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Abstract

A central problem in modern neuroscience is inferring interactions between brain regions, as they can
provide insight into neurological disorders and how the brain processes information. Magnetoencephalog-
raphy (MEG) provides a rich data source for analyzing the dynamics of brain interactions. However,
one major challenge with analyzing this data is sensitivity to the definition of brain regions between
which interactions are sought. We develop an approach combining state-space and factor analysis models
that learns the intrinsic rank of the underlying dynamics. We develop an expectation-maximization
algorithm to perform parameter estimation from data, and show in simulated MEG experiments that our
method exhibits robustness to the regions included in the analysis. Our method is able to identify the
true inter-regional interactions while also learning the underlying rank of the data.

1 Introduction
Much of modern neuroscience research involves collecting large amounts of data from a variety of neuroimaging
modalities. While most of this data records some form of brain activation, activity alone does not capture
the underlying complex processes. In particular, interactions between regions are thought to underlie many
cognitive behaviors and neurological disorders, thus understanding them is paramount. Though many methods
exist to quantify brain interactions, we are interested in time-varying and directed functional connectivity.

Magnetoencephalography (MEG) provides a unique perspective to study the dynamics of brain interactions
due to its exceptional temporal resolution (∼ 1000 Hz) and good spatial resolution. However, raw MEG
sensor recordings do not correspond to locations on the cortical surface and thus are not directly amenable
to analyzing brain interactions. Much work has been devoted to addressing this issue. The most popular
approach is the minimum-norm estimate that solves an ill-posed inverse problem and projects the MEG
sensor data onto a high-dimensional tessellation of the cortical surface [1]. The resulting source-space signals
can then either be used directly for connectivity, or they can be aggregated into regions of interest (ROIs) for
which connectivity can be estimated. For instance, the resulting aggregate ROI signals can be used to fit a
time-varying VAR [2], such that the autoregressive coefficients can be used as an estimate of interactions
between regions.

The two-stage MNE approach above has some series disadvantages. In particular, spatial and temporal
artifacts arise due to the ill-posedness of the problem - projecting from hundreds of sensors to thousands of
source points - as well as the fact that most methods perform the first step while ignoring dynamics and
correlation structure across the cortical surface. Recently, Yang et al. [3] developed a method to estimate
time-varying directed functional connectivity between two ROIs directly from MEG sensor data. The method
is based on a linear dynamical system that integrates out the high-dimensional source-space, providing a
direct map from aggregate ROI signals to MEG sensor data. This method takes an important step away
from two-step analyses of MEG data, and is able to learn dynamic connectivity while also allowing for
better estimation of cortical signals. The time-varying property of this model allows for learning interesting
connectivity structure that would be missed by other models, such as stationary or switching processes.
Yang et al. also include a penalty to encourage smoothness in their dynamics, which models the physical
constraint that interactions can be expected not to spike unexpectedly, but instead be relatively consistent
for timepoints that are close.

We address these issues by incorporating low-rank structure into the latent ROI series enabling us to
learn the intrinsic dimensionality of the dynamics of the observed MEG data. This additional structure
creates a hierarchical linear dynamical system for which we develop an EM algorithm to learn the model
parametrs and infer ROI activity. We demonstrate our approach on synthetic examples where we vary the
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underlying rank structure of the data as well as the number of ROIs. Our method demonstrates the ability to
robustly recover underlying low-rank structure when it is present, while maintaining comparable performance
to methods that don’t account for this structure otherwise.

2 Time-varying linear dynamical systems for MEG data
Magnetoencephalography (MEG) data consists of recordings of the magnetic field emitted by the brain.
This magnetic field is the result of an electric current flowing through tens of thousands of aligned neurons
close to the cortical surface and is recorded using 306 sensors, 204 gradiometers and 102 magnetometers.
Often electroencephalography (EEG) sensors recorded the electrical field emitted by the brain (from neurons
orthogonal to those that MEG picks up), in our case using 50 electrodes. Thus, an MEG + EEG sensor
recording is denoted y ∈ R366. We observe MEG+EEG sensor recordings for a single subject performing N
independent trials each of which contains T + 1 time points so that we denote the whole set of observations
as {y(n)

t }
T,N
t=0,n=1. We also assume that we are interested in inferring the time-varying, directed interactions

between a fixed set of p ROIs. We next summarize the approach of [3] to set notation.
Define the ROI activation series u(n)

t ∈ Rp as the latent activation of each ROI at time t for trial n which
we do not observe. Assume that u(n)

t follows a lag-1 vector autoregressive process (VAR):

u
(n)
0 ∼ N (0,Q0) (1)

u
(n)
t = Atu

(n)
t−1 + ε

(n)
t , ε

(n)
t ∼ N (0,Q), (2)

where the matrices At encode the time-varying directed interactions between the ROIs. The matrices Q0

and Q are the idiosyncratic covariance matrices between the ROIs.
The key insight of [3] was to directly map this ROI process to the MEG sensor data through a linear map

by marginalizing out the high-dimensional source-space represented by a tessellation of the cortical surface
and consisting of n vertices (we use n ≈ 5K in this work). The resulting linear dynamical system mitigates
the artifacts introduced by the MNE method described above. Specifically, the MEG sensor data for each
trial at each time t is modeled as

y
(n)
t = Cu

(n)
t + η

(r)
t , η

(n)
t ∼ N (0,R), (3)

where C ∈ R366×p maps the ROI signals to the MEG recordings and is given by C = GL, where G ∈ R366×n

is the so-called forward-operator that is a linearization of Maxwell’s equations that describe magnetic
fields [4, 5] and is computed a priori using structural MRI information about the subject. The known matrix
L ∈ {0, 1}n×p indicates which vertices make up each ROI, each row of which will have a single 1 as we assume
ROIs do not overlap. The symmetric matrix R ∈ S366 models the covariance of the sensor data and consists
of three components: R = Qsensor +GQsourceG

ᵀ. The matrix Qsensor models the measurement covariance
between the MEG sensors and is estimated from subject baseline data where they were sitting in the MEG
machine doing nothing. The matrix Qq is a n× n diagonal matrix where each entry takes on one of p+ q

values, {σ2
j }

p+1
j=1 . Let R(v) = r if the rth column of the vth row of L is 1, then Qsource[m,m] = σ2

R(m). In
other words, σ2

j is shared over all entries of Qsource that correspond to vertices in region j. [3] developed an
EM algorithm to infer the parameters of interest: At, Q, Q0, and {σ2

j }
p+1
j=1 .

[3] evaluated the model using two ROIs and analyzed MEG data from a visual task. Our interest in MEG
connectivity differs in that we want to infer interactions from more ROIs, such as ten, simultaneously. This
raises the natural questions of i) whether the model can reliably determine interactions when more than
two ROIs are present, and ii) how robust the inferred connectivity is to the definitions of the ROIS and the
exact set of ROIs chosen? We have empirically observed that the model can indeed address i). But we have
observed that the inferred connectivity is not robust. We address ii) in the next section.

3 Latent factor augmentation for robust network recovery
An issue with the MEG-LDS model that contributes to the sensitivity of the learned interaction matrices At

is that groups of ROIs may actually interact with other ROIs or groups of ROIs. Though the MEG-LDS
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model can infer this situation, it often instead infers edges between the ROIs in the group and then a single
edge between one of these ROIs and the other ROI. This problem is compounded since the geometry of the
brain can cause signal to leak between ROIs when they are close and non-convex.

We address this problem by learning the intrinsic rank of the underlying dynamics and learning an effective
number of ROIs. Specifically, we introduce a set of K latent factors {f (n)

t ∈ RK}T,N
t=0,n=1 that will represent

the low-dimensional space that the MEG dynamics live on. The latent factors will now follow time-varying
dynamics rather than the ROI series:

f
(n)
0 ∼ N (0, I)

f
(n)
t = Atf

(n)
t−1 +w

(n)
t , w

(n)
t ∼ N (0, I),

(4)

whereAt ∈ RK encodes the time-varying, directed interactions between the components of the low-dimensional
latent factors.

The latent factors are then mapped to the ROI space according to a factor loadings matrix Λ ∈ Rp×K

which are then mapped to the MEG sensors as Eq. (3):

u
(n)
t = Λf

(n)
t

y
(n)
t = Cu

(n)
t + η

(n)
t , η

(n)
t ∼ N (0,R),

(5)

where C and R are defined as in Sec. 2. Low-rank representations have been previously considered for vector
autoregressions in order to account for unobserved latent processes [6]. In our case, we wish that each latent
factor influences a small set of the specified ROIs. Note that our proposed factor-LDS (FLDS) model for
MEG converges to the MEG-LDS model when K = p, Λ = I, and the factor noise covariances are learned
rather than fixed.

Interpreting the inferred factor connectivity: The inferred At matrices encode the time-varying,
directed connectivity between the latent factors. However, these do not directly correspond to regions of
the brain, and the connections of interest to neuroscientists are between the ROIs. Marginalizing the factor
processes out of the model results in the following VAR(1) process for the ROI signals:

ut = ΛAtΛ
†ut−1 + εt, εt ∼ N (0,ΛΛ>) (6)

where Λ† denotes the pseudo-inverse. The quantity ΛAtΛ
† encodes the inter-ROI connectivity encoded by

the At matrices. Due to unidentifiability properties of state-space models with unknown parameters [7],
we note that we cannot necessarily recover an interpretable factor loadings or set of dynamics matrices in
factor space. However, learned rotations in these matrices will be cancelled out by calculating the ROI-space
dynamics as described above, so we can still hope to recover connectivity across ROIs even if the exact
connectivity across factors, and the identity of the factors themselves, is only recoverable up to orthogonal
transformations.

3.1 Expectation-maximization for learning parameters
We develop an expectation-maximization (EM) algorithm to learn the model parameters for FLDS, Θ =
{{At}Tt=1,Λ, {σ2

j }
p+1
j=1}. The EM algorithm maximizes the log-likelihood of the data in situations where there is

missing data, such as the latent factor processes in our FLDS model. In order to encourage temporal smoothness
of the inferred {At} matrices, we incorporate a temporal regularizer, Ω({At}Tt=1) =

∑T
t=2 ||At −At−1||2F , to

obtain penalized maximum likelihood estimates of Θ. Specifically, we optimize:

max
Θ

Ep(f1:N
1:T |y1:N

1:T ,Θ)

[
log p(y1:N

1:T ,f
1:N
1:T ; Θ)

]
+ λΩ({At}Tt=1), (7)

where λ is a regularization parameter allowing us to adjust the amount of temporal smoothness introduced.
The EM algorithm alternates between the E-step which computes log p(f1:N

1:T | y1:N
1:T ,Θ), and the M-step which

maximizes Eq. (7).
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E-Step: Since our FLDS model consists of linear-Gaussian dynamics and emissions we use the Rauch-Tung-
Striebel smoother [8] modified to account for our time-varying dynamics matrix. The quantities of interest
are the means and covariances of the smoothed state distributions

f
(n)
t|T = E

[
f

(n)
t | y(n)

0:T

]
F

(n)
t|T = Cov

(
f

(n)
t | y(n)

0:T

)
F

(n)
t,t−1|T = Cov

(
f

(n)
t ,f

(n)
t−1 | y

(n)
0:T

)
.

(8)

which are recursively computed by the RTS smoother.

M-Step: We then use the expected sufficient statistics computed in the E-step to maximize the following
expected joint log-probability

min
Θ
−Ef |y

[
log p(y1:N

0:T ,f
1:N
0:T ; Θ)

]
+ λΩ({At}Tt=1)

= min
Θ
L1({At}Tt=1) + L2(Λ, {σ2

j }
p+1
j=1) + λΩ({At}Tt=1)

(9)

The constituent objective functions are defined as:

L1({At}Tt=1) = NT log det(S0) + tr

(
T∑

t=1

S1t −AtS
>
2t − S2tA

>
t +AtS3tA

>
t

)
(10)

L2(Λ, {σ2
j }

p+1
j=1) = NT log det(R−1) + tr

(
R−1

(
S4 −HS>5 − S5H

> +HS6H
>)) (11)

where H = CΛ (12)

Where the S matrices are functions of the data and statistics computed in the E-step, defined as

S0 =

N∑
n=1

f
(n)
0 (f

(n)
0 )> (13)

S1t =

N∑
n=1

(
F

(n)
t|T + f

(n)
t|T (f

(n)
t|T )>

)
S4 =

N∑
n=1

T∑
t=0

y
(n)
t (y

(n)
t )> (14)

S2t =

N∑
n=1

(
F

(n)
t,t−1|T + f

(n)
t|T (f

(n)
t−1|T )>

)
S5 =

N∑
n=1

T∑
t=0

y
(n)
t (f

(n)
t|T )> (15)

S3t =

N∑
n=1

(
F

(n)
t−1|T + f

(n)
t−1|T (f

(n)
t−1|T )>

)
S6 =

T∑
t=0

S1t (16)

We optimize {At}, Λ, and {σ2
j }

p+1
j=1 by iterating over gradient updates for each parameter, using autograd

[9] to compute gradients. Specifically, we first perform gradient descent with backtracking line search to
update {At}, then perform an alternating update on {Λ, {σ2

j }
p+1
j=1} by: 1) performing up to 20 iterations of

gradient descent with backtracking line search on Λ, then 2) performing up to 20 iterations of L-BFGS to
update {σ2

j }
p+1
j=1 .

4 Related work
Various approaches have been considered to analyze directed functional connectivity from source-localized
MEG data. There are two main approaches. The first is that connectivity is estimated directly on the
high-dimensional source-space by fitting a VAR model [10]. Due to the dimensionality of the data, this
approach used a time-invariant connectivity matrix missing interesting dynamic interactions. Additionally,
often vertex-level connectivity is not interesting for neuroscientists. Instead, alternative approaches have
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spatially averaged the high-dimensional source-space data into regions of interest for the data at hand and
then connectivity is estimated between the ROIs. For instance, switching VAR processes have recently been
considered in this setting to infer transient brain networks [11], though other models such as time-varying
VAR processes could be considered.

A well-known approach to inferring connectivity from neuroimaging data is the dynamic causal model
(DCM) which has been applied to MEG data [12]. Unlike the method proposed here, the DCM assumes
point sources in each ROI and so does not propagate the signals across the cortical surface. Additionally, the
DCM requires a physiologically accurate model describing the dipole dynamics which is parameterized by a
time-invariant interaction matrix.

This work is heavily inspired by the state-space model of Yang, et al [3], as well as other similar state-space
modeling approaches applied to neuroimaging data [13, 14, 15]. In particular, this method is inspired by the
approach of Yang et al. of inferring time-varying, directed functional connectivity directly from MEG sensor
data and bypassing source-space entirely. Incorporating the estimation of the ROI signals with learning the
connectivity coherently accounts for the uncertainty in the mapping of MEG sensor data to ROI activity.

Low-rank structure has previously been incorporated into VAR processes in order to account for unobserved
confounding signals [6]. In that work the dynamics matrix of a VAR process was described as the sum of a
sparse and low-rank matrix, A+L. A lasso penalty was placed on A to promote sparsity and a nuclear norm
penalty was placed on L to promote low-rank to capture the effect of the confounding series. This is different
than our proposed approach since we assume that the ROI signals are themselves low-rank, not the dynamics.

5 Experiments

5.1 Synthetic data
To demonstrate the ability of our model to learn intrinsic low-rank structure, we compare to the method
described in [3] in our experiments. For all experiments, we used a forward transformation G, sensor noise
covariance Qsensor, and source-space vertex-to-region mapping L from a real subject who performed an
auditory attention task while being recorded by MEG. These matrices accurately capture the physics of the
MEG measurement process, and using these in our experiments allows us to model the source- to sensor-space
transformation in a way that accurately simulates MEG signals while still maintaining knowledge of the true
underlying dynamics to validate our results. This is significantly different from using purely synthetic series,
as we can demonstrate that our model performs well on data that exhibits properties similar to real MEG
recordings.

In cases where we simulate low-rank data, we simulate series by generating a set of {At}Tt=0 matrices, a
random factor loadings matrix Λ, and a set of source vertex noise covariances {σ2

j }
p+1
j=1 . We then simulate

series {f (r)
t }

T,N
t=0,r=1 for N trials and T+1 timepoints as given by Eq. 4, and use these to generate {y(r)

t }
T,N
t=0,r=1

using the process described in Eq. 5. To generate full-rank data, we simulate from the process described
in Section 2, generating a random positive-definite matrix scaled to have eigenvalues between 0.1 and 1 to
use as both Q and Q0 as well as generating {At}Tt=0 and {σ2

j }
p+1
j=1 , where these parameters are defined as in

Section 2.
For each experiment, we apply principal component analysis on the generated {y(r)

t }
T,N
t=0,r=1, projecting

{y(r)
t }

T,N
t=0,r=1, G, GL, and Qsensor onto the number of top principal components given by the rank of Qsensor.

While this is not necessary, we perform this operation to reduce the dimensionality of the sensor-space
structures and allow for faster analyses. We use a value of λ = 100 for the smoothing parameter in all
experiments, determined by inspection as a parameter that induces smooth dynamics for all models without
sacrificing performance as compared to λ = 0.

5.1.1 Comparing performance on low-rank and full-rank series

We simulate MEG data with both low-rank and full-rank structure, and compare the performance of FLDS
and MEG-LDS in recovering the true ROI-space dynamics as well as the ability of FLDS to uncover the
true intrinsic rank of the data. We use a set of 7 predefined cortical regions, and simulate a set of 366
MEG and EEG sensors. For this experiment, we simulated {At}Tt=0 as having a constant value of 0.5 for
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Figure 1: Example traces for selected entries of the dynamics matrices, showing true dynamic connectivity
(black) as well as connectivity recovered by FLDS (blue) and MEG-LDS (orange) in the low-rank data setting
(top row) as well as the full-rank data setting (bottom row). While both methods perform comparably in the
setting where the dynamics are truly full-rank, FLDS outperforms MEG-LDS in the low-rank setting. In
particular, FLDS discovers interesting time-varying structure that MEG-LDS is either only able to capture
slightly (top row, 3rd from left) or misses entirely (top row, rightmost).

the diagonal entries, a directed connection from the first to the second region as given by a sinusoid with
frequency 2π and scaled by a random value in [−1, 1], a directed connection from the second to the first
region as given by a sinusoid generated in the same way and pointwise multiplied by the first sinusoid, and
no other directed connections between the remaining regions. In the low-rank setting, we simulate Λ as a
7× 4 matrix with entries as Λij ∼ N (0, 1), whereas in the high-rank setting we generate and simulate with
random positive-definite Q and Q0 as described above. For both the low-rank and high-rank settings, we
generated {σ2

j }
p+1
j=1 by drawing from a Gamma distribution with shape parameter 2 and scale parameter 0.1.

We simulated N = 200 trials and T = 20 timepoints. For the FLDS model, we fit the model using ranks
in the range k ∈ {3, 4, 5, 6, 7}. We run 5 restarts with random initializations for the MEG-LDS model and
for each value of k for FLDS. To choose the best solution for both models, we perform model selection by
choosing the model that minimizes the Bayesian Information Criterion (BIC), defined as

BIC = −2 logL+ Φ(Θ) log(N) (17)

Where L is the likelihood of the model, N is the number of trials, and Φ(Θ) is the number of free parameters,
given by the entries of {{At}Tt=0,Q,Q0, {σ2

j }
p+1
j=1} for MEG-LDS and {{At}Tt=0,Λ, {σ2

j }
p+1
j=1} for FLDS. Note

that since the dimensionalities of the estimated parameters for MEG-LDS do not change between random
restarts, we are effectively choosing the best result returned by MEG-LDS based on the negative log-likelihood
under the model.

We show example traces of the true dynamic connectivity across ROIs along with the connectivity
recovered by FLDS as well as MEG-LDS in Fig. 5.1.1, for data with true low-rank structure as well as full-rank
structure. These results demonstrate that while both methods perform comparably when the underlying
dynamics are full-rank, FLDS is able to better capture the true time-varying connectivity structure in the
low-rank setting. Table 1 shows the resulting BIC and root mean-squared error (RMSE) in the ΛAtΛ

†

matrices for the best random initialization for MEG-LDS and for each value of k used to fit FLDS. We
observe that model selection is able to select the correct rank when comparing models with different ranks
learned by FLDS.

5.1.2 Demonstrating robustness of network and rank recovery

We also perform a synthetic experiment that demonstrates the ability of FLDS to uncover low-rank structure
that would otherwise lead to spurious interactions between regions. We consider a setting with three regions,
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Table 1: BIC and RMSE values for FLDS vs. MEG-LDS applied to low-rank and full-rank data. Bolded
values indicate best BIC result learned by FLDS, which corresponds to the true rank of k = 4 in the low-rank
setting and the true rank of k = 7 (corresponding to the number of ROIs) in the full-rank setting.

FLDS

k = 3 k = 4 k = 5 k = 6 k = 7 MEG-LDS

BIC, low-rank 1,695,538 1,673,580 1,674,723 1,679,155 1,673,929 1,673,929
RMSE, low-rank 0.253208 0.066729 13.827892 47.081412 62.673791 0.190908

BIC, full-rank 1,584,881 1,539,533 1,481,391 1,470,276 1,458,534 1478883
RMSE, full-rank 0.164295 0.138631 0.110360 0.084820 0.056323 0.094678
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2

1

3

2

1

3

1
3

24

Figure 2: Dynamic connectivity learned by MEG-LDS and FLDS before and after adding in a region with
highly-correlated activity to a region in the smaller subset. Full-rank structure with three regions (middle)
shows that MEG-LDS and FLDS both reliably recover the true dynamic connectivity structure. The addition
of a fourth region that is highly correlated with region two results in a new inferred connectivity graph (right),
where MEG-LDS loses performance in recovering the exact connectivity dynamics, but FLDS remains robust.
Brain regions used were four regions chosen from the Human Connectome Project Multi-modal Parcellation
(left).

Table 2: BIC and RMSE values for FLDS vs. MEG-LDS on recovering robust connectivity. Bolded values
indicate best result for FLDS as chosen by BIC, both of which match the true underlying rank in their
respective setup. This reflects the ability of FLDS to recognize that the underlying low-rank structure has
not changed even when a new ROI is added.

FLDS

k = 2 k = 3 k = 4 MEG-LDS

BIC, low-rank 1,343,528 1,146,739 1,150,357 1,134,034
RMSE, low-rank 0.245526 0.022482 1,551.136 0.119302

BIC, full-rank 1,313,713 1,214,488 – 1,209,032
RMSE, full-rank 0.334446 0.034920 – 0.031079
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simulating full-rank data by constructing At with constant values of 0.9 on the diagonals and a dynamic
interaction from the second to the first region in the form of a standard Gaussian kernel evaluated between
−4 and 4 and scaled to have a maximum value of 0.75. We set Λ to the identity, and all other settings match
the previous experiment. We apply both MEG-LDS and FLDS to this model, running FLDS for k ∈ {2, 3}
with 5 random restarts for MEG-LDS and for each value of k for FLDS, choosing the best learned results for
each by BIC. Both models demonstrate the ability to learn the directed connection as shown on the left-hand
side of Fig. 5.1.2, as well as the constant self-connections (omitted to conserve space).

We then convert the setting to the low-rank case by adding a row to Λ that is a scaled version of the
second row with scale factor 0.9. This models the inclusion of an additional region whose activity is highly
correlated with that of region two. This models the inclusion of a new region in the analysis that is highly
coupled with a region in the original set, either due to being a neighboring region or having strong functional
similarity. We generate data from this model and apply both models in the same fashion as in the full-rank
case, this time using ranks k ∈ {2, 3, 4} for FLDS. The results demonstrate that FLDS is able to capture the
true connectivity that results from the inclusion of the additional correlated region while learning the correct
intrinsic low rank. In contrast, MEG-LDS not only captures these interactions imperfectly but also learns
spurious connectivity between region 3 and the other regions. In effect, FLDS is able to recognize that regions
2 and 4 are highly correlated and captures interactions that demonstrate this, while the inclusion of this
additional region upsets the ability of MEG-LDS to learn the true underlying low-rank connectivity structure.
Table 2 shows BIC and RMSE values that again demonstrate the ability of FLDS to learn the correct rank,
and reinforces the fact that while the two models have comparable performance on data with true full-rank
connectivity structure, the inclusion of additional regions that are highly correlated with the original set
causes the performance of MEG-LDS to drop while FLDS remains robust to the modified structure. Overall,
this emphasize the fact that MEG-LDS is highly sensitive to the regions included in the analysis, and the
outputted results can be highly untrue to the underlying process.

6 Discussion
We propose a method for learning time-varying directed connectivity from MEG data while modeling brain
activity as having a low-rank structure to be more robust to changes in definitions of brain regions as well as
the inclusion or exclusion of certain regions from the analysis. We do so by extending previous state-space
modeling approaches, modeling activity across ROIs as being a mapping from a lower-dimensional set of
latent factors, with the autoregressive dynamics that represent directed connectivity acting in the factor
space rather than across brain regions. We demonstrate through experiments on data using real MEG
structural information that we achieve comparable performance on full- rank data to a state-space modeling
approach that does not explicitly model low-rank structure, and outperform such a model in recovering the
true connectivity across ROIs when such structure actually exists. We show specifically that we are able
to maintain recovery of interpretable dynamics across ROIs even when regions with redundant signal are
incorporated into the analysis. This motivates the use of our method as an exploratory tool for discovering
robust connectivity across brain regions when the regions are not clearly defined, when the analysis requires
examining connectivity over multiple different sets of ROIs, or when the region signals may be highly
correlated.

There are a number of extensions to this approach that would allow for better modeling of the under-
lying data. In particular, we restrict our analysis to connectivity with first-order autoregressive dynamics.
Incorporating a higher lag order would better allow the model to capture long-range interactions. We also
allow the model to learn arbitrary dynamics and factor loadings matrices, capturing low-rank structure but
without enabling the recovery of an interpretable mapping from latent factors to ROIs. Imposing structured
constraints on the factor loadings matrix, such as encouraging a sparse mapping or enforcing that ROI signals
be additive combinations of factor signals, may enable the model to learn a more interpretable mapping. We
would then not only be able to recognize when a lower-dimensional grouping of regions exists but also learn
which ROIs belong to which groups. Finally, while we demonstrate that the approach of learning models with
different dimensionalities and using model selection to choose the best one works well in practice, a more
adaptive method that enables the identification of the number of factors while jointly learning the mapping
from factors to ROIs would greatly simplify the process of using this method for data analysis.
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