A Hierarchical State-Space Model with Gaussian Process Dynamics for Functional Connectivity Estimation

Rahul Nadkarni (rahuln@cs.washington.edu), Nicholas J. Foti (nfoti@uw.edu), Adrian KC Lee (akclee@uw.edu), Emily B. Fox (ebfox@uw.edu)

Goal

- We present an approach for learning directed, dynamic functional interactions between brain regions across multiple subjects from magnetoencephalography (MEG) data
- We pool subjects' data to learn a group-level connectivity structure while also modeling interesting subjectspecific differences
- Our method incorporates Gaussian processes to model functional connections that are smoothly time-varying while capturing estimation uncertainty

Description of model

Example of global time-varying connection with subject-specific variation

$$A_{ij}^{(\text{global})}(\cdot) \sim \mathcal{GP}(I_{ij}, k_0)$$

$$A_{ij}^{(s)}(\cdot) \sim \mathcal{GP}(A_{ij}^{(\text{global})}(\cdot), k_1), \ s = 1, \dots, \# \text{ subjects}$$

$$x_{t+1}^{(s)} = A^{(s)}(t) \ x_t^{(s)} + \epsilon_t^{(s)}, \ \epsilon_t^{(s)} \sim \mathcal{N}(0, Q) \leftarrow \mathsf{ROls}$$

 $y_t^{(s)} = C^{(s)} x_t^{(s)} + \eta_t^{(s)}, \ \eta_t^{(s)} \sim \mathcal{N}(0, R^{(s)}) \leftarrow \text{sensors}$

 $\mathcal{GP}(m,k)$ is a Gaussian process with mean function m and covariance function k. We use the squared exponential kernel: $k(t_i,t_j)=\sigma^2\exp(-d(t_i-t_j)^2)$

- Sensor values $y_t^{(s)}$ and observation model $\mathcal{C}^{(s)}$, $\mathcal{R}^{(s)}$ known for each subject
- ROI dynamics $A^{(s)}(t)$, $A^{(global)}(t)$ and noise Q unknown, inferred via Gibbs sampling
- Entries of A(t) indicate strength of directed interaction between regions over time

Problem setup

- Obtain MEG sensor recordings y from multiple subjects performing a task
- Observation model which includes forward model (lead field matrix) C and sensor noise covariance R – is known (i.e., can be calculated) for each subject
- Goal is to infer time-varying, directed functional interactions between a specified set of brain regions of interest (ROIs) using sensor recordings and observation model for each subject

Inference

- Gibbs sampling with iterative approximation methods for efficient sampling from posterior of $A^{(s)}(t)$
 - Conjugate gradient (CG): $\Sigma, \mathbf{x} \to \text{approximation to } \Sigma^{-1}\mathbf{x}$ used for $\mu_A = \mathbb{E}[A_{ij}^{(s)}(\cdot) \mid rest]$
 - Lanczos algorithm: $\Sigma^{-1}, x \to \text{approximation to } \Sigma^{1/2} x$ Used to sample from $\mathcal{N}(0, \Sigma)$
 - Given $\Sigma_A^{-1} = \left[\operatorname{Cov} \left(A_{ij}^{(s)}(\cdot) \mid rest \right) \right]^{-1}$: CG to construct μ_A Lanczos to generate $\epsilon_A \sim \mathcal{N}(0, \Sigma_A)$ Construct sample $\mu_A + \epsilon_A$

Simulation experiments

- Sensor data simulated from hierarchical model for 3 subjects and 2 ROIs (above), using real MEG forward model $\mathcal{C}^{(s)}$ and sensor noise covariance $\mathcal{R}^{(s)}$ for each subject
- Simulated dynamics A^(global)(t)
 constructed to include a time-varying
 interaction from one ROI (blue)
 directed towards the other (red)

Results

- Hierarchical model is able to learn global dynamic connectivity structure (top left) as well as subject-specific variation (other subplots)
- Bayesian inference allows the model to capture uncertainty in the time-varying connectivity (blue band shows 95% CI)

Future directions

- Application to real MEG data recorded from multiple subjects performing an auditory attention task (analysis ongoing)
- Incorporating subject-specific auxiliary data (e.g., behavioral and cognitive assessments, audiological test results, subjective questionnaire answers)

