promising first step, Yang et al. [3] only apply the state-space model to data from a single
subject performing a visual task. Such an approach is ill-suited to studies of auditory behavior where the
interactions are much weaker, necessitating integrating data from multiple subjects to boost the signal-to-
noise ratio. This poses a non-trivial extension since different subjects can have different channels corrupted
(which are typically discarded prior to analysis). To handle this situation, we extend the model in Egs. (1)
and (2) to learn a set of shared dynamics while making use of subject-specific structural and sensor noise
information. Preliminary experiments on simulated data indicate that this state-space modeling approach
works well when incorporating structural information from adult subjects. Performing the same analysis
with identical simulated dynamics—but now modeled using infant structural information—demonstrates
that integrating across subjects is even more critical in this case; see Fig. 1. We see that when analyzing a
single infant subject, the inferred directed connections are much further from the true connections than in
the case of a single adult subject. Considering multiple infant subjects mitigates this issue. The reason for



these differences relative to the adult analysis is that infant structural information is inherently noisier and
thus more difficult to learn known connectivity from, necessitating sharing of information between subjects.
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Figure 1: Results for simulated dynamics, where the plots show (from left to right, top to bottom): the true
dynamics; learned dynamics using adult structural information, one subject; learned dynamics using adult
structural information, two subjects; learned dynamics using infant structural information, one subject; and
learned dynamics using infant structural information, two subjects. Despite using the same data and region
labels corresponding to the infant brain, the learned dynamics corresponding to the infant structurals are
noisier than for the adult structurals. By sharing dynamics across two infant subjects while maintaining
independent structural and sensor noise information, we can better recover the true connectivity as compared
to the single-subject infant case.

Our synthetic experiments demonstrate that infant structural information is inherently noisier than that
of adults, resulting in the need to share information across subjects to better separate the meaningful signal
from the noise. However, sharing information without modeling inter-subject variability can fail to uncover
meaningful patterns that are specific to certain subjects, but not globally expressed. This motivates the
development of a hierarchical model which can learn some global set of dynamics that includes shared features
across all subjects, while also learning subject-specific dynamics that are instances of the global trend but
also contain useful intra-subject variation. We hope to pursue the development of such a hierarchical model
in our future work, and apply it to newly collected infant MEG data to attempt to learn these networks
while better modeling issues specific to the infant brain. The state-space model explored herein provides a
natural framework upon which to build such extensions.
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