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Abstract

A fundamental problem in neuroscience is inferring the functional connections underlying cognitive behaviors
such as vision, speech, and audition. Magnetoencephalography (MEG) has become a popular neuroimaging technique
for studying functional connectivity; however, unlike typical approaches, we treat the MEG signals as time series rather
than i.i.d. observations. We represent the functional connectivity network through conditional independence statements
between the cortex-localized signals, encoded via a graphical model of time series. Importantly, we incorporate a
low-rank component that accounts for latent signals that would otherwise lead to inferring spurious connections. We
develop an ADMM algorithm to learn the model parameters, and evaluate the model on synthetic data as well as real
MEG data collected from an auditory attention task.

1 Introduction

Inferring interactions between brain regions underlying cognitive behaviors is a central problem in neuroscience. Such
brain connectivity is thought to underlie many disorders such as autism and a basic understanding of this connectivity
could potentially lead to effective diagnosis or new treatments. In this work we address the challenge of inferring
connections in the brain from noisy, high-dimensional neuroimaging recordings.

In particular, our focus is on deciphering so called functional connectivity underlying auditory attention from
magnetoencephalography (MEG) data. MEG recordings consists of measurements of the small fluctuations in the
magnetic field given off by a subject’s brain while performing a cognitive task. MEG offers a unique microscope to
study brain interactions since it provides excellent temporal resolution along with good spatial resolution. This is in
contrast to functional magnetic resonance imaging (fMRI) that measures blood oxygenation levels and so has limited
temporal (but excellent spatial) resolution. Thus, MEG allows us to infer brain interactions that are impossible to
discover from fMRI data.

The neuroscience community distinguishes functional connectivity from two other notions of connectivity. Anatom-
ical connectivity refers to the physical neuronal connections in the brain. Alternatively, effective connectivity refers to
particular brain regions driving other regions during cognitive operation. The causal nature of effective connectivity
means that it is always directed, and is extremely challenging to learn except in specific situations. On the other
hand, functional connectivity describes the temporal correlation between two brain regions. We note that functional
connectivity measures can either be directed or undirected [1], however we consider the undirected definition of
functional connectivity in this work.

Specifically, functional connectivity is based on temporal correlations between signals in two different brain regions
when the linear effects of all other regions have been removed [2]. This definition is precisely that of conditional
independence under a Gaussian likelihood. Such conditional independencies are equivalently captured by zeros in the
precision (i.e., inverse covariance) matrix, which encodes the structure in a Gaussian graphical model.

Learning Gaussian graphical models (i.e., sparse precision matrices) from high-dimensional data is a broadly popular
tool in machine learning and statistics to discern the underlying conditional independence structure between random
variables. Beyond providing a natural definition of functional connectivity in neuroscience [3], inferring such structure
has far reaching applications, such as allowing us to quantify risk between financial instruments [4]. However, most
existing approaches to learning Gaussian graphical models assume that the observations are independent and identically
distributed (i.i.d.) Gaussian random vectors. In many applications of interest, such as our MEG recordings, the data
represent a multivariate time series. Simply treating the observations as i.i.d. across time (cf., [5]) ignores important
information contained in the dynamics that we might want to account for when assessing conditional independencies.
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Recently, there has been work to try to learn graphs of Gaussian stationary time series [6, 7, 8, 9]. Most of this
work builds on an elegant result of Dahlhaus [10], which states that zeros at all frequencies in the inverse spectral
density matrices characterize conditional independencies between time series [10]. This represents a direct analog of
the standard sparse precision result for Gaussian i.i.d. random variables. Focusing on likelihood-based approaches to
structure learning, recent work has considered transforming the time series into the frequency domain and specifying
Bayesian priors on the inverse spectral density matrices [9], or a penalized likelihood approach using a group-lasso
penalty [8]. The latter builds on the common `1-based graphical lasso (glasso) approach for Gaussian graphical model
structure learning [11], but with a group structure to capture shared zero patterns across frequencies in the spectral
domain. Interestingly, the frequency domain representation, which enables straightforward encoding of conditional
independencies between time series, is also commonly used in studies of electrophysiological data, making it natural
for the neuroscience community. Furthermore, connectivity studies are often focused on particular frequency bands,
which is straightforward to handle in this framework.

Although one expects task-related brain networks to be sparse, absent idealized experimental conditions, the MEG
signals are often corrupted by activity from other sources on the cortex and by imaging artifacts. These confounding
factors can lead to spurious edges being learned. Due to costly experiments for verifying networks, such spurious edges
are undesirable. Likewise, densely connected graphs are challenging to interpret. To address this challenge, we extend
the frequency-domain-based graphs of time series framework to account for latent processes. The goal is to separate the
corrupted brain activity into an interpretable sparse component and confounding dense connections.

Accounting for latent processes has an elegant formulation in the i.i.d. setting through a sparse plus low-rank
decomposition of the inverse covariance matrix for the observed variables [5]. A challenge arises when applying
this approach to graphs of time series since the zeros have to be consistent across frequencies. We use a penalty
that encourages our inverse spectral density matrices of the observed process to decompose into sparse and low rank
components per frequency, while having shared sparsity structure across frequencies.

The modification to the objective functions of existing methods—either sparse plus low-rank for i.i.d. data [5] or
spectral graphical models for time series [8]—is straightforwardly specified. However, existing algorithms to solve
such sparse plus low-rank models, like logdetPPA [12], do not scale to the problems we consider due to the rapidly
increasing number of parameters with frequencies analyzed. To address this computational issue, we develop an efficient
ADMM algorithm that can be parallelized over frequencies.

We apply the methods to synthetic data and real MEG data collected during an experiment on auditory attention, and
demonstrate that the latent component of our specification aids in producing more interpretable connectivity structures.

2 Background
Gaussian Graphical Models Let X ∈ Rp be a random variable distributed according to a multivariate Gaussian
distribution, X ∼ N(0,Σ), and let G = (V,E) be a graph with vertices V = {1, . . . , p} and edge set E ⊂ {(i, j) ∈
V × V : i 6= j}. When Σ−1

ij 6= 0 for all pairs (i, j) ∈ E, we say that X respects the graph G and that X follows the
Gaussian graphical model specified by the precision matrix Σ−1 [13].

Given a sample covariance estimate Σ̂ based on a set of observations X1, . . . , XN , a common approach to inferring
a Gaussian graphical model is the graphical lasso [11] given by the convex program:

arg min
Ω∈Sp++

− log det Ω + tr{ΩΣ̂}+ λ ||Ω||1 , (1)

where Sp++ is the cone of p × p symmetric positive-definite matrices and ||Ω||1 =
∑

i<j |Ωij | is the 1-norm of the
matrix encouraging a sparse solution for Ω.

Graphical Models of Stationary Time Series Let Xt = (X1t, X2t, . . . , Xpt)
T ∈ Rp for t ∈ Z be a mean-zero,

stationary multivariate Gaussian time series so that

E [Xt, Xt+h] = Γ(h), ∀t ∈ Z (2)

where Γ(h) is the autocovariance function at lag h, a p× p symmetric positive definite matrix for all h ∈ Z. Under
stationarity, we have

∑∞
−∞ ||Γ(h)||2 <∞, where ||·||2 is the spectral norm. This implies that the spectral density of
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the time series is given by the discrete Fourier transform of the autocovariance function:

S(ω) =
1

2π

∞∑
h=−∞

Γ(h)e−ihω (3)

for ω ∈ [0, 2π] and S(ω) ∈ Cp×p a p × p Hermitian positive definite matrix. The spectral density matrix is a key
quantity for analyzing stationary time series as it compactly describes both the inter- and intra-series dynamics in
the frequency domain. In particular, let dk denote the Fourier coefficients of xt (a realization of Xt) at frequency
ωk = 2πk/T for k ∈ {0, . . . , T − 1},

dk =
1√
T

T−1∑
t=0

xte
−iωkt. (4)

One can then show that dk is approximately distributed according to a complex-valued Gaussian distribution with mean
zero and complex-covariance S(ωk), i.e. the spectral density matrix at frequency ωk [2].

The idea of a Gaussian graphical model is naturally extended to Gaussian stationary time series: Instead of
conditional independencies being encoded as zeros in the inverse covariance matrix, such statements are encoded
as zeros in the inverse spectral density [10]. Specifically, if S(ω)−1

ij = 0 for all ω ∈ [0, 2π] then Xi and Xj are
independent conditioned on the entire trajectories of the other series.

One approach to learning such structure is through a penalized likelihood approach. In the frequency domain, the
likelihood of the time series can be efficiently computed using the Whittle likelihood approximation [2]. Specifically,
the log-likelihood is given by

log p(X1, . . . , XT ) ≈

− 1

2

T−1∑
k=0

[
log |S(ωk)|+ tr[S(ωk)−1Ŝ(ωk)]

]
− Tp

2
log 2π.

(5)

Here, Ŝ(ωk) is the spectral density estimate at frequency ωk = 2πk/T . A commonly used sample-based estimate of
the spectral density matrix is given by the periodogram

I(ωk) =
1

2π
dkd
∗
k, (6)

for dk as in Eq. (4). It is well known, however, that the periodogram does not provide a consistent estimator of the
spectral density [2]. For consistency, it is common to instead smooth the periodogram. We use a multitaper approach
described in the Supplement.

In the context of the Whittle likelihood approximation, it is natural to apply a group-lasso penalty [14], extending
the vanilla graphical lasso approach to capture shared zero patterns across frequencies. This idea was recently explored
in [8]. Let Ψ[·] = (Ψ[1], . . . ,Ψ[F ]) : Ψ[f ] � 0,∀f ∈ [F ] be a sequence of p× p Hermitian positive definite matrices.
Also, let Ŝ[f ] = Ŝ(ωf ) ∈ Cp×p for f = 1, . . . , F . The goal is to solve the following convex optimization problem:

arg min
Ψ[·]

F∑
f=1

− log |Ψ[f ]|+
〈

Ψ[f ], Ŝ[f ]
〉

+ λ ||Ψ[·]||1 , (7)

where 〈A,B〉 = tr{AB∗} with B∗ indicating element-wise complex-conjugation, Ψ[f ] := S(ωf )−1, and ||Ψ[·]||1 =∑
i<j

√∑F
f=1 Ψ[f ]ij is the group-lasso penalty. The first two terms in Eq. (7) are the Whittle likelihood of the data

represented by the smoothed periodogram, Ŝ[f ]. The group-lasso term, λ ||Ψ[·]||1, encourages zeros to be shared across
frequencies. We refer to the above method as Sglasso for spectral glasso.

We note that moving to the frequency domain is doubly beneficial. First, the Whittle likelihood requires computing
T inverses of p×p matrices in contrast to the naive method of inverting a Tp×Tp matrix in the time domain likelihood
computation. Additionally, via [10], the structure learning problem is straightforward to define in the frequency domain.
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3 Graphs of Time Series with Latent Structure
The formulation of Eq. (7) assumes that all series of interest have been observed. Often in practice this is not the case
and interactions between pairs of unrelated observed series can be inferred due to an unobserved, or latent, series.
For i.i.d. observations, a sparse plus low-rank decomposition of the underlying precision matrix has proven useful to
discern the connections between observed variables from those arising from an unobserved variable [5]. Informally, to
disentangle these signals, the latent variables must each connect to many of the sparsely connected observed variables.
These ideas have been used to learn sparse autoregressive processes in the presence of latent variables in the time
domain [15].

Let xt = [yt, ut]
T ∈ Rp+r be a complete stationary time series at times t ∈ {0, . . . , T − 1} where yt ∈ Rp are

the observed components and ut ∈ Rr are the latent components. Throughout, we assume that r � p. Using this
decomposition of xt, we can write the inverse spectral density matrix of xt at frequency ω as

S(ω)−1 := Ψ(ω) =

[
ΨY Y (ω) ΨY U (ω)
ΨUY (ω) ΨUU (ω)

]
. (8)

The marginal inverse spectral density of the observed time series yt is then

ΨY (ω) = ΨY Y (ω)︸ ︷︷ ︸
sparse

−ΨY U (ω)ΨUU (ω)−1ΨUY (ω)︸ ︷︷ ︸
rank = r � p

. (9)

Following [5, 16], we make the assumption that ΨY Y (ω) is sparse, as in a graphical model of fully observed series,
and ΨY U (ω)ΨUU (ω)−1ΨUY (ω) is low-rank due to the presence of a few latent components. From Eq. (9) we see how
ignoring the contribution of the latent processes results in losing the sparse structure in ΨY Y (ω) when considering
ΨY (ω). To disentangle the sparse and low-rank components, we propose to optimize the following adaptation of Eq. (7),
which we refer to as the LVSglasso method:

arg min
Ψ[·],L[·]

F∑
f=1

− log |{Ψ[f ]− L[f ]}|+
〈

Ψ[f ]− L[f ], Ŝ[f ]
〉

+ λΨ ||Ψ[·]||1 + λL tr{L[·]}

(10)

s.t. Ψ[f ]− L[f ] � 0p×p, L[f ] < 0p×p, ∀f ∈ [F ]

Here, Ψ[f ] represents the sparse component of the marginal inverse spectral density while L[f ] captures the low-
rank structure of ΨY U (ω)ΨUU (ω)−1ΨUY (ω). In addition to the group-lasso penalty ||Ψ[·]||1, we add tr{L[·]} =∑

f tr{L[f ]}. Each trace term is a surrogate for the rank function, in our case the sum of the eigenvalues. This penalty
adapts that of [5] to handle multiple frequencies, and the structure across frequencies.

In order to solve Eq. (10) for problems on the scale of MEG data, we develop a consensus alternating directions
method of multipliers (ADMM) algorithm [17].

3.1 Consensus ADMM Algorithm
A commonly used algorithm for convex optimization problems like Eq. (10) that contain a smooth objective function
and non-smooth penalties is ADMM. ADMM works by splitting the original problem into two problems that can be
easily solved when the proximal operators of the penalties can be computed efficiently [17].

In particular, we solve Eq. (10) using a consensus ADMM algorithm [18]. First, we introduce an auxiliary variable
R[·] := Ψ[·]− L[·] which allows us to rewrite Eq. (10) as

arg min
Ψ[·],L[·],R[·]

F∑
f=1

− log |R[f ]|+
〈
R[f ], Ŝ[f ]

〉
+ λΨ ||Ψ[·]||1

+ λL

F∑
f=1

(
tr{L[f ]}+ I[L[f ] � 0]

) (11)

s.t. R[·]−Ψ[·] + L[·] = 0[·].
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Naively applying ADMM to Eq. (11) is not straight-forward since the convergence of ADMM for three blocks of
variables is only guaranteed for a small class of functions [18]. Instead, we rewrite the problem in terms of two blocks
of variables Z = [R[·],Ψ[·],L[·]] and Z̃ = [R̃[·], Ψ̃[·], L̃[·]] as

arg min
Z,Z̃

g(Z) + h(Z̃), s.t. Z − Z̃ = [0[·],0[·],0[·]]

g(Z) =

F∑
f=1

− log |R[f ]|+
〈
R[f ], Ŝ[f ]

〉

+ λΨ ||Ψ[·]||1 + λL

F∑
f=1

tr{L[f ]}

h(Z̃) = I[R̃[·]− Ψ̃[·] + L̃[·] = 0[·]].

(12)

See the Supplement for detailed update equations. We use a standard ADMM stopping scheme based on primal and
dual residuals, rk =

∑
f R[f ]−Ψ[f ] + L[f ] and sk = Z̃(k+1) − Z̃(k), respectively [17]. We monitor

εpri =
√
p2Fεabs + εrel

∑
f

max
(
||Z||F ,

∣∣∣∣∣∣Z̃∣∣∣∣∣∣
F

)
εdual =

√
p2Fεabs + εrel

∑
f

||Λ||F

and stop when ||rk||2 < εpri and ||sk||2 < εdual.

3.2 Choosing the regularization parameters
Appropriate choice of the regularization parameters for the LVSglasso model is important, since different values can
result in inferring very different graph structures due to the interaction between the sparse and low-rank terms of the
optimization problem. Determining the regularization parameters for sparse plus low-rank models is an unsolved
problem. In this work we use the Akaike information criteria (AIC) to score the solutions to the LVSglasso problem
and use the values of the regularization parameters that result in the lowest AIC. Specifically, the AIC is defined as

AIC = −2NL+ 2Fk (13)

where L is the log-Whittle likelihood from Eq. (5), N is the number of replicate series, F is the total number of
frequencies in the spectral density estimate, and k is the number of edges in the graphical model. Notice that the
learned rank does not explicitly appear in our model selection criteria. The reason for this is that we are only interested
in selecting the edge structure that provides the optimal trade-off between explaining the data and parsimony. This
approach is similar to that used in previous work learning sparse plus low rank graphical models of VAR processes [19].

A well known property of penalized likelihood approaches such as LVSglasso is that the solution (Ψ[·], L[·]) for
given regularization parameters λΨ and λL will be shrunk towards zero. The shrunken parameter estimates lead to
biased AIC computations in Eq. (13) and inaccurate model selection. To address this issue, after finding a solution
to LVSglasso for given λΨ and λL we determine the edges present in the graph, G, and then reinflate the parameters.
The reinflation is done by maximizing the Whittle likehood, Eq. (5), for S(ωk), k = 1, . . . , F , constrained so that the
inverse spectral density follows G learned by LVSglasso. This is equivalent to finding the maximum likelihood estimate
(MLE) of the spectral density with inverse following G. The graph-constrained maximum likelihood problem is

arg min
Ψ[·]

F∑
f=1

− log |Ψ[f ]|+
〈
Ŝ[f ],Ψ[f ]

〉
(14)

s.t. Ψ[f ]ij = 0, ∀f, ∀(i, j) /∈ G,

which we solve using projected gradient descent. We plug the MLE Ψ̂[·] of Ψ[·] into Eq. (13) and select the graph that
produces the minimum AIC.
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Figure 1: ROC plots comparing the ability of LVglasso, Sglasso, and LVSglasso to recover conditional independencies
between the components of simulated time series with latent confounders, using p = 16, r = 1 (left) and p = 32, r = 2
(right). Accounting for both latent components and temporal dynamics improves our ability to uncover the true graph
structure as compared to models that only account for one of these.

4 Related work

Utilizing the frequency domain representation, latent processes, and graphical models each have a history in the study
of functional connectivity from neuroimaging data. In [20], connectivity structure was determined by estimating the
spectral density matrix with a smoothed periodogram, Ŝ[f ], and then numerically inverting to obtain Ŝ[f ]−1. From
the inverse spectral density matrices the authors determined the partial coherence matrices P (f) = D−

1
2 Ŝ[f ]−1D−

1
2 ,

whereD = diag(Ŝ[f ]). To determine whether an edge is present, the authors threshold the maximum partial coherences
over all frequencies, i.e. there is an edge between series i and j if maxf |Pij(f)| > ε for some ε > 0. The authors
found that the discovered networks reproduce existing knowledge about functional connections. We utilize the same
procedure in our experiments below, except replacing Ŝ[f ]−1 with the estimates obtained from LVSglasso.

Although not applied in the frequency domain, a similar group penalty to Eq. (7) was developed to account for
inter-subject variability in the graphical lasso for fMRI data, treating the data as i.i.d. [21]. A convex formulation to
learn Gaussian graphical models specifically for vector autoregressive (VAR) processes was developed and applied to
fMRI data in [7]. This approach was then extended by incorporating a low-rank component to account for unobserved
effects in neuroimaging data, however the method is still only applicable to the restrictive class of VAR processes [19].

We also distinguish the current work from previous work on inferring connectivity in neuroscience. The dynamic
causal model (DCM) is one of the most widely known methods in neuroscience to learn effective connectivity [22].
The DCM assumes fixed dynamics and perturbs the inputs to the system to discern how regions drive one another. The
structure of the dynamics are usually chosen by enumerating all possible model structures and scoring them. As such,
DCM is only applicable to very small numbers of regions and latent confounders are not handled in the framework. A
method based on Granger causality to infer effective connectivity that accounts for latent confounders was proposed in
[23] and was used to analyze fMRI observations. We do not compare against these methods in this work as our goal is
not to make any claims of effective connectivity since the neuroscience community is still exploring the mechanistic
aspects related to the MEG data we analyze.

We leverage the flexibility to capture a broad family of dynamic processes, the computational efficiency, and the
convenient encoding of conditional independence that working in the frequency domain entails. We likewise make
important computational strides that enable new scaling of the technique to larger numbers of brain regions and the
number of frequencies.
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5 Experiments

5.1 Synthetic Data
Accounting for latent confounders We first evaluate our proposed sparse plus low-rank LVSglasso method on a
synthetic data set with known graphical model structure that includes spurious connections introduced via the presence
of latent processes. We do so by constructing a synthetic inverse spectral density matrix that is the sum of a sparse
component with known graph structure and a low-rank component that models marginalization over latent processes.

In order to demonstrate the performance of our model on datasets of varying size and latent dimensionalities, we
generate synthetic data with an observed dimensionality of p = 16 and a latent dimensionality of r = 1, as well as a
dataset with observed dimensionality p = 32 and latent dimensionality r = 2.

To construct our synthetic inverse spectral density, we first construct a sparse matrix A ∈ Cp×p and a low-rank
matrix B ∈ Cp×p to serve as the base matrices for our inverse spectral density. A is constructed by selecting a
random 15% of its entries and setting them to the complex value a+ b i, where a and b are set to one of {−0.5, 0.5}
independently and with equal probability. A is then adjusted by adding a multiple of the identity to ensure that it is
positive-definite. The entries of B are drawn as Bij ∼ N (0, 1), and B is made low-rank and positive semidefinite by
taking the absolute value of its eigenvalues and retaining only the top r eigenvalues. Finally, we scale B by 0.75, and
again add a multiple of the identity to A to ensure that the difference A−B is also positive-definite. We construct the
sparse and low-rank components of the inverse spectral density matrix for frequencies f = {1, . . . , F} as

S[f ] = A · x[f ] · exp (−0.5x[f ])

L[f ] = B · x[f ] · exp (−0.5x[f ]) ,

where x[·] is the sequence of F real values spaced evenly between 1 and 8. This is modeled after the structure of
decaying power over frequencies that can be observed in the inverse spectral density matrix of a VAR(1) process. Our
synthetic spectral density matrix is then constructed by computing Ψ[f ] = (S[f ]− L[f ])−1 at each frequency, which
we then use to simulate 250 realizations xt, where t = {1, . . . , 256}. From these series, we compute an estimate of the
spectral density matrix using the multitaper method [24], and decimate down to 8 frequencies to speed up computations.

Figure 2: Eigenvalues in increasing order of magnitude for the low-rank component of the minimum-AIC solution from
the synthetic experiments. Shown are the eigenvalues for the p = 16, r = 1 simulated dataset (left) and the p = 32,
r = 2 simulated dataset (right), with error bars indicating standard deviation of magnitude across frequency (error bars
too small to see). These plots indicate that while the learned latent components are numerically high-rank, they are
well-approximated by a low-rank solution that has the true latent dimensionality of r = 1 (left) and r = 2 (right).

We run Sglasso and our new LVSglasso model on the estimated spectral density matrix. We also compare both of
these models to one that we term LVglasso, which models a latent component but assumes that data points are i.i.d.,
corresponding to the model proposed in [5]. We report the ROC curves for each of these three models in Fig. 1. The
ROC results indicate that Sglasso’s incorporation of the dynamics allows it to learn fewer false positives than LVglasso.
However, we see that LVSglasso is able to outperform both of the other models by incorporating temporal dynamics
and latent variables.

Our empirical evaluations show that typical solutions learned by LVSglasso will have a latent component that is
numerically high-rank. However, we find upon further examination that these solutions have a number of dominant
eigenvalues corresponding to the true latent dimensionality. These results can be observed in Fig. 2, where we see that
there is one dominant eigenvalue in the case of observed dimensionality p = 16 and two dominant eigenvalues for the
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Figure 3: Graphs of connections learned by Sglasso and LVSglasso for 7 regions of interest in an auditory attention
experiment, examining the M (left) and S (right) experimental conditions. Sglasso learns an additional edge that is
likely to be spurious in each condition, whereas accounting for latent interactions allows LVSglasso to remove this
edge while still retaining the scientifically relevant connections. Both methods are able to differentiate between the two
conditions by the edges they learn.

p = 32 dataset, corresponding to the true latent dimensionalities of r = 1 and r = 2, respectively. The fact that the
solutions are numerically high-rank while being statistically low-rank is likely a result of attempting to model a noisy
realization of the true underlying process.

5.2 Auditory Attention MEG Recordings

Magnetoencephalography (MEG) uses 306 sensors (accelerometers and gradiometers) at 102 locations around the head
to measure the small deviations in the magnetic field produced by the brain [25]. The signal at each of these sensors
captures the activity from many neurons which can be distributed across the cortical surface. Thus, an imperative step in
analyzing functional connectivity is to map these sensor-space recordings to source-space, i.e. map the recordings of the
magnetic field to signals of neural activity on the cortical surface itself. This problem is known as the inverse-problem
and a variety of methods have been proposed to solve it [25]. In this work, we use the minimum-norm estimate (MNE)
which uses a penalized regression approach to solve the ill-posed inverse-problem that maps the 306-dimensional
sensor-space signals to a high-resolution tesselation of the cortical surface with approximately 10,000 locations [26].

We apply LVSglasso and Sglasso to real MEG recordings collected from 15 individuals while they performed an
auditory attention task. Each subject was presented with an auditory stream and was instructed to either maintain
attention to that stream or switch to a different stream after presented with an additional auditory cue. The two stimuli
had different spatial profiles, specifically one stream came from the left and the other from the right. This resulted in
two experimental conditions to analyze, maintain (M) vs. switch (S).

For each subject, the data consists of time series of length 1,000 at each of 10,000 locations on the cortical surface
after the MNE inverse mapping. Despite the large number of cortical surface locations for which time series data is
present, a typical study of this kind will look at a small subset of hand-selected regions of interest (ROIs) that are
assumed to be related to the task, aggregating all series within each ROI. However, by only considering a specific set of
ROIs, we run the risk of finding spurious connections between these ROIs as a result of excluding all other regions of
activity from the analysis. In such cases, we expect the latent component in our model to help address this issue by
removing some of these spurious edges.

We consider two setups for analyzing this MEG data, one using a small number of regions and the second with a
larger number of regions. First, we perform the analysis using 7 predefined ROIs that neuroscientists think are important
to this auditory attention task and average the signals within each region based on an existing parcellation. We also
perform a similar analysis where we augment the 7 ROIs suggested by neuroscientists with 20 additional regions from a
standard parcellation that exhibit high signal variance. The purpose of this additional analysis is to discover potentially
interesting interactions beyond those in the small subset of pre-determined ROIs. In both cases, the regions we consider
do not cover the entire cortical surface, so we expect possible spurious edges caused by unobserved regions.

Small ROI Analysis For the small number of ROIs, the data set consists of 850 7-dimensional time series over all
subjects for the M condition and 550 series over all subjects for the S condition. The stimuli patterns per condition are
repeatedly presented to the subject, representing a single trial. For each presentation, the data are marked with a stimulus
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Figure 4: Eigenvalues in increasing order of magnitude for the latent component of the solutions found by AIC in the
small ROI analysis. Results are presented for both the M (left) and S (right) experimental conditions in the auditory
attention task. Error bars indicate standard deviation in magnitude across frequencies. The plots show an effective
learned rank of ∼4 for each solution.

period and gap period. For each trial, we extract the short time segment directly following the stimulus of interest. We
then discard the stimulus period to allow transient brain activity to subside, and only retain the so-called gap period
(approximately 575 milliseconds each). Although the MEG signal is clearly non-stationary, it is reasonable to assume
that it is approximately stationary over such small, homogeneous segments (i.e., the signal is locally stationary).

We compute an estimate of the spectral density matrix from each trial using an adaptive multitaper method [24].
The MEG signals were low-pass filtered at about 60 Hz as a pre-processing step (prior to us obtaining them) so we
truncate the spectral density estimate to ignore higher frequencies with very low power, considering frequencies up
to about 60 Hz. We further attempt to reduce noise in the estimate by applying a Daniell smoother with a bandwidth
of 20 Hz. The smoothed spectral density estimate is then decimated down to 16 frequencies and fed to Sglasso and
LVSglasso, with the optimal solutions for each model chosen using our model selection procedure described in Sec. 3.2.

We plot the graphs learned by both Sglasso and LVSglasso on the set of 7 ROIs in Fig. 3. The cycle formed by
IPS-rh, AUD-rh, and RTPJ-rh is interesting to neuroscientists as these are three regions that are known to be active
while employing auditory attention and LVSglasso picks up evidence in the data that they are functionally connected.

The edge between FEF-lh and FEF-rh, the frontal eye fields, is most likely spurious as the regions are close on the
medial wall making them hard to disambiguate. Their activity during a trial is likely due to the visual indicators during
the experiment, and the difficulty in differentiating these regions is expected to lead to a spurious connection for both
experimental conditions and models, as we observe in Fig 3. However, we note that Sglasso picks up an additional edge
between FEF-rh and AUD-rh. Though this edge is also likely to be spurious as a result of visual indicators, it could
mistakenly be marked as an interesting edge, since it connects regions that are not spatially co-located. By modeling the
effect of interactions between latent and observed regions, LVSglasso is able to prune out this spurious connection. The
ability of LVSglasso to remove this connection is particularly significant when analyzing neuroimaging data, since each
false positive is another potential hypothesis that needs to be scrutinized and may lead to expensive and time-consuming
future experiments.

When comparing the two experimental conditions, we also observe an edge between IPS-rh and RTPJ-rh that both
models learn in the M condition but is absent in the S condition. This indicates a connection that may be indicative of
differences in neural processing when switching vs. maintaining spatial auditory attention. This edge is therefore a
potential connection of interest for neuroscientists studying auditory processing in the brain.

In addition to presenting the graphs of the learned sparse component for each model, we also present the eigenvalues
of the latent components learned by LVSglasso in Fig. 4. The eigenvalue plots indicate that ∼4 underlying latent
processes were found in the recordings for the 7 ROIs being analyzed. While this may seem like a high rank to learn for
an observed dimensionality of 7 regions, the MEG recordings are both noisy and very complex, with an underlying
structure that could require a rank-4 latent component in order to fully explain the data.

An interesting result of this small-scale analysis is that while LVSglasso demonstrates that there is a latent component
of rank 4, both Sglasso and LVSglasso give solutions of comparable sparsity. What this likely indicates is that for these
particular ROIs, most spurious interactions induced by interactions with other regions are weak, such that Sglasso
is able to prune most of them just as well as LVSglasso. This is unsurprising in this setup, as we have restricted our
analysis to regions that are deemed to be of significance to the auditory attention task, and will therefore exhibit the
strongest interactions with each other relative to interactions with other regions. However, this may not be the case in
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a more exploratory analysis where someone is interested in arbitrary regions that may not be directly related to the
experiment. In this setting, modeling the effects of an unobserved latent component is crucial to removing spurious
connections between the regions being studied.

Large ROI Analysis We also perform a large ROI analysis, using the 7 ROIs mentioned previously as well as 20
additional ROIs exhibiting the highest signal variance in the time segment of interest. The resulting graphs identified by
our model selection criteria result in a sparser solution for LVSglasso (125 edges) as compared to Sglasso (146 edges).
However, further analysis is necessary to determine the scientific validity of the edges learned by both methods.

6 Discussion
We have presented a method to learn graphical models of time series that capture the conditional independence structure
between Gaussian stationary time series while accounting for latent processes. In doing so, we combine modern
techniques from machine learning and statistics with fundamental ideas of analyzing time series in the frequency
domain. This confluence of (i) parsimoniously modeling the underlying dynamics in the spectral domain and (ii)
the computational advances of structure learning as convex optimization provides a practical framework for learning
graphs of temporal data in a wide variety of applications. Since graphical models of time series provide a natural
characterization of functional connectivity, we focus on the application of learning networks of interactions between
brain regions from MEG recordings. In doing so, we demonstrate the ability of our proposed models to learn interesting
functional interactions underlying auditory attention from MEG data, with the latent component adding additional
robustness. However, this same analysis could be just as useful applied to data in other domains, such as high-
dimensional financial series, recordings from large-scale sensor networks, or long-term measurements from patients in
a medical setting.

There are still many avenues of research, including statistical, computational, and in neuroscience, to further develop
our approach. For instance, selecting the hyperparameters in sparse plus low-rank models (both for i.i.d. and time-series
data) is an open problem that could be approached by formally developing (extended) information criteria for the
models. Additionally, the statistical properties of consistency and sample complexity in various scaling regimes of our
sparse plus low-rank model need to be determined.

In terms of the applications to neuroscience, there are other interesting phenomena related to functional connectivity
and frequency-domain analysis that are of interest to researchers in that field and could be addressed with extentions to
our model. One of these is the notion of dynamic functional connectivity, the idea that functional connections between
regions can vary over time. Though our model captures functional connections that exist throughout a particular time
period of interest in the data, extensions to allow for graphs that vary over time could be made to model dynamic
connectivity over longer time ranges. The neuroscience community also has interest in properties of connectivity that
are specific to particular frequency bands of interest, and while the MEG analysis in this work focused on broadband
connectivity, an examination of band-specific connectivity could be done with the methods we have developed.
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