
A hierarchical state-space model with Gaussian process dynamics
for functional connectivity estimation

Understanding the dynamics of neural activity is a fundamental problem in neuroscience
which could elucidate brain function. We take a systems neuroscience approach to under-
standing dynamics via the concept of functional connectivity, the temporal dependence of
activity between different brain regions that indicates how information flows between regions.
Specifically, we develop a technique for estimating functional connectivity from magnetoen-
cephalography (MEG) data, and apply it to data from subjects performing an auditory
attention task. Studying functional connectivity networks underlying auditory attention
could improve our understanding of conditions such as central auditory processing disorder,
motivating novel diagnosis and treatment.

Estimating functional connectivity from MEG data brings multiple challenges that need
to be addressed to properly model the underlying structure. One challenge is that functional
connectivity can change over short timescales, and should therefore be modeled as a dynamic
process. Another is handling data from multiple subjects performing the same task, where
we want to leverage all subjects’ data to estimate shared connectivity structure while also
accounting for meaningful subject-specific variations. To address both of these issues, we
develop a hierarchical Bayesian model using Gaussian processes for functional connectivity
estimation and a computationally efficient inference algorithm to learn the model parameters.

Since we are interested in dynamic functional connectivity, we model MEG recordings
from a single subject as a time-varying linear dynamical system

xt+1 = A(t)xt + εt, εt ∼ N (0, Q) yt = Cxt + ηt, ηt ∼ N (0, R)

Where t indexes time, yt is a vector of MEG sensor values, and xt is a vector of activity
across multiple brain regions of interest (ROIs). The ROI activity xt follows a linear autore-
gressive process, where each A(t) is a matrix of interaction terms such that the entry Aij(t)
encodes the functional connectivity from region j to region i at time t. For our application,
C is a known matrix that describes the forward transformation from ROI activity to MEG
sensor readings. We capture connectivity shared across subjects along with subject-specific
variation by placing a hierarchical structure on the A(t) matrices across S subjects
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Where GP(m, k) is a Gaussian process with mean function m and kernel function k (we
use the squared exponential kernel k(ti, tj) = σ2 exp(d(ti − tj)

2) to describe connectivity
varying smoothly over time). The global dynamics A(global)(·) capture the shared network
across subjects, while each A(s)(·) is a subject’s deviation from the global mean.

To estimate the dynamics, we use a Gibbs sampling inference algorithm; however, the
dimensionality of the problem makes standard Gibbs sampling computationally infeasible.
To address this, we incorporate iterative approximations via the Lanczos and conjugate
gradient algorithms to efficiently sample from high-dimensional Gaussians and allow the in-
ference to scale to our large MEG dataset. The dataset consists of MEG recordings collected
from subjects performing a task where they exercise different aspects of auditory attention
across multiple experimental conditions. Initial results demonstrate our model’s ability to
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capture plausible functional connections at the group and subject-specific levels within each
experimental condition as well as meaningful differences between conditions. Though further
examination of results and future computational experiments are forthcoming, this hierar-
chical Gaussian process structure is a promising tool for modeling continuously time-varying
dynamics from MEG data collected from multiple subjects.
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