
RANJAY KRISHNA RESEARCH STATEMENT
As modern machines struggle to fully conceptualize the visual world, my research looks toward human
learning for potential solutions. Inspired by Computer Vision’s original basis in human perception,
my research methodology identifies learning mechanics from behavioral and social sciences to
bootstrap machine learning. From this process I developed two lines of work: (1) representations
and models inspired by Cognitive Science and (2) optimizations and training paradigms spurred by
Human-Computer Interaction.
Drawing on Cognitive Science, specifically from human visual processing and visual memory, I
designed representations and models that have led to improvements on a variety of core Computer
Vision tasks. Specifically, I introduced scene graphs, a dense, detailed, computational representation
of visual information, via the Visual Genome dataset [30, 20, 37, 5, 3, 25, 17, 32]. Since our
introduction of scene graphs, the Computer Vision community has developed hundreds of scene
graph models and utilized scene graphs to achieve state-of-the-art results across multiple core tasks,
including object localization, image captioning, generation, question answering, 3D understanding,
and spatio-temporal action recognition. Visual Genome is also now the de-facto dataset for pre-
training object detectors for any downstream task. The three scene graph workshops I organized at
international conferences have each attracted between 400-600 attendees [26, 17, 22].
Drawing on Human-Computer Interaction, together with Gricean Maxims from Linguistics and
Social Development Theory from Social Psychology, I have created training paradigms that go
beyond traditional Computer Vision tasks and enabled learning from human interactions. Concretely,
I created a real-world deployment of an agent, which learned new visual information over a course
of 8 months by interacting with over 230K people on social media by asking questions [21, 35, 29].
This work demonstrates the possibility of agents that can uncover social norms to learn how to
interact, and improve their capabilities over time by engaging people in existing social environments.
Building towards this deployment, I have also introduced tasks and models that can express visual
knowledge using language and, more importantly, ask questions to learn new visual information [28,
24, 23]. I have organized 3 competitions at international conferences where teams from over 30
institutions and 8 countries have doubled the state-of-the-art on these tasks in just 3 years [7, 8].

PAST RESEARCH
I will summarize these two broad areas of my past research, highlighting key ideas and contributions.
Teaching machines to see with scene graphs. When I started my Ph.D., Computer Vision
models for holistic scene understanding were primarily focused on object classification and detection,
leaving all other visual information unattended. For example, these methods could not differentiate
between images of a person riding, pushing, or even falling off of the bicycle. To realize vision
applications which people can use, it is vital that our computational visual representations reflect
human cognition. Work in Cognitive Science and human visual memory [2, 39] have identified that
when people process visual stimuli, they identify objects and simultaneously encode the relationships
between them. In an effort to represent visual scenes similar to human cognition, we developed a new
representation — scene graph [30, 20], which encodes objects in the scene as nodes and relationships
as edges. To promote research on scene graphs, we collected the Visual Genome repository [30], a
large-scale dataset containing scene graphs with millions of objects, attributes, and relationships. To
collect Visual Genome, we developed new data collection interfaces inspired by Psychophysics to
speed up crowdsourcing data by an order of magnitude [27].
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With Visual Genome, we introduced the task of scene graph generation, which expects an image as
input and detects objects in the image with relationships connecting them [32]. Along with the task,
we also developed a new model since existing predictions models tended to overfit to this difficult
structured prediction task. Inspired by Cognitive Science findings that show humans processing
relationships in parallel to identifying objects [2], we designed a model architecture with two parallel
branches: one for object detection and another for relationships classification [32]. This separation
between objects and relationships affords the prediction of novel scene graphs unseen during training.
For instance, our model could identify “people - sitting on - fire hydrants”, a composition it had never
seen before by individually recognizing the objects, “person”, “fire hydrant”, and the relationship,
“sitting on”.
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Figure 1: Scene graphs in Visual Genome.

Our subsequent work [25, 5] on scene
graph generation improves upon this orig-
inal model by adding a graph convolution
layer, which iteratively fine-tunes each pre-
diction by considering all the other objects
and relationships in the image. This model
was inspired by work in Neuroscience which
postulates that visual processing is an iter-
ative process [9]. Over the last 4 years, the
computer vision community has published
hundreds of scene graph models using a
variety of recent deep learning advances.
Yet, one design decision has persisted: the
parallel object and relationship branches
introduced by our original model.
Scene graphs provide a comprehensive intermediate visual representation that other downstream
tasks can use to reason over visual data. Using scene graphs as this intermediate representation, we
improved numerous core vision tasks, including image retrieval [20, 37], object localization [25], action
recognition [17] and learning with few training examples [3, 5]. Likewise, the community has utilized
scene graphs to create new diagnostic datasets [18, 16, 41], supervised learning techniques [15, 33,
19, 14], interactive learning methods [11], and evaluation protocols [1].
Teaching machines to interact with people using language. Social development theory has
demonstrated that human development is a socially mediated process in which children acquire
new beliefs and cultural norms through inquisitive dialogues with more knowledgeable members
of society. Yet, the ability to learn from other people remains an open challenge limiting artificial
intelligence agents. The space of possible interactions is combinatorially vast and feedback from
people is often implicit, making learning from interaction intractable outside of simple domains or
simulation.
We introduced a framework that learns from interactions with people by simultaneously learning
how to interact with people [29]. To navigate the combinatorial space of interactions, we drew
an insight from numerous social science fields: while the action space of all possible behaviors is
vast, and intractable to explore within a reasonable number of interactions, most human-human
interactions lie on a low-dimensional manifold [36, 6]. We developed an algorithm that discretizes
the space of all possible interactions into a lower dimensional manifold, and uses it as a surrogate
tractable action space for reinforcement learning. We enable learning from human interactions by
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designing two rewards: one to uncover interactions that elicit people’s interests and another to
generate interactions that result in new visual information.

Figure 2: Example interactions with real people on social media.

With this framework, we de-
ployed an agent that learns to
recognize new visual concepts by
interacting with people using nat-
ural language questions. Through
an 8-month deployment on a
photo-sharing social network, our
system interacted with 230K
people, learned through implicit
feedback to ask questions that
increased response rates, and im-
proved recognition of new visual
concepts. Unlike prior work, we
did not train participants to pro-
vide explicit rewards. Instead, our
system explored the space of possible interactions to infer the social norms already established within
the social network [34]. It learned questions that can be easily interpreted and answered, avoided
ambiguous utterances, and demonstrated social proof by mentioning recognizable concepts. We
further improved the system’s ability by teaching it a number of request strategies [35] (e.g. using
compliments or justifications) identified by Social Psychology [4]. This work expands possibilities for
socially-capable AI to continuously improve and adapt in whatever domain it is launched in.
Building up to this deployment, my team and I have been developing vision models that can
communicate using language [23, 28, 24]. In two such projects, we use the maxim of quantity from
Gricean Maxims, to generate dense captioning models. In one, we introduced a hierarchical recurrent
network to generate paragraph descriptions of images [23]. In another, we introduced a hierarchical
temporal detection model to detect and caption events in videos [28]. Next, using the maxim of
relation and quality, we developed an information maximizing question generation model that can
generate different questions depending on whether it wants to learn about objects (“What is the
person throwing?”), attributes (“What color is the frisbee?”), or relationships (“Did the person on
the left throw or catch the frisbee?”) [24]. Since the introduction of these tasks, the community has
more than doubled the state-of-the-art on paragraph generation and dense video captioning [10, 40].

FUTURE RESEARCH AGENDA
I envision a future where artificial intelligence agents are akin to adaptable co-workers taught
“on-the-job” to assist anyone in any task. These machines are capable of learning from people,
and empower anybody, including the vast majority without computing experience, to tailor AI
applications in domains like knowledge acquisition, healthcare services, education, sustainability,
automation, and countless others. To realize this goal, I will continue to draw ideas from human
learning to pursue the following concrete future directions.
Compositional spatio-temporal representations. As video understanding applications have ma-
tured, we need representations that characterize visual events in the compositional manner that
people understand them. Recently, inspired from Event Segmentation Theory [31], we introduced a
representation that decomposes actions into spatio-temporal scene graphs — representing actions
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has changes in relationships between objects [17]. We utilized this new representation to train
a model that improves action recognition while also being more interpretable [17]. My current
work is utilizing this representation to develop a new benchmark to test whether models exhibit
compositional spatio-temporal generalization [12].
Improving collaboration by inferring human intentions. While people are uniquely adept at
inferring others’ intentions, delegating tasks, and coordinating their behavior on the fly, collaboration
remains an open challenge for artificial intelligence. I have recently embarked upon two projects
related to improving human-AI collaboration. In one, we are drawing on the Theory of Mind to
develop a self-supervised multi-agent exploration approach that leads to emergent intention inference.
In other words, machines learn to infer human intentions by practicing in simulation with a copy of
itself. A new ongoing project is exploring how different AI explainability methods affect our mental
models and in turn, impact human-AI collaboration.
A science for human-AI interaction. Human-Computer Interaction has formalized the process of
observing how machines (mis-)behave when deployed in real-world situations and proposing design
decisions to improve them. Yet, incorporating those decisions as inductive biases or data generation
strategies or evaluation protocols is largely an ad hoc process within the AI community. I intend
to standardize and validate processes to directly convert human observations and interactions into
machine learning changes. I have taken some steps towards this direction [13, 27, 38, 42]. In one such
project, we discovered that generative models were being evaluated using heuristics because of the
difficulty in attaining consistent human judgements. In response, we developed a human evaluation
protocol for generative adversarial models that is consistent and grounded in Psychophysics [42].
Designing pro-social interactions. Many non-technical factors affect how people perceive and
interact with machines. I intend on exploring various avenues of impression formation to study how
factors that induce pro-social and avoid anti-social human-AI interactions. My initial explorations
have drawn on the Stereotype Content Model from Psychology to suggest how machines should be
introduced, resulting in a theory that provides a new lens on why consumers have abandoned or
refused to interact with many commercial AI agents [21].
In sum, my research draws on frameworks originating in cognitive and social sciences to improve
machine learning. It aims to realize a world in which computing systems learn from interactions with
people. By propelling the evolution of real-world systems, my research is taking steps to empower
people to take charge of their machine’s learning.
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