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A sensory–motor theory of the neocortex

Rajesh P. N. Rao    1,2 

Recent neurophysiological and neuroanatomical studies suggest a close 
interaction between sensory and motor processes across the neocortex. 
Here, I propose that the neocortex implements active predictive coding 
(APC): each cortical area estimates both latent sensory states and actions 
(including potentially abstract actions internal to the cortex), and the cortex 
as a whole predicts the consequences of actions at multiple hierarchical 
levels. Feedback from higher areas modulates the dynamics of state and 
action networks in lower areas. I show how the same APC architecture can 
explain (1) how we recognize an object and its parts using eye movements, 
(2) why perception seems stable despite eye movements, (3) how we learn 
compositional representations, for example, part–whole hierarchies, (4) 
how complex actions can be planned using simpler actions, and (5) how we 
form episodic memories of sensory–motor experiences and learn abstract 
concepts such as a family tree. I postulate a mapping of the APC model to the 
laminar architecture of the cortex and suggest possible roles for cortico–
cortical and cortico–subcortical pathways.

The predictive coding theory of cortical function, proposed in this jour-
nal in 1999 by the author and Ballard1, has been the subject of increasing 
attention in recent years2–4. However, as originally proposed, the theory 
ignored a fundamental aspect of perception, namely, that perception is 
action based: we move our eyes about three times a second to recognize 
objects in a scene, orient our heads to localize sounds, use our fingers to 
identify objects by touch and navigate ourselves in our environment to 
solve tasks that satisfy our needs. Away from experimentally imposed 
constraints in the laboratory, perception, in its natural state, can best 
be viewed as an action-based hypothesis-testing process (also called 
active sensing, active perception and active inference)5–8.

Recent studies have highlighted the important influence of 
impending actions across almost all cortical areas (Fig. 1). For exam-
ple, in mice solving a visual discrimination task using forepaws to 
rotate a wheel, Zatka-Haas et al.9 observed, using widefield calcium 
imaging, extensive bilateral activity across cortical areas preceding 
movements on choice trials (left or right action selected) but not on 
‘NoGo’ trials (no action is selected) (Fig. 1a, left). They further showed 
that impending movement could be decoded from cortical activity 
in most imaged regions by 25 ms before movement (Fig. 1a, right). In 
the same task, Steinmetz et al.10 used Neuropixels probes to record 
spiking activity from thousands of neurons and showed that, not 

only does activity in the visual cortex get updated after movement 
(Fig. 1b, left), but almost all recorded cortical areas had neurons 
with activities that were predictive of upcoming movements (Fig. 1b, 
right). Similarly, Stringer et al.11 found that about a third of the popu-
lation activity of ~10,000 neurons in the visual cortex of awake mice 
could be predicted from motor actions derived from a video of the 
mouse’s facial movements (Fig. 1c), suggesting that sensory–motor 
integration occurs even in the primary sensory cortex (the lack of a 
similar result in monkeys12 could be due to the increased functional 
specialization of primate visual cortical areas compared to that of 
the rodent cortex).

Actions may be integrated differently across the different layers 
of a cortical area. For example, Jordan and Keller13 showed that both 
layer 2/3 and layer 5/6 neurons in the mouse primary visual cortex 
(V1) undergo depolarization before locomotion onset (Fig. 1d, left and 
middle). While layer 2/3 neurons appear to be computing a difference 
between motor-related input and bottom–up visual flow input, layer 
5/6 responses were consistent with positive integration of visuomotor 
inputs (Fig. 1d, right). These results complement well-known earlier 
results on predictive activity in a range of cortical areas such as the 
visual cortex14, the parietal cortex15 and frontal eye fields16 that antici-
pate the visual consequences of impending eye movements.
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consisting of a state-prediction network and an action-prediction net-
work, both implemented within each cortical area. ‘State’ here denotes 
hidden (or ‘latent’) aspects of the world inferred from sensory inputs, 
for example, parts of an object to be recognized or one’s location in a 
building. ‘Action’ refers to not just motor commands but also abstract 
actions, for example, ‘go to the maternal grandmother node’ in a family 
tree or ‘perform multiplication’ on two given numbers. APC postulates 
that feedback from higher cortical areas modulates the dynamics of 
both state and action networks in lower areas, changing the functions 
they compute on the fly to suit the needs of the current task. This leads 
to representations that operate at multiple levels of sensory and motor 
abstraction, as observed in cortical hierarchies implicated in percep-
tion and action27–30. In the following sections, I present computational 
and neurobiological aspects of APC, comparing emerging studies and 
experimental results with the model’s predictions. I present simula-
tions chosen to showcase the explanatory breadth of APC. While we 
have previously investigated APC in the context of machine learning 
(ML) and artificial intelligence (AI)31–33, here I explore APC as a model 
of cortical function.

APC
Neuroanatomical and physiological motivation
The axonal outputs of layer 5 neurons in almost all cortical areas target 
subcortical motor centers19. Even in V1, outputs from layer 5 neurons 
target the superior colliculus34, which is involved in eye movements 
(aside from other motor behaviors). Similarly, layer 5 neurons in the 
primary auditory cortex (A1) send outputs to the inferior colliculus35, 
which is involved in orienting and defensive motor behaviors36, while 

The emerging view, as suggested by the studies above, is that 
almost all cortical areas update their representations on the basis 
of ‘efference copies’ of upcoming actions (‘corollary discharges’  
(ref. 17)) as well as the results of executed actions. Such a view harmo-
nizes well with the anatomical observation that all areas of the neocor-
tex (henceforth, the ‘cortex’), including areas traditionally labeled as 
sensory cortices, send outputs to subcortical motor regions (refs. 18,19 
and references therein) and receive input from these regions. Indeed, 
Vernon Mountcastle, in his prescient article in 1978 (ref. 20), put forth 
the hypothesis that a single unifying computational principle might 
be operating across the entire cortex, proposing the ‘cortical col-
umn’ as a modular information-processing unit of the cortex (see also  
refs. 21–23 for related ideas). This hypothesis is supported by the 
remarkable anatomical similarities in laminar connectivity patterns 
across cortical areas24,25, even though the density of cells within laminae 
may vary across areas. Additional evidence for this hypothesis comes 
from experiments in which inputs from the optic nerve were diverted 
via the auditory thalamus to the auditory cortex, causing the auditory 
cortex to develop visual receptive field properties26.

If there is indeed a common computational principle operating 
across the cortex, it must be versatile enough to explain capabilities 
as diverse as (1) learning to recognize an object from multiple visual 
glimpses through eye and head movements or from multiple tactile 
sensations through finger movements, (2) solving a complex spatial 
navigation task using simpler movement sequences and (3) under-
standing abstract concepts (such as a family tree).

In this Perspective, I suggest APC as a unifying sensory–motor 
theory of the cortex. APC hypothesizes a canonical cortical module as 
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Fig. 1 | Widespread influence of actions across the cortex. a, Left, widefield 
calcium imaging reveals bilateral activity (cortical fluorescence dF/F) from 0 to 
200 ms after stimulus (stim) onset across cortical areas preceding movements 
on left or right (L/R) action-selection trials. ‘NoGo’ trials do not show such 
activity. Right, average action execution decoder accuracy (acc.) 25 ms before 
movement onset, showing that an impending movement can be decoded from 
cortical activity in most imaged regions (adapted from ref. 9, CC BY 4.0). MOs, 
secondary motor cortical area; MOp, primary motor cortex; SSp, primary 
somatosensory cortex; VISp, primary visual cortex; VISal, secondary visual 
cortical area. b, Left, increased spiking after a correct choice movement in a 
visual cortex neuron (posteromedial visual area, VISpm) for both contralateral 
(contra) and ipsilateral (ipsi) stimulus presentations (orange and blue dots, 
spikes; black dots, movement onset). Right, fraction of neurons in each brain 
region with pre-movement activity that could be accurately predicted from 
the animal’s movement (in either the left or right direction) (adapted from 
ref. 10, Springer Nature Limited). c, Motor action information extracted using 

principal-component (PC) analysis of a video of a mouse’s facial movements 
(left, example frames t, t + 1; middle, top three principal components) accurately 
predicted (using reduced-rank regression) about a third of the population 
activity of ~10,000 neurons (raster representations on the right) measured 
using two-photon calcium imaging of the visual cortex of awake mice (adapted 
with permission from ref. 11, AAAS). 1D, one dimensional. d, Intracellular 
recordings in V1 of mice on a spherical treadmill with locomotion coupled 
to visual flow feedback. Visual flow was halted at random times to generate 
visuomotor mismatch events. Left, heatmap of average responses before 
and after locomotion onset across all layer 5/6 neurons. Baseline activity was 
subtracted from responses by using the average membrane potential in the 2.5 s 
before locomotion onset before averaging. Middle, average response before and 
after locomotion onset across all layer 5/6 (L5/6) neurons (black, 14 neurons) 
compared with all layer 2/3 (L2/3) neurons (gray, 32 neurons). Right, average 
mismatch responses of layer 2/3 and layer 5/6 neurons (adapted with permission 
from ref. 13, Elsevier).
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layer 5 neurons in the primary somatosensory cortex send outputs 
to the spinal cord37, which controls body movements. On the other 
hand, layer 5 neurons in the primary motor cortex (or M1) (such as Betz 
cells) have long been implicated in motor function via their axonal 
projections to the spinal cord38, but the middle and upper layers of 
traditional ‘motor’ cortical areas such as M1 are involved in sensory 
processing of feedback from subcortical and cortical sources39,40: for 
example, layer 2/3 neurons in mouse M1 respond to unexpected sen-
sory perturbations in a visually guided motor task41, while neurons in 
mouse M2 encode auditory sensation and expectation42. Thus, despite 

well-known differences in the laminar densities of neurons in different 
cortical areas (for example, V1 versus M1), the sensory–motor nature 
of the cortex is retained. This motivates the idea of a ‘sensory–motor 
cortical module’ as a canonical feature of the cortex (described further 
in the section APC module and neuroanatomical implementation).

The figure in Box 1 (panel a) depicts the laminar structure of a typi-
cal cortical column and its connectivity (based on refs. 18,24,43). Inputs 
from a sensory region or a lower cortical area target layer 4 neurons, 
the outputs of which are then conveyed to the superficial layer 2/3 
neurons. These neurons in turn send their axons to the deeper layers, 

Box 1

Canonical APC module
The canonical APC module is motivated by the laminar structure 
of the cortex (figure in Box 1, panel a) and consists of the following 
components:

State-transition function. The state-transition function fs models 
the physics of the environment and the agent, and predicts the 
next state st, given the previous state st−1 and action at−1 (figure in 
Box 1, panel b). In general, states and actions are vectors. By 
learning an approximation ̂fs of fs from interactions with the 
world, the agent can learn an ‘internal model’ of the world81,87,88,94 
(also called a ‘world model’, forward model or generative model) 
and use it to run simulations of the world, imagine new scenarios, 
explore what happens when particular actions are executed and 
plan actions that lead to desirable states. Biologically, the function 
̂fs can be implemented by a recurrently connected network of 

neurons, with the network activity at time t  denoting an estimate ̂st 
of the state st (figure in Box 1, panel c). Neural population activity 
in visual, auditory and somatosensory cortices, for instance, after 
processing a sensory stimulus (or more generally, after sequential 
sampling of the stimulus), can be regarded as the estimated ̂st for 
that stimulus computed by the cortical region.

Policy function. An internal model (such as ̂fs above) can be used to 
plan actions by unrolling the model into the future to explore the 

consequences of various action choices, but this mode of selecting 
actions requires considerable effort and deliberation (‘system 2’ 
thinking68). A more efficient way to select actions (‘system 1’ 
thinking68) is to have a state-to-action ‘policy’ (ref. 44) ̂fa, which maps 
the current estimated state ̂st directly to an action ̂at to achieve the 
current goal (figure in Box 1, panel c). Biologically, the policy ̂fa can 
be implemented by a recurrent network of neurons with activity at 
time t denoting ̂at.

Coupling perception and action. Given a policy ̂fa for a particular 
task or goal, the agent can execute an action ̂at  
from the policy while simultaneously sending ̂at as an ‘efference 
copy’ (or ‘corollary discharge’ (ref. 17)) to the learned model ̂fs to 
predict the sensory consequences of each action. The agent  
can then correct its prediction of the new state of the world  
based on the new sensory observation that resulted from  
taking the action, using prediction errors as prescribed by 
predictive coding theory1. The corrected state estimate ̂st can in 
turn be fed as input to the policy ̂fa to generate the next  
action for the task, continuing until the goal is achieved or  
the task times out. A biological implementation of this idea  
involves coupling the state and policy recurrent networks within 
the laminar structure of a cortical area, as depicted in the figure in 
Box 1 (panel c).
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Box 2

State and action networks in the cortex
State network ̂f ̂f ̂fsss and sensory–motor prediction in the cortex. The 
APC model predicts that cortical networks implementing the 
state-prediction function ̂fs should learn to anticipate the sensory 
consequences of actions (by predicting latent sensory states) and 
exhibit anticipatory activity before movement. A study by Audette 
et al.93 found such anticipatory activity in the primary auditory 
cortex (figure in Box 2, panel a): mice were trained to push a lever 
with their forelimb, which produced a pure tone at a fixed position 
early in each movement; after training, omission of this learned 
movement-associated sound (figure in Box 2, panel a, top left) 
revealed a large population of auditory cortex neurons firing roughly 
200 ms before movement onset, with this activity peaking around 
the time of the expected tone (figure in Box 2, panel a, top middle 
and right). The study also found prediction error-like suppression of 
neural activity for anticipated sounds, consistent with the use of 
errors in predictive coding for state inference (figure in Box 2, panel 
a, bottom). Predictive activity anticipating the visual consequences 

of an upcoming eye movement has been observed across the cortex 
including the visual cortex14, the parietal cortex15 and the frontal 
cortex16 (figure in Box 2, panel b, left, middle and right, respectively). 
Other types of movement, such as locomotion, can also predictively 
activate cortical neurons, for example, in V1 (ref. 13 and Fig. 1d). 
These results are consistent with the APC model’s use of a state 
network ̂fs to learn the sensory consequences of actions.

Action network ̂f ̂f ̂faaa and cortical motor dynamics. The APC model 
assumes that the network within a cortical area implementing the 
action-prediction function ̂fa is a recurrent network (figure in  
Box 1, panel c) for which the outputs, in the case of the motor cortex, 
encode the dynamics of movement. There is now considerable 
neurophysiological evidence that, when an animal is performing a 
movement (for example, reaching toward a goal), the activities of 
neurons in the motor cortex are well described by a dynamical 
system of the form ̇a = f(a,u) where u is an external input95.  
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predominantly targeting layer 5 neurons. One class of layer 5 neurons 
(with thick tufted apical dendrites and firing in bursts) send their axons 
to subcortical motor centers such as the superior colliculus and other 
parts of the brainstem19,34,43. Other layer 5 neurons, which do not fire in 
bursts and have slender apical dendrites, project to the striatum and 
other cortical regions34,43. There is also a substantial axonal projection 
from layer 5 back to layer 2/3, signifying recurrent feedback within a 
cortical column. There are additional projections from layer 5 to layer 
6, and layer 6 in turn sends outputs to the parts of the thalamus that 
send inputs to layer 4.

Computational motivation
Computational considerations point to maintaining a close link 
between actions and their sensory consequences. In model-based 
reinforcement learning44 and, more generally, in the framework of 
partially observable Markov decision processes45,46, an intelligent 
‘agent’ interacts with the world by executing an action at−1 at time t − 1, 
and this causes the agent’s ‘state’ to change from st−1 to st; this change 
is governed by the state-transition function fs(st−1,at−1), which gener-
ates a new state st according to a probability distribution P(st|st−1,at−1). 
When the agent executes an action based on a policy fa, for example, 
moving its body by walking or making an eye movement, the hidden 
state changes to the next state st (a new location in a building being 
navigated or a new part of a scene being recognized) according to 
fs(st−1,at−1). Inferring these hidden states as the agent makes move-

ments is the essence of perception47,48.

APC module and neuroanatomical implementation
The above computational considerations motivate the canonical APC 
generative model shown in the figure in Box 1 (panel b). The correspond-
ing model for inference and learning, referred to as the canonical APC 
module, is described in Box 1 and shown in the figure in Box 1 (panel 
c). This figure also suggests one possible functional mapping of APC’s 
computational elements onto the cortical laminar structure in the 
figure in Box 1 (panel a), which builds on previous proposals mapping 
predictive coding to cortical laminae49,50.

As shown in the figure in Box 1 (panel c), the superficial layer cortical 
neurons, which receive the filtered sensory inputs from layer 4 and are 
recurrently connected to each other, are well suited to implementing 
the state-transition function ̂fs. The motor output layer 5 neurons, which 
are also recurrently connected to each other, fit the role of neurons 
computing the action–policy function ̂fa. The other class of layer 5 
neurons, which convey information to other cortical areas and the stria-
tum, could maintain the current state estimate ̂st by integrating the state 
prediction from layer 2/3 and correcting it with prediction errors from 
the feedforward thalamic inputs to layers 4 and 5/6 (ref. 1). Layer 6 neu-
rons receiving inputs from these state-estimating layer 5 neurons are 
well placed to compute the prediction for a lower-level area: at the lowest 
level, layer 6 neurons predict sensory input Īt for the input It (layer 6 
neurons at a higher level would predict the cortical state at a lower level; 

for more details, see the section Hierarchical APC and cortical 
feedback).

Layer 5 motor output neurons, for example, those sending outputs 
to the superior colliculus, send axon collaterals to higher-order tha-
lamic nuclei18,19 and receive motor information from subcortical motor 
centers such as the superior colliculus regarding actions executed. 
These thalamic nuclei are therefore in an ideal position to compare the 
actual executed action at  (from the superior colliculus or other motor 
center) and the cortical prediction ̂at. The resulting action feedback 
(for example, in the form of action-prediction errors), in addition to 
sensory feedback (in the form of sensory-prediction errors), can be 
conveyed by the thalamus back to the cortex to enable the 
state-transition network ̂fs to correct its state prediction and the action 
network ̂fa to correct its action prediction. Indeed, it is known that 
higher-order nuclei such as the pulvinar receive cortical layer 5 inputs 
and information from the superior colliculus and send axons to super-
ficial layers of area V1, explaining the response of V1 neurons to saccadic 
eye movements51.

The implementation suggested above is consistent with growing 
experimental data on predictive coding in the cortex2,4, with predic-
tion error-like activity reported in superficial layers13,52 and predictive 
activity observed in deeper layers53 and in cortico–cortical interac-
tions54,55. The implementation above also shares similarities with pre-
vious canonical circuits for predictive coding49 in specifying laminar 
roles for state estimates and prediction errors but differs in the use 
of both actions and states to generate predictions, rather than being 
limited to hidden causes49. Evidence for state and action networks in 
the cortex is summarized in Box 2.

Hierarchical APC and cortical feedback
A characteristic feature of the cortex is the reciprocal nature of con-
nections between cortical areas27: ‘feedforward’ connections from a 
cortical area A (originating in the superficial layers) to a cortical area 
B (terminating in layer 4) are invariably reciprocated by anatomically 
defined ‘feedback’ (or descending) connections from area B to area A 
(originating in the deeper (and sometimes superficial) layers of B to 
superficial and deep layers of A). Why are cortical areas reciprocally 
connected and organized in an approximate hierarchy27,56?

Computational motivation
Consider the problem of going to the grocery store from one’s house. 
As shown in Fig. 2a, the complexity of the problem can be substantially 
reduced by dividing the task into subtasks (or ‘subgoals’), dividing each 
subtask into ‘sub-subtasks’, and so on. Reducing a complex problem 
to a sequence of easier-to-solve components and reusing these com-
ponents to solve new problems gets to the heart of compositionality, 
which is thought to form the basis for cognitive flexibility and fast 
generalization in humans57,58.

A complex problem can be characterized by its (typically 
high-dimensional) state-transition function, which governs how the 

The figure in Box 2 (panel c) illustrates these motor cortical 
dynamics in monkeys performing reach movements. Such 
dynamics can be learned and implemented by a recurrent neural 
network96, which in the APC model is the action network  
̂fa. The APC action network receives as input not only local 

recurrent activity but also the current state estimate ̂s  (figure in 
Box 1, panel c), which is updated using sensory feedback from 
other brain regions such as the thalamus. The APC model 
therefore predicts a close interaction between thalamic inputs 
and motor cortical outputs of the action network ̂fa. A recent 
study by Sauerbrei et al.97 confirmed the importance of this tight 

sensory–motor loop in cortical pattern generation in mice 
performing dextrous movements. They showed that time-varying 
thalamic inputs are required for cortical pattern generation.  
The neural population activity in both the thalamus and the 
cortex exhibited strong co-modulation in trial-averaged  
(figure in Box 2, panel d, left) and single-trial (figure in Box 2, 
panel d, right) activity. Inactivating the thalamus perturbed 
cortical activity and disrupted limb kinematics97, implying that 
both local dynamics and sensory-derived state contribute to 
generating cortical motor patterns (see inputs to ̂fa in the figure 
in Box 1, panel c).

(continued from previous page)
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state of the environment changes when one applies an action. Fortu-
nately, in the natural world, the consequences of most actions are local, 
and these local dynamics tend to be shared across many environments 
and objects, allowing complex problems to be modeled in terms of 
simpler lower-dimensional state-transition functions. This is illustrated 
in the example in Fig. 2b, a simplification of the ‘go to the grocery store’ 
problem: here, a maze-like environment is modeled using simpler 
components (yellow- and red-outlined rooms), each composed of even 
simpler components (corridors).

Interestingly, the same concept can also be applied to visual per-
ception. As illustrated in Fig. 2c, a visual object can be compositionally 
defined in terms of parts and their locations within the object’s reference 
frame59; the parts can in turn be decomposed into simpler parts within 
their respective reference frames. Nested compositional representations 
of objects and environments offer substantial combinatorial flexibility 
for solving complex problems in terms of simpler, reusable components. 
The fact that the world we live in and the problems we seek to solve are 
amenable to compositional solutions makes such an approach attractive, 
from both a computational and an evolutionary perspective.

The hierarchical APC model
Box 3 describes the APC model’s hierarchical architecture and its neural 
implementation. The figure in Box 3 (panel e) shows two levels of the 
model, implemented using top–down ‘contextual inputs’ to connect 
the higher level to the lower level (see Box 3 for an alternate implemen-
tation based on gain modulation).

State inference using predictive coding and compositional learn-
ing. As shown in the figure in Box 3 (panel e, left), the higher-level 
state neurons maintain an estimate for the state s(i+1)t  at time t and 
modulate the lower-level state network via top–down feedback given 
by H(i)

s (s(i+1)t ). The lower-level state neurons maintain an estimate for 
sit,τ , where τ denotes a time step at the lower level within the 
higher-level time interval given by t. The lowest-level state makes a 
prediction of the input via a ‘decoder’ network D (figure in Box 1, panel 
b). If D is a linear matrix U, this lowest level of APC is equivalent to the 
generative model in sparse coding (I = Us, where s is sparse60). At each 
time step, the network predicts the next input as a function of previ-
ous state and action. Feedforward pathways convey prediction errors 
to update state estimates1, while descending pathways convey top–
down modulation as described above (see ref. 61 for an example). 
Prediction errors are also used to learn the weights of the state net-
works at all levels using predictive coding-based self-supervised 
learning1,32,61. Such learning approximates error backpropagation, 
the workhorse of contemporary deep learning, in a biologically plau-
sible manner62.

Action inference through planning and reinforcement learning. As 
shown in the figure in Box 3 (panel e, right), the higher-level action 
neurons represent an abstract action (such as ‘open the door’) via an 
action vector a(i+1)t  at time t. Given the abstract action a(i+1)t , top–down 
feedback given by the embedding input H(i)

a (a(i+1)t )  modulates the 
lower-level action network and instantiates the goal-specific policy 
f (i)a , which produces lower-level actions ai

t,τ. The hierarchical action 
networks in the APC model can be trained in multiple ways: (1) planning: 
the state-transition networks can be used to search for sequences of 
actions, starting from the highest abstraction level, that are likely to 
result in states with the highest cumulative reward or closest to the 
goal (see also active inference8, planning by inference63–65 and model 
predictive control66; see the section Illustrative examples of diverse 
computational capabilities). Successful actions can be used as ‘labels’ 

in supervised learning to train the policy networks ̂f
(i)
a ; (2) reinforce-

ment learning: hierarchical reinforcement learning67 can be used to 
train action networks at each level to maximize the total expected 
reward according to a reward function that may be specific to that level 
(details in the section Illustrative examples of diverse computational 
capabilities); (3) policies providing priors for planning: action networks 
̂f
(i)
a  at each level predict a distribution over actions, which can serve as 

a prior, in a Bayesian sense, for guiding the search for actions in plan-
ning. Thus, predicted actions for new tasks will have high uncertainty, 
requiring effort and deliberation in planning (‘system 2 thinking’  
(ref. 68)), while, for frequently encountered tasks, action networks are 
well trained and will predict actions with high confidence (‘system 1 
thinking’ (ref. 68)).

An advantage of continuous-valued state s(i+1) and action a(i+1) 
vectors is that interpolating or sampling in the neighborhood of 
learned s(i+1) and a(i+1) generates, on the fly, new state-transition func-

tions ̃f
(i)
s  and new policy functions ̃f

(i)
a , opening the door to fast gen-

eralization and transfer of knowledge to new tasks. The alternative to 
continuous states is to use discrete states, as in previous models of 
predictive coding based on belief propagation or variational message 
passing (for example, Fig. 10 in ref. 69). Aside from the possibility of 
fast generalization and transfer, APC’s use of continuous states also 
allows explicit representation of prediction errors, which in turn allow 
local optimization of dynamics and learning (under Gaussian 
assumptions)1.

Proposed neuroanatomical implementation
I propose that neural populations in a higher cortical area A represent-

ing current state and action vectors ̂s(i+1) and ̂a(i+1) modulate the state 

and action networks ̂f
(i)
s  and ̂f

(i)
a  in a lower cortical area B via descend-

Go to grocery store

Walk to door Walk to garage Get into car +
drive to store

…

……

ba c

Open car
door

Sit inside   Close car
door

Put on seatbelt  …

Fig. 2 | Using hierarchies and compositionality to simplify complex tasks. 
a, Decomposition of the ‘go to the grocery store’ problem into subgoals or 
subtasks, each of which can be further divided into sub-subgoals or sub-subtasks. 
Note that the rate of change is faster at the lower levels than at the higher levels, 
leading naturally to a temporal hierarchy. b, A navigation problem in a maze-like 
building environment with corridors (black) and walls (gray). Blue dot, current 
location; green square, desired goal location. The structure of the environment 
(pathways and walls) can be understood in terms of the building’s state-transition 
dynamics, which in turn can be divided into the simpler transition dynamics 

of its compositional elements, namely, the two rooms outlined in yellow and 
red that appear at several different locations within the reference frame of 
the environment. These simpler elements can be further decomposed into 
horizontal and vertical corridors shown on the right that appear at different 
locations within the local reference frame of each room. c, An object (such as a 
handwritten digit ‘8’) can be divided into parts (loops and curves at the middle 
level), each of which can be divided into subparts (strokes, lines, smaller curves at 
the lower level). Each part and subpart is associated with its coordinates (location 
and transformation) within a local reference frame.
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Box 3

Hierarchical APC model and its neural implementation
In the hierarchical APC model (figure in Box 3, panel a), a state s(i+1) 
and an action a(i+1) at abstraction level i + 1 generate, respectively, a 
state-transition function f (i)s  and a policy function f (i)a  (‘option’ (ref. 
44)) at the lower level i. These functions interact with each other to 
generate lower-level states and actions (figure in Box 3, panel a). Each 
such state and action in turn generates transition and policy functions 
at an even lower level of abstraction. A lower-level sequence 
executes for a period of time until a condition is met (for example, a 
subgoal is reached, a task is completed or times out or there is an 
irreconcilable error at that level). Control then returns to the higher 
level, which transitions to a new higher-level state (via f (i+1)s ) and 
action (via f (i+1)a ). Such a model captures both the dynamics of states 
(the ‘physics’ of the world) and actions (‘policies’) at different time 
scales, allowing hierarchical problem solving (Fig. 2). Biologically, the 
recurrent networks implementing fs and fa are governed by specific 
decay time constants, but differences in recurrent excitation can 
allow a hierarchy of time scales, as observed across the cortex98. 
Hierarchical dynamics in predictive coding was previously explored 
in ref. 3 for perception and production of birdsong, with lower-level 

dynamics contextualized by slowly varying control parameters 
supplied by a higher level.

Can the hierarchical model in the figure in Box 3 (panel a) be 
implemented in networks of neurons? More specifically, how can a 
population of neurons, representing, for example, the higher-level 
state vector s(i+1) (or action vector a(i+1)), generate a whole function 
f (i)s  (or f (i)a ) at the lower level?

Gain modulation in the cortex. There is considerable evidence for 
‘gain modulation’ in cortical networks99–102, implemented 
computationally by multiplying the synaptic weights or outputs of 
neurons by a gain factor. Evidence for gain modulation ranges from 
multiplicative modulation of tuning curves of visual cortical neurons 
during attention103 to changes in the input–output function of 
neurons in deep layers of the cortex due to ‘top–down’ modulatory 
inputs to their apical dendrites in layers 1 and 2/3 (figure in Box 3, 
panel b)100. We can view gain modulation as a biologically plausible 
way of implementing a ‘hypernetwork’ (ref. 104), which in ML and AI is 
a neural network that produces the synaptic weights (or more 
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the lower level to accomplish a goal. b, As depicted here for a single pyramidal neuron, I hypothesize that top–down inputs H (i)

s (s(i+1)
t ) from a 

higher cortical area to the apical dendrites of lower-area neurons modulate the dynamics of a network of such neurons (for example, via gain 
modulation100,101), allowing the higher area to change the functions fs and fa at the lower level. c, Top, multiplicative gain modulation (for 
example, due to top–down inputs) in the input–output function of neurons in a recurrent network allows the network to generate a rich set of 
motor cortical dynamics matching experimental data102. EMG, electromyogram of muscle activity. Bottom, changing the gain from 1 (black) to 2 
(blue) (bottom left plot) dramatically alters neuronal firing rates (three example neurons are shown on the right), mimicking quasi-oscillatory 
motor cortical activity (see figure in Box 2, panels c,d) (adapted from ref. 102, Springer Nature Limited). d, The function computed by a recurrent 
network (center) can be modulated using a nonchanging top–down contextual input or ‘rule input’ (one-hot vector, bottom left) in addition to 
recurrent and stimulus inputs (top left), allowing the same network to solve different tasks (output for a specific task is shown on the right) 
(adapted from ref. 72, Springer Nature Limited). Mod, modality. e, Implementation of the APC model in a using contextual inputs: higher-level 
state and action neurons maintaining estimates of s(i+1)

t  and a(i+1)
t  modulate lower-level state and action networks via top–down contextual 

inputs H (i)
s (s(i+1)

t ) and H (i)
a (a(i+1)

t ), respectively.
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ing connections that target the superficial and deep layers of area B27. 
Feedforward connections that target layer 4 of area A arise from the 
lower area B and from the higher-order thalamic region receiving ‘driver 
input’ from area B18,27. I propose that these feedforward connections 
carry the state and action feedback (for example, prediction errors) 
that enable the higher area A to correct its abstract state and action 
estimates. Such a neural implementation is consistent with studies 
reporting prediction error-like responses in superficial layers and 
state-estimation-like responses in deeper layers of the cortex2,13.

A key difference from previous formulations of hierarchical predic-
tive coding1,2,49,50 is that APC places subcortical (thalamic) populations 
center stage in the evaluation of state- and action-prediction errors 
and their broadcasting to superficial pyramidal cells in the cortex70. 
Additionally, in APC, descending connections from higher to lower 
cortical areas change the function being computed in the lower area 
(through top–down modulation), rather than only conveying 
lower-level state predictions as in traditional predictive coding1. 
Higher-area neurons representing action a(i+1)t  modulate the action 

network ̂f
(i)
a  in a lower area, changing the policy function that this 

lower-level network is computing. Neurophysiological evidence for 
such compositional representations has recently emerged in the pre-
motor cortex71. Computational models have demonstrated composi-
tionality for task transfer using the embedding space of a(i+1)t  (ref. 72). 

Hierarchical representations found in the visual27,29 and motor sys-
tems30 are also consistent with the hierarchical compositional approach 
espoused by the APC model. Finally, the compositional representations 
in the cortex postulated by the APC model align well with recent hypoth-
eses regarding compositional hippocampal replay73.

After the state and action networks have been learned for a set of 
tasks (as described in the section The hierarchical APC model), given a 
particular task, the topmost state vector in the hierarchy is first inferred 
from sensory inputs. This vector produces (via that level’s action net-
work ̂fa) the topmost action vector specifying a ‘goal’ or option for the 
task; I hypothesize that this vector is maintained in the prefrontal cortex. 
Some of the pre-movement anticipatory activity in Fig. 1a may well 
reflect such a ‘cognitive’ decision. This abstract action vector is decom-
posed hierarchically all the way down to elemental actions (for example, 
muscle control signals in M1). When a sequence of elemental actions is 
executed and a subgoal is reached, control is returned back to the level 
above to generate a new subgoal (see the sections Active visual percep-

tion and part–whole learning and Planning and navigation using  
hierarchical world models for examples) and similarly for all levels.  
I postulate that such coordination between hierarchical levels for action 
selection occurs via cortex–basal ganglia–thalamus–cortex loops;  
I leave the important problem of working out the implementation 
details in these loops to future research.

Illustrative examples of diverse computational 
capabilities
The architecture of the APC model was inspired by the hypothesis that 
evolution may have replicated a common computational principle 
across the cortex20–23. If that is the case, one would expect the same 
architecture to be able to solve a diverse set of problems. Inspired by 
this observation, I provide here examples illustrating the APC model’s 
diverse capabilities.

Active visual perception and part–whole learning
Human vision can be viewed as an active sensory–motor process 
that employs eye movements to move the high-resolution fovea to 
appropriate locations in a scene, gathering evidence for or against 
competing visual hypotheses7,48. The APC architecture is well suited 
to modeling such a sensory–motor process, given its integrated state 
and action networks. To illustrate this capability, we simulated31,32 a 
two-level APC model (figure in Box 3, panel e) in which the lower-level 
actions emulated eye movements by moving a fovea (‘glimpse sensor’  
(ref. 74)) to extract high-resolution information about a small part 
of the input image within a larger reference frame selected by the 
higher-level action.

The lower-level action also predicts a new state vector st,τ+1, which 
generates, via a trained decoder, a prediction for the glimpse image 
expected after the ‘eye movement’. The resulting prediction error was 
used for state inference and learning. The state networks at both levels 
were trained to minimize image-prediction errors, while the action 
networks were trained using reinforcement learning for the task of 
image reconstruction (for image classification as the task, see ref. 31).

Fig. 3a shows an example of a learned parsing strategy by the 
two-level APC model. The higher level learned to select actions that 
cover the input image sufficiently, avoiding blank regions, while the 
lower level learned to parse subparts inside the reference frame com-
puted by the higher level. Fig. 3a also suggests a potential explanation 
for why human perception can appear stable despite dramatic changes 

plausibly, the gain parameters) for another neural network (called the 
‘primary network’). In the APC model, I propose that the higher-level 
state vector s(i+1) is fed as input to a top–down feedback network 
H (i)

s , which produces the gain values to modulate the lower-level 
state network f (i)s  (and similarly for the action network). The ability of 
such a neural mechanism to modulate the function being computed 
by a cortical network was demonstrated by Stroud et al. (figure in 
Box 3, panel c), who showed that multiplicative gain modulation of a 
recurrent network can generate a rich set of motor cortical dynamics 
matching experimental data102.

Contextual inputs in the cortex. Aside from gain modulation, higher 
cortical areas can also change the function being computed by lower 
cortical networks using top–down contextual inputs. For example, 
Yang et al.72 showed that, by feeding a top–down contextual input 
(‘rule input’) as a nonchanging input to a recurrent network (in addition 
to its usual recurrent and external inputs), one can change the 
input–output function that the network computes, allowing the same 
network to solve different tasks (figure in Box 3, panel d; see also the 

model of Eliasmith and colleagues105). This is known in ML as the 
‘embedding approach’ and can be shown to be equivalent in 
computational function to hypernetworks106. In the case of APC, the 
higher-level state vector s(i+1) (and action vector a(i+1)) can be fed as 
input to a top–down feedback network H (i)

s  (H (i)
a ) that produces an 

embedding vector, which acts as a contextual input to a lower-level 
cortical network that computes f (i)s  ( f (i)a ) (figure in Box 3, panel e). The 
higher level can therefore control the function being computed at the 
lower level by changing the embedding vector (contextual input).

The APC model acknowledges the existence of both gain 
modulation and contextual inputs in the cortex and postulates that 
either or both of these mechanisms are used for changing the 
functions f (i)s  and f (i)a  at the lower level according to the current 
higher-level state vector s(i+1) and the action vector a(i+1). The 
examples described in the section Illustrative examples of diverse 
computational capabilities were implemented using the method of 
contextual inputs. The reader is referred to ref. 61 for examples  
based on gain modulation and to refs. 32,33 for hypernetwork- 
based examples.

(continued from previous page)
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in our retinal images due to eye movements: the model maintains a 
stable visual hypothesis that is gradually refined without exhibiting 
the rapid changes seen in the sampled image regions (Fig. 3a, actual 
glimpses). This ‘perceptual’ stability is enabled by the model’s ability 
to predict the expected glimpses for each planned ‘eye movement’ 
(Fig. 3a, predicted glimpses), similar to predictive activity observed in 
the visual cortex before eye movements (figure in Box 2, panel b)14–16.

Fig. 3b shows a learned part–whole hierarchy for a digit in terms 
of strokes and mini-strokes along with their locations within nested 
reference frames. The model learns different parsing strategies for 
different classes of objects (Fig. 3c). Setting the image-prediction 

error input to the network to zero forces the model to predict the next 
sequence of parts and ‘complete’ an object32. Finally, compositional 
learning in the APC model facilitates transfer of learned knowledge to 
new objects (Fig. 3d).

Planning and navigation using hierarchical world models
Interestingly, the same APC framework used above for active vision 
can also be used for planning hierarchical actions for tasks such as 
navigation. Consider the problem of navigating from any starting 
location to any goal location in a large ‘multi-room’ building envi-
ronment such as the one in Fig. 4a (gray, walls; blue circle, current 
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Fig. 3 | Active vision, part–whole learning and transfer of knowledge. a, First 
row, initial glimpse (purple box) and higher-level reference frames selected (red, 
green and blue boxes) at higher-level time steps (‘macro-steps’); second row, 
regions fixated at lower-level time steps (‘micro-steps’) within each higher-level 
reference frame; third and fourth rows, predicted versus actual glimpses; fifth 
row, the model’s ‘perception’ over time (object reconstructed by a decoder 
network from the current network state). Note the model’s ‘perceptual’ stability 
despite jumps in actual glimpses, enabled by predictions of the glimpses similar 
to visual cortical predictions before eye movements (figure in Box 2, panel b).  
b, The digit ‘8’ is parsed by a trained APC model as a parse tree of parts and subparts 
(left) and their corresponding coordinates (locations) within their respective 
reference frames (right). The representation is compositional: the same set of 

parts and subparts can potentially be reused at other locations and with other 
transformations to compose new digits. c, Higher-level part locations selected by 
a trained APC model for a particular class of clothing items in the Fashion-MNIST 
dataset (red, green and blue dots show the average sampled locations fixated in 
the following order: first, red; second, green; third, blue). Note the differences 
in the model’s fixation strategies between vertically symmetric items (shirts, 
trousers, bags) and footwear (sandals, sneakers, boots). d, An APC model trained 
on the Omniglot handwritten characters dataset (from 50 different alphabets) 
can transfer its learned knowledge to predict parts of previously unseen 
character classes. First column, input image from a new character class. Middle 
column, APC model’s reconstruction of the input. Last column, parts predicted 
by the model (d, adapted with permission from ref. 32, MIT Press).
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location; green square, current goal location). Here, the lower-level 
states of the APC model are locations in the grid, and lower-level 
actions are going north, east, south or west, with a large reward at 
the goal location and smaller negative rewards for each action to 
encourage shorter paths.

Just as an object consists of parts at different locations, the build-
ing environment in Fig. 4a is composed of smaller elements (two 3 × 3 
‘room types’, S1 (red) and S2 (yellow)) at different locations in the global 
reference frame of the building. The higher-level states of the APC 
model are defined by state-embedding vectors S1 and S2, trained to 
generate, via the top–down network Hs (figure in Box 3, panel a), the 
lower-level transition functions ̂fs for rooms S1 and S2, respectively.

Similar to how the APC vision model reconstructed an image in 
the section Active visual perception and part–whole learning by com-
posing parts from subparts, the APC model for planning computes 
higher-level action embedding vectors Ai (option vectors) that gener-
ate, via the top–down network Ha (figure in Box 3, panel a), lower-level 
policies ̂fa that produce primitive actions (north, east, south or west) 
from any location in the local reference frame (S1 or S2) to reach a local 
goal i within that frame. Fig. 4a (right) illustrates two of the eight Ai, 

each trained using reinforcement learning to reach one of the four 
corners of S1 or S2 (see ref. 32 for details). Defining these policies to 
operate within the local reference frame of the higher-level state S1 or 
S2 (regardless of global location in the building) allows the same policy 
to be reused at multiple locations.

The higher-level state network was trained to predict the next 
higher-level state. This trained higher-level network was used for plan-
ning (using model predictive control66): random state–action trajecto-
ries of length 4 were generated using the higher-level state network by 
starting from the current higher-level state and picking at random one 
of the four higher-level actions Ai for each next higher-level state. The 
action sequence with the highest total reward was selected, and its first 
action was executed. This process was repeated. Fig. 4b,c illustrates this 
high-level planning process using the trained APC model.

Fig. 4d illustrates the efficacy of the APC model’s high-level plan-
ning compared to lower-level planning using primitive actions (see ref. 
32 for details): the APC model takes significantly fewer planning steps 
and can reuse its learned higher-level actions in new combinations to 
quickly solve new tasks (for example, when the goal is changed; Fig. 4e), 
similar to a recent study in mice75 (Fig. 4f).
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Fig. 4 | Hierarchical planning. a, The problem of navigating in a large 
environment (left) can be reduced to planning using high-level states (red- and 
yellow-outlined ‘rooms’) and high-level abstract actions (panels on the right 
show two abstract actions, A1 and A3). Blue, current location; gray, walls; green, 
current goal location. b, To navigate to the goal, the APC model uses its learned 
high-level state network to sample K high-level state–action sequences (K = 2 
here, shown bifurcating from the initial state). In each sequence, the high-level 
state is depicted by a predicted room image (red- or yellow-outlined image) and 
its location (marked by an ‘X’ in the rectangular global frame below the image). 
High-level actions are depicted as square local frames (next to arrows) with 
goal locations (purple). c, Given the sampled sequences, the model picks the 
sequence with the highest total reward, executes this sequence’s first (high-level) 
action to reach the blue location (top) and repeats to reach the goal location with 

only three high-level actions (bottom). Small red dot, intermediate location; 
small blue dot, intermediate goal. d, High-level planning by the APC model versus 
low-level heuristic planning using primitive actions (see text for details). e, The 
APC model can reuse learned high-level actions in new combinations to quickly 
solve new tasks (green circles, times at which the navigation goal changed); a 
reinforcement learning (RL) agent needs to relearn a new policy from scratch. 
Blue- or red-shaded regions in d,e are 1 s.d. from the mean. f, Mice pretrained on 
two subtasks quickly learned to combine them to solve a new composite task75 
(compare with the APC model in e after a goal change). Blue, performance of mice 
learning the task from scratch (compare with the reinforcement learning agent in 
e after a goal change) (a–e, adapted with permission from ref. 32, MIT Press;  
f, adapted from ref. 75, CC BY 4.0).

http://www.nature.com/natureneuroscience
http://creativecommons.org/licenses/by/4.0/


Nature Neuroscience

Perspective https://doi.org/10.1038/s41593-024-01673-9

Episodic memories and cortical–hippocampal binding
Each level of the APC hierarchy learns generic ‘basis functions’ for rep-
resenting states and actions based on interactions with the environ-
ment. For example, the basis functions learned by the lowest-level state 

network when the inputs are natural videos comprise oriented spati-
otemporal Gabor filters coding for edges and bars moving at different 
orientations61. The neural activity vector is a specific activation pattern 
coding for the current video segment in terms of the learned 

Box 4

Model flexibility and predictions
The APC model appears to be flexible enough to perform a diverse 
set of functions such as: (1) parsing images and learning part–whole 
hierarchies: the model uses eye movements to parse images and 
learn hierarchical representations of parts and subparts of objects 
(details in the section Active visual perception and part–whole 
learning); (2) invariant perception: learned representations of 
objects and sequences are transformed by the APC generative 
model to match current inputs and remain invariant to different 
types of transformations (translations were considered in the 
section Active visual perception and part–whole learning, other 
transformations such as rotations and scaling are included in ref. 33);  
(3) perceptual stability: inference in the APC model naturally 
leads to integration of information across actions such as eye 
movements, leading to perceptual stability (examples in the section 
Active visual perception and part–whole learning; see also refs. 
23,59,74); (4) compositionality and fast transfer of knowledge: by 
learning compositional representations, the model can compose 
and generate new objects and action sequences, leading to fast 
generalization to new inputs and goals (examples in the sections 
Active visual perception and part–whole learning and Planning and 
navigation using hierarchical world models); (5) efficient planning: 
hierarchical state networks in the APC model can be used to solve 
tasks efficiently (for example, navigating in a large environment) by 
planning using hierarchical actions (details in the section Planning 
and navigation using hierarchical world models; see also ref. 107); 
(6) habit formation: successful plans can be used to learn new 
policies (‘habits’; see the section Planning and navigation using 
hierarchical world models); alternately, the APC model also allows 
policies to be learned using hierarchical reinforcement learning (see 
the section Active visual perception and part–whole learning); (7) 
reference frames and temporal hierarchies: the APC model provides 
a neural implementation of nested reference frames23 and offers an 
explanation for object-centered parts-based representations in the 
cortex108 as well as cortical temporal hierarchies28,29; (8) prediction 
and postdiction: because the model maintains a temporally stable 
higher-level state (a ‘timeline’ (ref. 76)) encoding an entire sequence 
(past, present and future), the update of this representation 
during prediction error minimization explains both predictive and 
postdictive phenomena in perception (for example, flash lag and 
color phi effects; see ref. 61 for details); (9) generating ‘schemas’ 
or ‘programs’ for solving new tasks: the APC model suggests a 
neural mechanism (via top–down inputs and/or gain modulation) 
for generating new sensory–motor ‘programs’ or ‘schemas’ on the 
fly to solve new tasks (Box 3 and ref. 109); (10) binding and episodic 
memories of perception–action sequences: when coupled with a 
hippocampus-like associative memory, the model binds multimodal 
cortical activations at the highest level into an episodic memory, 
allowing activity recall, prediction based on episodic context 
and cortical consolidation for fast generalization and learning, 
as discussed in the section Episodic memories and cortical–
hippocampal binding; (11) language and symbolic representations: 
making state and action representations categorical (for example, 
ref. 78) and using cortical–hippocampal binding may allow the APC 

model to bind sensory and symbolic representations for language 
processing and cognitive tasks such as arithmetic (see the section 
Learning abstract concepts and ref. 58); (12) learning abstract 
concepts: the same sensory–motor architecture used for perception 
and planning can also be used to model abstract concepts such as 
family trees (details in the section Learning abstract concepts  
and ref. 77).

The APC model makes the following predictions:
•• The laminar implementation proposed in the figure in Box 1 (panel 
c) predicts that, in each cortical area, neurons representing the 
sensory-derived latent state will exhibit predictive activity, 
representing the output of the state-transition function ̂fs, as a 
function of both sensory inputs and deeper-layer ‘action’ inputs; 
experimental manipulation of deeper-layer activity should allow 
control of this predictive activity and change this activity similar to 
how the predicted glimpses change in Fig. 3a as a function of 
action inputs to ̂fs.

•• In each cortical area (including traditional ‘sensory’ areas), the 
model predicts a population of neurons in layer 5 representing 
‘actions’, either motor outputs (for example, in M1 or the primary 
somatosensory cortex) or abstract actions or goals (for example, 
in the parietal or prefrontal cortex); this action-related population 
activity in layer 5 should change in a coordinated manner across 
cortical areas whenever the goal or task is changed, similar to 
how the lower- and higher-level actions change in the APC model 
whenever the goal location is changed in Fig. 4a.

•• As depicted in the figure in Box 3 (panels a,e), feedback from a 
higher cortical area should originate from two separate 
populations (higher-level state- and action-representing neurons) 
and specifically target two separate populations in the lower area 
(lower-level state- and action-representing neurons, respectively); 
this feedback should be modulatory and capable of changing the 
functional connectivity of their target populations, emulating the 
effects of the ‘hypernetworks’ H (i)

s  and H (i)
a  in the figure in Box 3 

(panels a,e). Experimental manipulation of this feedback should 

selectively change the lower-level functions ̂f
(i)
s  and ̂f

(i)
a  being 

computed, with the effects becoming apparent in the state 
predictions being generated by ̂fs (see predicted glimpses in 
Fig. 3a) and the actions being output by ̂fa (see primitive actions in 
Fig. 4c (bottom)), respectively.

•• APC’s hierarchical arrangement predicts the existence of 
both state and action representations in higher-order cortical 
areas that encode information over longer time scales than 
lower areas28,29,61,80,98,110; furthermore, the model predicts that a 
substantial population-level activity change in the superficial 
layers of a higher area, denoting a higher-level state change 
triggered by a subgoal being achieved by the lower area, would 
cause a large population-level activity change in layer 5, signifying 
a new high-level action or subgoal being generated (for example, 
the high-level action leading to macro-step 2 or macro-step 3  
in Fig. 3a or a subgoal that reaches the lower yellow square in  
Fig. 4c (top)).
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spatiotemporal filters. At the highest level N of the APC model, the 
specific activation patterns ̂s(N) and ̂a(N) together represent (figure in 
Box 3, panel e, with i + 1 = N) an entire sequence (or timeline76) corre-
sponding to the current episode of interaction with the environment, 
for example, the sequence of glimpses of an object as in Fig. 3a or the 
sequence of locations visited during navigation as in Fig. 4c (bottom). 
By ‘binding’ these highest-level neural activation patterns ̂s(N) and ̂a(N) 
(assumed to correspond to entorhinal cortex activity in the APC model) 
in a hippocampus-like associative memory, one can store the current 
sequence of experienced sensations (vision, touch, sound, smell, 
rewards, etc.), locations (or coordinates within a reference frame) and 
actions as an episodic memory vector m (ref. 61).

The projection from the hippocampus back to the entorhinal 
cortex implies that the fused multimodal information in the current 
episodic memory vector m is fed back to enable better prediction (m 
plays a role similar to context windows in transformers in AI) and to 
influence state and action estimation in cortical areas down the hierar-
chy to the lowest levels. Particularly salient episodic memory vectors 
may be stored and later compositionally recombined73 or recalled for 
replay in the cortex when given an internal or external cue, for example, 
a location where the episode occurred, a sound or smell associated 
with the episode or a partial visual input marking the beginning of the 
episode (see ref. 61 for an example).

In summary, the APC model suggests that the cortex encodes 
generic semantic knowledge about the world within state and action 
networks that implement nested reference frames. Any particular 
instantiation of this knowledge invoked by, for example, an interac-
tion with a person or an object, is stored temporarily as an episodic 
memory vector m in the hippocampus. This instantiation could be 
used for reasoning about the current situation or for planning and, if 
deemed important, could be consolidated within the cortex by updat-
ing cortical networks via replay during inactivity or sleep. The idea 
of fast binding of specific instances (‘fillers’) with generic semantic 
‘roles’ is gaining currency in both AI58 and hippocampal modeling (for 
example, the Tolman–Eichenbaum machine77; see also ref. 73). The 
benefits of such a representation, including fast transfer of knowl-
edge and zero-shot learning, can be expected to also accrue to the 
memory-augmented APC model.

Learning abstract concepts
I briefly sketch here how the same sensory–motor architecture used 
for perception and planning above could also be potentially used to 
model abstract concepts. Take, for example, modeling the concept of 
a family tree. The state–action representations in the APC model can 
be made categorical (for example, as in ref. 78), allowing states and 
actions to represent symbols. The states can then represent abstract 
categories such as father, mother, daughter, uncle, etc., while abstract 
actions (up, down, etc.) can be used to traverse and define a family tree 
sequentially. The notion of ‘fast binding’ of cortical representations in 
hippocampal memory discussed above could be used to bind specific 
persons to their roles (father, mother, etc.).

Results along these lines were obtained using the Tolman–Eichen-
baum machine model77, in which a recurrent neural network (similar 
to the state-transition network in the APC model but for a single level) 
was used in conjunction with an associative memory to learn the struc-
ture of family trees from examples. Extending these ideas to abstract 
state–action networks for symbolic reasoning in a hierarchical APC 
model may offer new insights into understanding how cortical–hip-
pocampal networks represent language and solve abstract cognitive 
tasks such as arithmetic.

Discussion
Inspired by recent results highlighting the influence of actions across 
most areas of the cortex, I suggested APC as a sensory–motor theory of 
cortical function. APC proposes that (1) each cortical area implements 

both a state-transition network for state prediction and an action net-
work for action (or goal) prediction, and (2) higher-area neurons rep-
resenting more abstract states and actions modulate lower-area state 
and action networks via top–down modulatory control to change the 
functions they are computing, leading to nested reference frames and 
hierarchical representations of objects, states and actions. A possible 
neuroanatomical mapping of the APC model to cortical laminar struc-
ture was suggested in the section APC module and neuroanatomical 
implementation.

The APC model lends support to the hypothesis20–23 that there may 
be a unifying computational principle operating across the cortex by 
showing how the same basic APC architecture can perform a diverse 
range of computations (see Box 4 for a summary). The APC model 
shares broad similarities with a number of other models advocating 
prediction and hierarchy as core aspects of brain function1,3,22,23,79–83, 
going back to the seminal early work of MacKay84 and Albus85. The 
goal of putting action on an equal footing with perception in terms 
of Bayesian inference and prediction error minimization is in keeping 
with the theories of free energy minimization proposed by Friston and 
others3,8,69. In its current formulation, APC addresses action selection 
via reinforcement learning (see the section Active visual perception 
and part–whole learning) and planning via model predictive control 
(as described in the section Planning and navigation using hierar-
chical world models). The latter is related to planning as inference 
methods63–65 and active inference schemes that optimize expected 
information gain plus expected value8,69.

Compositionality and the representation of sensory–motor infor-
mation in cortical columns are also central tenets of the ‘thousand 
brains’ theory23,59. The close interaction between state-estimation 
networks and action-computing networks in the APC model is con-
sistent with theories of optimal motor control86, especially theories 
highlighting the importance of internal models in solving the inverse 
problem of computing optimal motor commands to solve a task81,87,88. 
However, based on recent evidence pointing to outputs from layer 5 in 
essentially all cortical areas to subcortical motor centers19,34,35,37, the APC 
model proposes that all cortical areas include both state-estimation 
and policy components. M1 is often cited as a uniquely ‘motor’ cortical 
area missing the sensory input layer 4, with damage to M1 in primates 
causing permanent loss of distal (although not proximal) movements89. 
However, even M1 receives sensory information from other cortical and 
subcortical areas90, especially in its superficial layers39,40, and could 
therefore, as suggested by the APC model, predict and estimate state 
(for example, proprioceptive state) and compute actions based on 
these state estimates91.

The APC generative model in the figure in Box 3 (panel a) focuses on 
hierarchical structure and does not account for cross-modal (sensory 
to sensory) or hierarchically ‘horizontal’ connections in the neocortex 
(for example, ref. 92). However, it is possible to extend APC’s generative 
model to allow cross-modal influences and horizontal interactions to 
enable more accurate state prediction and estimation. For example, 
consider a generative model evolved for use by an animal foraging in 
the forest: the hidden state denoting, for example, a tiger, can generate 
both a visual cue (stripes) and an auditory cue (rustling sound). In the 
extended APC model employing such a generative model, the state 
network in a sensory area (for example, V1) would leverage information 
from other sensory modalities (for example, from the auditory cortex) 
via horizontal cortical connections to derive an accurate estimate of 
the current state of the world. Extending the APC model to account 
for such cross-modal and horizontal cortico–cortical connections is 
an important direction for future work.

A large number of unknowns remain such as the exact physiologi-
cal mechanisms underlying the modulatory interactions between 
higher-order and lower-order cortical areas across multiple time 
scales, the role of alpha, beta, theta and gamma oscillations in such 
interactions and the representation of uncertainty in the cortex. 
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While there is emerging neurophysiological and neuroanatomical 
evidence2,9–11,13–16,18,41,42,51,55,93 that lends some support to the APC model’s 
predictions (Box 4), there is much that remains to be tested. I hope 
that the theoretical framework offered by the APC model is helpful in 
the design of new experiments aimed at uncovering the cortical and 
subcortical basis of sensory–motor processing and cognition.
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