
11
Neural Models of Bayesian Belief
Propagation
Rajesh P. N. Rao

11.1 Introduction

Animals are constantly faced with the challenge of interpreting signals from
noisy sensors and acting in the face of incomplete knowledge about the envi-
ronment. A rigorous approach to handling uncertainty is to characterize and
process information using probabilities. Having estimates of the probabilities
of objects and events allows one to make intelligent decisions in the presence of
uncertainty. A prey could decide whether to keep foraging or to flee based on
the probability that an observed movement or sound was caused by a preda-
tor. Probabilistic estimates are also essential ingredients of more sophisticated
decision-making routines such as those based on expected reward or utility.
An important component of a probabilistic system is a method for reasoning
based on combining prior knowledge about the world with current input data.
Such methods are typically based on some form of Bayesian inference, involv-
ing the computation of the posterior probability distribution of one or more
random variables of interest given input data.

In this chapter, we describe how neural circuits could implement a gen-
eral algorithm for Bayesian inference known as belief propagation. The belief
propagation algorithm involves passing “messages” (probabilities) between
the nodes of a graphical model that captures the causal structure of the en-
vironment. We review the basic notion of graphical models and illustrate the
belief propagation algorithm with an example. We investigate potential neural
implementations of the algorithm based on networks of leaky integrator neu-
rons and describe how such networks can perform sequential and hierarchical
Bayesian inference. Simulation results are presented for comparison with neu-
robiological data. We conclude the chapter by discussing other recent mod-
els of inference in neural circuits and suggest directions for future research.
Some of the ideas reviewed in this chapter have appeared in prior publications
[30, 31, 32, 42]; these may be consulted for additional details and results not
included in this chapter.

Rao
To appear in: The Bayesian Brain: Probabilistic Approaches to Neural Coding, K. Doya, S. Ishii, A. Pouget, R. P. N. Rao, eds., Cambridge, MA: MIT Press, 2006.

236 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

11.2 Bayesian Inference through Belief Propagation

Consider the problem of an animal deciding whether to flee or keep feeding
based on the cry of another animal from a different species. Suppose it is often
the case that the other animal emits the cry whenever there is a predator in the
vicinity. However, the animal sometimes also emits the same cry when a po-
tential mate is in the area. The probabilistic relationship between a cry and its
probable causes can be captured using a graphical model as shown in figure 11.1.
The circles (or nodes) represent the two causes and the observation as random
variablesR (Predator),M (Mate), andC (Cry heard). We assume these random
variables are binary and can take on the values 1 and 0 (for “presence” and
“absence” respectively), although this can be generalized to multiple values.
The arcs connecting the nodes represent the probabilistic causal relationships
as characterized by the probability table P (C|R,M).

Predator (R) Mate (M)

Cry Heard (C)

Figure 11.1 An Example of a Graphical Model. Each circle represents a node denoting
a random variable. Arrows represent probabilistic dependencies as specified by the
probability table P (C|R, M).

For the above problem, the decision to flee or not can be based on the poste-
rior probability P (R|C) of a predator given that a cry was heard (C = 1). This
probability can be calculated directly as:

P (R = 1|C = 1) =
∑

M

P (R = 1,M |C = 1)

=
∑

M

kP (C = 1|R = 1,M)P (R = 1)P (M), (11.1)

where we used Bayes rule to obtain the second equation from the first, with k
being the normalization constant 1/

∑
R,M P (C = 1|R,M)P (R)P (M).

The above calculation required summing over the random variable M that
was irrelevant to the problem at hand. In a general scenario, one would need
to sum over all irrelevant random variables, an operation which scales expo-
nentially with the total number of variables, quickly becoming intractable. For-
tunately, there exists an alternate method known as belief propagation (or prob-

11.2 Bayesian Inference through Belief Propagation 237

ability propagation) [26] that involves passing messages (probability vectors)
between the nodes of the graphical model and summing over local products
of messages, an operation that can be tractable. The belief propagation algo-
rithm involves two types of computation: marginalization (summation over
local joint distributions) and multiplication of local marginal probabilities. Be-
cause the operations are local, the algorithm is also well suited to neural im-
plementation, as we shall discuss below. The algorithm is provably correct for
singly connected graphs (i.e., no undirected cycles) [26], although it has been
used with some success in some graphical models with cycles as well [25].

11.2.1 A Simple Example

We illustrate the belief propagation algorithm using the feed-or-flee problem
above. The nodes R and M first generate the messages P (R) and P (M) re-
spectively, which are vectors of length two storing the prior probabilities for
R = 0 and 1, and M = 0 and 1 respectively. These messages are sent to node
C. Since a cry was heard, the value of C is known (C = 1) and therefore, the
messages from R and M do not affect node C. We are interested in computing
the marginal probabilities for the two hidden nodes R and M . The node C
generates the message mC→R = mC→M = (0, 1), i.e., probability of absence of
a cry is 0 and probability of presence of a cry is 1 (since a cry was heard). This
message is passed on to the nodes R and M .

Each node performs a marginalization over variables other than itself using
the local conditional probability table and the incoming messages. For exam-
ple, in the case of node R, this is

∑
M,C P (C|R,M)P (M)P (C) =

∑
M P (C =

1|R,M)P (M) since C is known to be 1. Similarly, the node M performs the
marginalization

∑
R,C P (C|R,M)P (R)P (C) =

∑
R P (C = 1|R,M)P (R). The

final step involves multiplying these marginalized probabilities with other
messages received, in this case, P (R) and P (M) respectively, to yield, after nor-
malization, the posterior probability of R and M given the observation C = 1:

P (R|C = 1) = α
(∑

M

P (C = 1|R,M)P (M)
)
P (R) (11.2)

P (M |C = 1) = β
(∑

R

P (C = 1|R,M)P (R)
)
P (M), (11.3)

where α and β are normalization constants. Note that equation (11.2) above
yields the same expression for P (R = 1|C = 1) as equation (11.1) that was
derived using Bayes rule. In general, belief propagation allows efficient com-
putation of the posterior probabilities of unknown random variables in singly
connected graphical models, given any available evidence in the form of ob-
served values for any subset of the random variables.

11.2.2 Belief Propagation over Time

Belief propagation can also be applied to graphical models evolving over time.
A simple but widely used model is the hidden Markov model (HMM) shown

238 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

in figure 11.2A. The input that is observed at time t (= 1, 2, . . .) is represented by
the random variable I(t), which can either be discrete-valued or a real-valued
vector such as an image or a speech signal. The input is assumed to be gen-
erated by a hidden cause or “state” θ(t), which can assume one of N discrete
values 1, . . . , N . The state θ(t) evolves over time in a Markovian manner, de-
pending only on the previous state according to the transition probabilities
given by P (θ(t) = i|θ(t − 1) = j) = P (θti |θt−1

j) for i, j = 1 . . . N . The observa-
tion I(t) is generated according to the probability P (I(t)|θ(t)).

The belief propagation algorithm can be used to compute the posterior prob-
ability of the state given current and past inputs (we consider here only the
“forward” propagation case, corresponding to on-line state estimation). As in
the previous example, the node θt performs a marginalization over neighbor-
ing variables, in this case θt−1 and I(t). The first marginalization results in a
probability vector whose ith component is

∑
j P (θti |θt−1

j)mt−1,t
j wheremt−1,t

j is
the jth component of the message from node θt−1 to θt. The second marginal-
ization is from node I(t) and is given by

∑
I(t) P (I(t)|θti)P (I(t)). If a particu-

lar input I′ is observed, this sum becomes
∑

I(t) P (I(t)|θti)δ(I(t), I′) = P (I′|θti),
where δ is the delta function which evaluates to 1 if its two arguments are equal
and 0 otherwise. The two “messages” resulting from the marginalization along
the arcs from θt−1 and I(t) can be multiplied at node θt to yield the following
message to θt+1:

mt,t+1
i = P (I′|θti)

∑

j

P (θti |θt−1
j)mt−1,t

j (11.4)

If m0,1
i = P (θi) (the prior distribution over states), then it is easy to show using

Bayes rule that mt,t+1
i = P (θti , I(t), . . . , I(1)).

Rather than computing the joint probability, one is typically interested in
calculating the posterior probability of the state, given current and past inputs,
i.e., P (θti |I(t), . . . , I(1)). This can be done by incorporating a normalization step
at each time step. Define (for t = 1, 2, . . .):

mt
i = P (I′|θti)

∑

j

P (θti |θt−1
j)mt−1,t

j (11.5)

mt,t+1
i = mt

i/n
t, (11.6)

where nt =
∑
jm

t
j . If m0,1

i = P (θi) (the prior distribution over states), then it
is easy to see that:

mt,t+1
i = P (θti |I(t), . . . , I(1)) (11.7)

This method has the additional advantage that the normalization at each time
step promotes stability, an important consideration for recurrent neuronal net-
works, and allows the likelihood function P (I′|θti) to be defined in proportional
terms without the need for explicitly calculating its normalization factor (see
section 11.4 for an example).

11.2 Bayesian Inference through Belief Propagation 239

I(t+1)I(t)

A

t+1
t

B

θt t+1θ

I(t)

Figure 11.2 Graphical Model for a HMM and its Neural Implementation. (A) Dynamic
graphical model for a hidden Markov model (HMM). Each circle represents a node
denoting the state variable θt which can take on values 1, . . . , N . (B) Recurrent network
for implementing on-line belief propagation for the graphical model in (A). Each circle
represents a neuron encoding a state i. Arrows represent synaptic connections. The
probability distribution over state values at each time step is represented by the entire
population.

A Location
Coding Neurons Coding Neurons

Feature

Locations (L) Features (F)

Intermediate
Representation (C)

Image

B

Image (I)

Figure 11.3 A Hierarchical Graphical Model for Images and its Neural Implementa-
tion. (A) Three-level graphical model for generating simple images containing one of
many possible features at a particular location. (B) Three-level network for implement-
ing on-line belief propagation for the graphical model in (A). Arrows represent synaptic
connections in the direction pointed by the arrow heads. Lines without arrow heads
represent bidirectional connections.

11.2.3 Hierarchical Belief Propagation

As a third example of belief propagation, consider the three-level graphical
model shown in figure 11.3A. The model describes a simple process for gen-
erating images based on two random variables: L, denoting spatial locations,
and F , denoting visual features (a more realistic model would involve a hi-
erarchy of such features, sub-features, and locations). Both random variables
are assumed to be discrete, with L assuming one of n values L1, . . . , Ln, and F
assuming one of m different values F1, . . . , Fm. The node C denotes different
combinations of features and locations, each of its valuesC1, . . . , Cp encoding a
specific feature at a specific location. Representing all possible combinations is
infeasible but it is sufficient to represent those that occur frequently and to map

240 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

each feature-location (L,F) combination to the closest Ci using an appropriate
distribution P (Ci|L,F) (see section 11.4 for an example). An image with a spe-
cific feature at a specific location is generated according to the image likelihood
P (I|C).

Given the above graphical model for images, we are interested in computing
the posterior probabilities of features (more generally, objects or object parts)
and their locations in an input image. This can be done using belief propa-
gation. Given the model in figure 11.3A and a specific input image I = I ′,
belief propagation prescribes that the following ?messages? (probabilities) be
transmitted from one node to another, as given by the arrows in the subscripts:

mL→C = P (L) (11.8)
mF→C = P (F) (11.9)
mI→C = P (I = I ′|C) (11.10)

mC→L =
∑

F

∑

C

P (C|L,F)P (F)P (I = I ′|C) (11.11)

mC→F =
∑

L

∑

C

P (C|L,F)P (L)P (I = I ′|C) (11.12)

The first three messages above are simply prior probabilities encoding beliefs
about locations and features before a sensory input becomes available. The
posterior probabilities of the unknown variables C, L, and F given the input
image I, are calculated by combining the messages at each node as follows:

P (C|I = I ′) = αmI→C
∑

F

∑

L

P (C|L,F)mL→CmF→C (11.13)

P (L|I = I ′) = βmC→LP (L) (11.14)
P (F |I = I ′) = γmC→FP (F), (11.15)

where α, β, and γ are normalization constants that make each of the above
probabilities sum to 1. Note how the prior P (L) multiplicatively modulates
the posterior probability of a feature in equation 11.15 via equation 11.12. This
observation plays an important role in section 11.4 below where we simulate
spatial attention by increasing P (L) for a desired location.

11.3 Neural Implementations of Belief Propagation

11.3.1 Approximate Inference in Linear Recurrent Networks

We begin by considering a commonly used neural architecture for modeling
cortical response properties, namely, a linear recurrent network with firing-
rate dynamics (see, for example, [5]). Let I denote the vector of input firing
rates to the network and let v represent the output firing rates of N recurrently
connected neurons in the network. Let W represent the feedforward synaptic
weight matrix and M the recurrent weight matrix. The following equation

11.3 Neural Implementations of Belief Propagation 241

describes the dynamics of the network:

τ
dv
dt

= −v + WI + Uv, (11.16)

where τ is a time constant. The equation can be written in a discrete form as
follows:

vi(t+ 1) = vi(t) + ε(−vi(t) + wiI(t) +
∑

j

uijvj(t)), (11.17)

where ε is the integration rate, vi is the ith component of the vector v, wi is
the ith row of the matrix W, and uij is the element of U in the ith row and jth
column. The above equation can be rewritten as:

vi(t+ 1) = εwiI(t) +
∑

j

Uijvj(t), (11.18)

where Uij = εuij for i 6= j and Uii = 1 + ε(uii − 1). Comparing the belief
propagation equation (11.5) for a HMM with equation (11.18) above, it can be
seen that both involve propagation of quantities over time with contributions
from the input and activity from the previous time step. However, the belief
propagation equation involves multiplication of these contributions while the
leaky integrator equation above involves addition.

Now consider belief propagation in the log domain. Taking the logarithm of
both sides of equation (11.5), we get:

logmt
i = logP (I′|θti) + log

∑

j

P (θti |θt−1
j)mt−1,t

j (11.19)

This equation is much more conducive to neural implementation via equation
(11.18). In particular, equation (11.18) can implement equation (11.19) if:

vi(t+ 1) = logmt
i (11.20)

εwiI(t) = logP (I′|θti) (11.21)∑

j

Uijvj(t) = log
∑

j

P (θti |θt−1
j)mt−1,t

j (11.22)

The normalization step (equation (11.6)) can be computed by a separate group
of neurons representing mt,t+1

i that receive as excitatory input logmt
i and in-

hibitory input log nt = log
∑
jm

t
j :

logmt,t+1
i = logmt

i − log nt (11.23)

These neurons convey the normalized posterior probabilities mt,t+1
i back to

the neurons implementing equation (11.19) so that mt+1
i may be computed at

the next time step. Note the the normalization step makes the overall network
nonlinear.

In equation (11.21), the log-likelihood logP (I′|θti) is calculated using a lin-
ear operation εwiI(t) (see also [45]). Since the messages are normalized at each

242 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

time step, one can relax the equality in equation (11.21) and make logP (I′|θti) ∝
F(θi)I(t) for some linear filter F(θi) = εwi. This avoids the problem of calculat-
ing the normalization factor for P (I′|θti), which can be especially hard when I′

takes on continuous values such as in an image. A more challenging problem
is to pick recurrent weights Uij such that equation (11.22) holds true. For equa-
tion (11.22) to hold true, we need to approximate a log-sum with a sum-of-logs.
One approach is to generate a set of random probabilities xj(t) for t = 1, . . . , T
and find a set of weights Uij that satisfy:

∑

j

Uij log xj(t) ≈ log
[∑

j

P (θti |θt−1
j)xj(t)

]
(11.24)

for all i and t. This can be done by minimizing the squared error in equa-
tion (11.24) with respect to the recurrent weights Uij . This empirical approach,
followed in [30], is used in some of the experiments below. An alternative ap-
proach is to exploit the nonlinear properties of dendrites as suggested in the
following section.

11.3.2 Exact Inference in Nonlinear Networks

A firing rate model that takes into account some of the effects of nonlinear fil-
tering in dendrites can be obtained by generalizing equation (11.18) as follows:

vi(t+ 1) = f
(
wiI(t)

)
+ g

(∑

j

Uijvj(t)
)
, (11.25)

where f and g model nonlinear dendritic filtering functions for feedforward
and recurrent inputs. By comparing this equation with the belief propagation
equation in the log domain (equation (11.19)), it can be seen that the first equa-
tion can implement the second if:

vi(t+ 1) = logmt
i (11.26)

f
(
wiI(t)

)
= logP (I′|θti) (11.27)

g
(∑

j

Uijvj(t)
)

= log
∑

j

P (θti |θt−1
j)mt−1,t

j (11.28)

In this model (figure 11.2B), N neurons represent logmt
i (i = 1, . . . , N) in their

firing rates. The dendritic filtering functions f and g approximate the loga-
rithm function, the feedforward weights wi act as a linear filter on the input
to yield the likelihood P (I′|θti) and the recurrent synaptic weights Uij directly
encode the transition probabilities P (θti |θt−1

j). The normalization step is com-
puted as in equation (11.23) using a separate group of neurons that represent
log posterior probabilities logmt,t+1

i and that convey these probabilities for use
in equation (11.28) by the neurons computing logmt+1

i .

11.3 Neural Implementations of Belief Propagation 243

11.3.3 Inference Using Noisy Spiking Neurons

Spiking Neuron Model

The models above were based on firing rates of neurons, but a slight modifi-
cation allows an interpretation in terms of noisy spiking neurons. Consider a
variant of equation (11.16) where v represents the membrane potential values
of neurons rather than their firing rates. We then obtain the classic equation de-
scribing the dynamics of the membrane potential vi of neuron i in a recurrent
network of leaky integrate-and-fire neurons:

τ
dvi
dt

= −vi +
∑

j

wijIj +
∑

j

uijv
′
j , (11.29)

where τ is the membrane time constant, Ij denotes the synaptic current due
to input neuron j, wij represents the strength of the synapse from input j to
recurrent neuron i, v′j denotes the synaptic current due to recurrent neuron j,
and uij represents the corresponding synaptic strength. If vi crosses a threshold
T , the neuron fires a spike and vi is reset to the potential vreset. Equation (11.29)
can be rewritten in discrete form as:

vi(t+ 1) = vi(t) + ε(−vi(t) +
∑

j

wijIj(t)) +
∑

j

uijv
′
j(t)) (11.30)

i.e. vi(t+ 1) = ε
∑

j

wijIj(t) +
∑

j

Uijv
′
j(t), (11.31)

where ε is the integration rate, Uii = 1 + ε(uii − 1) and for i 6= j, Uij = εuij .
The nonlinear variant of the above equation that includes dendritic filtering of
input currents in the dynamics of the membrane potential is given by:

vi(t+ 1) = f
(∑

j

wijIj(t)
)

+ g
(∑

j

Uijv
′
j(t)

)
, (11.32)

where f and g are nonlinear dendritic filtering functions for feedforward and
recurrent inputs.

We can model the effects of background inputs and the random openings of
membrane channels by adding a Gaussian white noise term to the right-hand
side of equations (11.31) and (11.32). This makes the spiking of neurons in
the recurrent network stochastic. Plesser and Gerstner [27] and Gerstner [11]
have shown that under reasonable assumptions, the probability of spiking in
such noisy neurons can be approximated by an “escape function” (or hazard
function) that depends only on the distance between the (noise-free) membrane
potential vi and the threshold T . Several different escape functions were found
to yield similar results. We use the following exponential function suggested
in [11] for noisy integrate-and-fire networks:

P (neuron i spikes at time t) = ke(vi(t)−T), (11.33)

where k is an arbitrary constant. We use a model that combines equations
(11.32) and (11.33) to generate spikes.

244 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

Inference in Spiking Networks

By comparing the membrane potential equation (11.32) with the belief prop-
agation equation in the log domain (equation (11.19)), we can postulate the
following correspondences:

vi(t+ 1) = logmt
i (11.34)

f
(∑

j

wijIj(t)
)

= logP (I′|θti) (11.35)

g
(∑

j

Uijv
′
j(t)

)
= log

∑

j

P (θti |θt−1
j)mt−1,t

j (11.36)

The dendritic filtering functions f and g approximate the logarithm function,
the synaptic currents Ij(t) and v′j(t) are approximated by the corresponding
instantaneous firing rates, and the recurrent synaptic weights Uij encode the
transition probabilities P (θti |θt−1

j).
Since the membrane potential vi(t+1) is assumed to be equal to logmt

i (equa-
tion (11.34)), we can use equation (11.33) to calculate the probability of spiking
for each neuron i as:

P (neuron i spikes at time t+ 1) ∝ e(vi(t+1)−T) (11.37)

∝ e(logm
t
i−T) (11.38)

∝ mt
i (11.39)

Thus, the probability of spiking (or, equivalently, the instantaneous firing rate)
for neuron i in the recurrent network is directly proportional to the messagemt

i,
which is the posterior probability of the neuron’s preferred state and current
input given past inputs. Similarly, the instantaneous firing rates of the group of
neurons representing logmt,t+1

i is proportional tomt,t+1
i , which is the precisely

the input required by equation (11.36).

11.4 Results

11.4.1 Example 1: Detecting Visual Motion
We first illustrate the application of the linear firing rate-based model (sec-
tion 11.3.1) to the problem of detecting visual motion. A prominent property
of visual cortical cells in areas such as V1 and MT is selectivity to the direction
of visual motion. We show how the activity of such cells can be interpreted as
representing the posterior probability of stimulus motion in a particular direc-
tion, given a series of input images. For simplicity, we focus on the case of 1D
motion in an image consisting ofX pixels with two possible motion directions:
leftward (L) or rightward (R).

Let the state θij represent a motion direction j ∈ {L,R} at spatial loca-
tion i. Consider a network of N neurons, each representing a particular state
θij (figure 11.4A). The feedforward weights are assumed to be Gaussians, i.e.
F(θiR) = F(θiL) = F(θi) = Gaussian centered at location i with a standard

11.4 Results 245

deviation σ. Figure 11.4B depicts the feedforward weights for a network of 30
neurons, 15 encoding leftward and 15 encoding rightward motion.

5 10 15 20 25 30

5

10

15

20

25

30
5 10 15 20 25 30

5

10

15

20

25

30

0 5 10 15 20 25 30
0

0.1

0.2

0.3θkRθ iR

θ

iLθ θ jLP(|)

()F θ1

BA

θ

θ

P(|)

()F

Leftward

Rightward

Image

i

F()θ15

Rightward LeftwardLeftward

From Neuron j
T

o
N

eu
ro

n
i

t−1

t

Rightward

Spatial Location (pixels)

151 30 151 30

0

0.1

0.2

0.3

1

15

30

15

1

30

20 30101

C D

Figure 11.4 Recurrent Network for Motion Detection (from [30]). (A) depicts a re-
current network of neurons, shown for clarity as two chains selective for leftward and
rightward motion respectively. The feedforward synaptic weights for neuron i (in the
leftward or rightward chain) are determined by F(θi). The recurrent weights reflect
the transition probabilities P (θiR|θkR) and P (θiL|θjL). (B) Feedforward weights F(θi)
for neurons i = 1, . . . , 15 (rightward chain). The feedforward weights for neurons
i = 15, . . . , 30 (leftward chain) are identical. (C) Transition probabilities P (θt|θt−1).
Probability values are proportional to pixel brightness. (D) Recurrent weights Uij com-
puted from the transition probabilities in (C) using Equation 11.24.

We model visual motion using an HMM. The transition probabilities
P (θij |θkl) are selected to reflect both the direction of motion and speed of the
moving stimulus. The transition probabilities for rightward motion from the
state θkR (i.e. P (θiR|θkR)) were set according to a Gaussian centered at location
k + x, where x is a parameter determined by stimulus speed. The transition
probabilities for leftward motion from the state θkL were likewise set to Gaus-
sian values centered at k − x. The transition probabilities from states near the
two boundaries (i = 1 and i = X) were chosen to be uniformly random values.
Figure 11.4C shows the matrix of transition probabilities.

246 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

Recurrent Network Model

To detect motion using Bayesian inference in the above HMM, consider first
a model based on the linear recurrent network as in equation (11.18) but with
normalization as in equation (11.23) (which makes the network nonlinear). We
can compute the recurrent weights mij for the transition probabilities given
above using the approximation method in equation (11.24) (see figure 11.4D).
The resulting network then implements approximate belief propagation for the
HMM based on equation (11.20-11.23). Figure 11.5 shows the output of the net-
work in the middle of a sequence of input images depicting a bar moving either
leftward or rightward. As shown in the figure, for a leftward-moving bar at a
particular location i, the highest network output is for the neuron representing
location i and direction L, while for a rightward-moving bar, the neuron rep-
resenting location i and direction R has the highest output. The output firing
rates were computed from the log probabilities logmt,t+1

i using a simple linear
encoding model: fi = [c · vi + F]+ where c is a positive constant (= 12 for this
plot), F is the maximum firing rate of the neuron (= 100 in this example), and
+ denotes rectification. Note that even though the log-likelihoods are the same
for leftward- and rightward-moving inputs, the asymmetric recurrent weights
(which represent the transition probabilities) allow the network to distinguish
between leftward- and rightward-moving stimuli. The posterior probabilities
mt,t+1
i are shown in figure 11.5 (lowest panels). The network correctly com-

putes posterior probabilities close to 1 for the states θiL and θiR for leftward
and rightward motion respectively at location i.

5 10 15 20 25 30
−15
−10
−5

0

5 10 15 20 25 30
0

50

100

5 10 15 20 25 30
0

0.5

1

5 10 15 20 25 30

−2
−1

0

5 10 15 20 25 30
−15
−10
−5

0

5 10 15 20 25 30
0

50

100

5 10 15 20 25 30
0

0.5

1

5 10 15 20 25 30

−2
−1

0

 Right selective neurons Left selective neurons

log likelihood

log posterior

firing rate

posterior

Leftward Moving InputRightward Moving Input

Right selective neurons Left selective neurons

1

0

0

−2

0.5

0

0

−10

100

1 15 130 3015

50

Figure 11.5 Network Output for a Moving Stimulus (from [30]). (Left Panel) The four
plots depict respectively the log likelihoods, log posteriors, neural firing rates, and pos-
terior probabilities observed in the network for a rightward moving bar when it ar-
rives at the central image location. Note that the log likelihoods are the same for the
rightward and leftward selective neurons (the first 15 and last 15 neurons respectively,
as dictated by the feedforward weights in Figure 11.4B) but the outputs of these neu-
rons correctly reflect the direction of motion as a result of recurrent interactions. (Right
Panel) The same four plots for a leftward moving bar as it reaches the central location.

11.4 Results 247

Nonlinear Spiking Model

The motion detection task can also be solved using a nonlinear network with
spiking neurons as described in section 11.3.3. A single-level recurrent network
of 30 neurons as in the previous section was used. The feedforward weights
were the same as in figure 11.4B. The recurrent connections directly encoded
transition probabilities for leftward motion (see figure 11.4C). As seen in fig-
ure 11.6A, neurons in the network exhibited direction selectivity. Furthermore,
the spiking probability of neurons reflects the probability mt

i of motion direc-
tion at a given location as in equation (11.39) (figure 11.6B), suggesting a proba-
bilistic interpretation of direction-selective spiking responses in visual cortical
areas such as V1 and MT.

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

8
Neuron

10

12

8
Neuron

12

10

Rightward Motion Leftward Motion

B

A

Figure 11.6 Responses from the Spiking Motion Detection Network. (A) Spiking re-
sponses of three of the first 15 neurons in the recurrent network (neurons 8, 10, and 12).
As is evident, these neurons have become selective for rightward motion as a conse-
quence of the recurrent connections (= transition probabilities) specified in Figure 11.4C.
(B) Posterior probabilities over time of motion direction (at a given location) encoded
by the three neurons for rightward and leftward motion.

11.4.2 Example 2: Bayesian Decision-Making in a Random-Dots Task

To establish a connection to behavioral data, we consider the well-known ran-
dom dots motion discrimination task (see, for example, [41]). The stimulus
consists of an image sequence showing a group of moving dots, a fixed frac-
tion of which are randomly selected at each frame and moved in a fixed di-
rection (for example, either left or right). The rest of the dots are moved in

248 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

random directions. The fraction of dots moving in the same direction is called
the coherence of the stimulus. Figure 11.7A depicts the stimulus for two dif-
ferent levels of coherence. The task is to decide the direction of motion of the
coherently moving dots for a given input sequence. A wealth of data exists on
the psychophysical performance of humans and monkeys as well as the neural
responses in brain areas such as the middle temporal (MT) and lateral intra-
parietal areas (LIP) in monkeys performing the task (see [41] and references
therein). Our goal is to explore the extent to which the proposed models for
neural belief propagation can explain the existing data for this task.

The nonlinear motion detection network in the previous section computes
the posterior probabilities P (θiL|I(t), . . . , I(1)) and P (θiR|I(t), . . . , I(1)) of left-
ward and rightward motion at different locations i. These outputs can be used
to decide the direction of coherent motion by computing the posterior prob-
abilities for leftward and rightward motion irrespective of location, given the
input images. These probabilities can be computed by marginalizing the pos-
terior distribution computed by the neurons for leftward (L) and rightward (R)
motion over all spatial positions i:

P (L|I(t), . . . , I(1)) =
∑

i

P (θiL|I(t), . . . , I(1)) (11.40)

P (R|I(t), . . . , I(1)) =
∑

i

P (θiR|I(t), . . . , I(1)) (11.41)

To decide the overall direction of motion in a random-dots stimulus, there
exist two options: (1) view the decision process as a “race” between the two
probabilities above to a prechosen threshold (this also generalizes to more than
two choices); or (2) compute the log of the ratio between the two probabilities
above and compare this log-posterior ratio to a prechosen threshold. We use
the latter method to allow comparison to the results of Shadlen and colleagues,
who postulate a ratio-based model in area LIP in primate parietal cortex [12].
The log-posterior ratio r(t) of leftward over rightward motion can be defined
as:

r(t) = logP (L|I(t), . . . , I(1))− logP (R|I(t), . . . , I(1)) (11.42)

= log
P (L|I(t), . . . , I(1))
P (R|I(t), . . . , I(1))

(11.43)

If r(t) > 0, the evidence seen so far favors leftward motion and vice versa for
r(t) < 0. The instantaneous ratio r(t) is susceptible to rapid fluctuations due
to the noisy stimulus. We therefore use the following decision variable dL(t) to
track the running average of the log posterior ratio of L over R:

dL(t+ 1) = dL(t) + α(r(t)− dL(t)) (11.44)

and likewise for dR(t) (the parameter α is between 0 and 1). We assume that
the decision variables are computed by a separate set of “decision neurons”
that receive inputs from the motion detection network. These neurons are once

11.4 Results 249

again leaky-integrator neurons as described by Equation 11.44, with the driv-
ing inputs r(t) being determined by inhibition between the summed inputs
from the two chains in the motion detection network (as in equation (11.42)).
The output of the model is “L” if dL(t) > c and “R” if dR(t) > c, where c is
a “confidence threshold” that depends on task constraints (for example, accu-
racy vs. speed requirements) [35].

Figure 11.7B and C shows the responses of the two decision neurons over
time for two different directions of motion and two levels of coherence. Be-
sides correctly computing the direction of coherent motion in each case, the
model also responds faster when the stimulus has higher coherence. This phe-
nomenon can be appreciated more clearly in figure 11.7D, which predicts pro-
gressively shorter reaction times for increasingly coherent stimuli (dotted ar-
rows).

Comparison to Neurophysiological Data

The relationship between faster rates of evidence accumulation and shorter re-
action times has received experimental support from a number of studies. Fig-
ure 11.7E shows the activity of a neuron in the frontal eye fields (FEF) for fast,
medium, and slow responses to a visual target [39, 40]. Schall and collabora-
tors have shown that the distribution of monkey response times can be repro-
duced using the time taken by neural activity in FEF to reach a fixed threshold
[15]. A similar rise-to-threshold model by Carpenter and colleagues has re-
ceived strong support in human psychophysical experiments that manipulate
the prior probabilities of targets [3] and the urgency of the task [35].

In the case of the random-dots task, Shadlen and collaborators have shown
that in primates, one of the cortical areas involved in making the decision re-
garding coherent motion direction is area LIP. The activities of many neurons in
this area progressively increase during the motion-viewing period, with faster
rates of rise for more coherent stimuli (see figure 11.7F) [37]. This behavior is
similar to the responses of “decision neurons” in the model (figure 11.7B–D),
suggesting that the outputs of the recorded LIP neurons could be interpreted
as representing the log-posterior ratio of one task alternative over another (see
[3, 12] for related suggestions).

11.4.3 Example 3: Attention in the Visual Cortex

The responses of neurons in cortical areas V2 and V4 can be significantly mod-
ulated by attention to particular locations within an input image. McAdams
and Maunsell [23] showed that the tuning curve of a neuron in cortical area V4
is multiplied by an approximately constant factor when the monkey focuses
attention on a stimulus within the neuron’s receptive field. Reynolds et al. [36]
have shown that focusing attention on a target in the presence of distractors
causes the response of a V2 or V4 neuron to closely approximate the response
elicited when the target appears alone. Finally, a study by Connor et al. [4]
demonstrated that responses to unattended stimuli can be affected by spatial

250 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

attention to nearby locations.
All three types of response modulation described above can be explained in

terms of Bayesian inference using the hierarchical graphical model for images
given in section 11.2.3 (figure 11.3). Each V4 neuron is assumed to encode a
feature Fi as its preferred stimulus. A separate group of neurons (e.g., in the
parietal cortex) is assumed to encode spatial locations (and potentially other
spatiotemporal transformations) irrespective of feature values. Lower-level
neurons (for example, in V2 and V1) are assumed to represent the interme-
diate representations Ci. Figure 11.3B depicts the corresponding network for
neural belief propagation. Note that this network architecture mimics the di-
vision of labor between the ventral object processing ("what") stream and the
dorsal spatial processing ("where") stream in the visual cortex [24].

The initial firing rates of location- and feature-coding neurons represent
prior probabilities P (L) and P (F) respectively, assumed to be set by task-
dependent feedback from higher areas such as those in prefrontal cortex. The
input likelihood P (I = I ′|C) is set to

∑
j wijIj , where the weights wij repre-

sent the attributes of Ci (specific feature at a specific location). Here, we set
these weights to spatially localized oriented Gabor filters. equation (11.11) and
(11.12) are assumed to be computed by feedforward neurons in the location-
coding and feature-coding parts of the network, with their synapses encod-
ing P (C|L,F). Taking the logarithm of both sides of equations (11.13-11.15),
we obtain equations that can be computed using leaky integrator neurons as
in equation (11.32) (f and g are assumed to approximate a logarithmic trans-
formation). Recurrent connections in equation (11.32) are used to implement
the inhibitory component corresponding to the negative logarithm of the nor-
malization constants. Furthermore, since the membrane potential vi(t) is now
equal to the log of the posterior probability, i.e., vi(t) = logP (F |I = I ′) (and
similarly for L and C), we obtain, using equation (11.33):

P (feature coding neuron i spikes at time t) ∝ P (F |I = I ′) (11.45)

This provides a new interpretation of the spiking probability (or instantaneous
firing rate) of a V4 neuron as representing the posterior probability of a pre-
ferred feature in an image (irrespective of spatial location).

To model the three primate experiments discussed above [4, 23, 36], we used
horizontal and vertical bars that could appear at nine different locations in the
input image (figure 11.8A). All results were obtained using a network with a
single set of parameters. P (C|L,F) was chosen such that for any given value
of L and F , say location Lj and feature Fk, the value of C closest to the combi-
nation (Lj , Fk) received the highest probability, with decreasing probabilities
for neighboring locations (see figure 11.8B).

Multiplicative Modulation of Responses

We simulated the attentional task of McAdams and Maunsell [23] by present-
ing a vertical bar and a horizontal bar simultaneously in an input image. “At-
tention” to a location Li containing one of the bars was simulated by setting

11.4 Results 251

a high value for P (Li), corresponding to a higher firing rate for the neuron
coding for that location.

Figure 11.9A depicts the orientation tuning curves of the vertical feature cod-
ing model V4 neuron in the presence and absence of attention (squares and
circles respectively). The plotted points represent the neuron’s firing rate, en-
coding the posterior probability P (F |I = I ′), F being the vertical feature. At-
tention in the model approximately multiplies the “unattended” responses by
a constant factor, similar to V4 neurons (figure 11.9B). This is due to the change
in the prior P (L) between the two modes, which affects equation (11.12) and
(11.15) multiplicatively.

Effects of Attention on Responses in the Presence of Distractors

To simulate the experiments of Reynolds et al. [36], a single vertical bar (“Refer-
ence”) were presented in the input image and the responses of the vertical fea-
ture coding model neuron were recorded over time. As seen in figure 11.10A
(top panel, dotted line), the neuron’s firing rate reflects a posterior probabil-
ity close to 1 for the vertical stimulus. When a horizontal bar (“Probe”) alone
is presented at a different location, the neuron’s response drops dramatically
(solid line) since its preferred stimulus is a vertical bar, not a horizontal bar.
When the horizontal and vertical bars are simultaneously presented (“Pair”),
the firing rate drops to almost half the value elicited for the vertical bar alone
(dashed line), signaling increased uncertainty about the stimulus compared to
the Reference-only case. However, when “attention” is turned on by increas-
ing P (L) for the vertical bar location (figure 11.10A, bottom panel), the firing
rate is restored back to its original value and a posterior probability close to 1
is signaled (topmost plot, dot-dashed line). Thus, attention acts to reduce un-
certainty about the stimulus given a location of interest. Such behavior closely
mimics the effect of spatial attention in areas V2 and V4 [36] (figure 11.10B).

Effects of Attention on Neighboring Spatial Locations

We simulated the experiments of Connor et al. [4] using an input image con-
taining four fixed horizontal bars as shown in figure 11.11A. A vertical bar was
flashed at one of five different locations in the center (figure 11.11A, 1-5). Each
bar plot in figure 11.11B shows the responses of the vertical feature coding
model V4 neuron as a function of vertical bar location (bar positions 1 through
5) when attention is focused on one of the horizontal bars (left, right, upper,
or lower). Attention was again simulated by assigning a high prior probability
for the location of interest.

As seen in figure 11.11B, there is a pronounced effect of proximity to the
locus of attention: the unattended stimulus (vertical bar) produces higher re-
sponses when it is closer to the attended location than further away (see, for
example, “Attend Left”). This effect is due to the spatial spread in the condi-
tional probability P (C|L,F) (see figure 11.8B), and its effect on equation (11.12)
and (11.15). The larger responses near the attended location reflect a reduction

252 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

in uncertainty at locations closer to the focus of attention compared to locations
farther away. For comparison, the responses from a V4 neuron are shown in
figure 11.11C (from [4]).

11.5 Discussion

This chapter described models for neurally implementing the belief propaga-
tion algorithm for Bayesian inference in arbitrary graphical models. Linear and
nonlinear models based on firing rate dynamics, as well as a model based on
noisy spiking neurons, were presented. We illustrated the suggested approach
in two domains: (1) inference over time using an HMM and its application to
visual motion detection and decision-making, and (2) inference in a hierarchi-
cal graphical model and its application to understanding attentional effects in
the primate visual cortex.

The approach suggests an interpretation of cortical neurons as computing
the posterior probability of their preferred state, given current and past in-
puts. In particular, the spiking probability (or instantaneous firing rate) of a
neuron can be shown to be directly proportional to the posterior probability
of the preferred state. The model also ascribes a functional role to local re-
current connections (lateral/horizontal connections) in the neocortex: connec-
tions from excitatory neurons are assumed to encode transition probabilities
between states from one time step to the next, while inhibitory connections are
used for probability normalization (see equation (11.23)). Similarly, feedback
connections from higher to lower areas are assumed to convey prior proba-
bilities reflecting prior knowledge or task constraints, as used in the attention
model in section 11.4.3.

11.5.1 Related Models

A number of models have been proposed for probabilistic computation in
networks of neuron-like elements. These range from early models based on
statistical mechanics (such as the Boltzmann machine [19, 20]) to more re-
cent models that explicitly rely on probabilistic generative or causal models
[6, 10, 29, 33, 43, 44, 45]. We review in more detail some of the models that are
closely related to the approach presented in this chapter.

Models based on Log-Likelihood Ratios

Gold and Shadlen [12] have proposed a model for neurons in area LIP that
interprets their responses as representing the log-likelihood ratio between
two alternatives. Their model is inspired by neurophysiological results from
Shadlen’s group and others showing that the responses of neurons in area LIP
exhibit a behavior similar to a random walk to a fixed threshold. The neuron’s
response increases given evidence in favor of the neuron’s preferred hypoth-
esis and decreases when given evidence against that hypothesis, resulting in

11.5 Discussion 253

an evidence accumulation process similar to computing a log-likelihood ratio
over time (see section 11.4.2). Gold and Shadlen develop a mathematical model
[12] to formalize this intuition. They show how the log-likelihood ratio can be
propagated over time as evidence trickles in at each time instant. This model is
similar to the one proposed above involving log-posterior ratios for decision-
making. The main difference is in the representation of probabilities. While
we explicitly maintain a representation of probability distributions of relevant
states using populations of neurons, the model of Gold and Shadlen relies on
the argument that input firing rates can be directly interpreted as log-likelihood
ratios without the need for explicit representation of probabilities.

An extension of the Gold and Shadlen model to the case of spiking neurons
was recently proposed by Deneve [8]. In this model, each neuron is assumed
to represent the log-“odds” ratio for a preferred binary-valued state, i.e., the
logarithm of the probability that the preferred state is 1 over the probability
that the preferred state is 0, given all inputs seen thus far. To promote efficiency,
each neuron fires only when the difference between its log-odds ratio and a
prediction of the log-odds ratio (based on the output spikes emitted thus far)
reaches a certain threshold.

Models based on log-probability ratios such as the ones described above
have several favorable properties. First, since only ratios are represented, one
may not need to normalize responses at each step to ensure probabilities sum
to 1 as in an explicit probability code. Second, the ratio representation lends it-
self naturally to some decision-making procedures such as the one postulated
by Gold and Shadlen. However, the log-probability ratio representation also
suffers from some potential shortcomings. Because it is a ratio, it is susceptible
to instability when the probability in the denominator approaches zero (a log
probability code also suffers from a similar problem), although this can be han-
dled using bounds on what can be represented by the neural code. Also, the
approach becomes inefficient when the number of hypotheses being consid-
ered is large, given the large number of ratios that may need to be represented
corresponding to different combinations of hypotheses. Finally, the lack of an
explicit probability representation means that many useful operations in prob-
ability calculus, such as marginalization or uncertainty estimation in specific
dimensions, could become complicated to implement.

Inference Using Distributional Codes

There has been considerable research on methods for encoding and decoding
information from populations of neurons. One class of methods uses basis
functions (or “kernels”) to represent probability distributions within neuronal
ensembles [1, 2, 9]. In this approach, a distribution P (x) over stimulus x is
represented using a linear combination of basis functions:

P (x) =
∑

i

ribi(x), (11.46)

254 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

where ri is the normalized response (firing rate) and bi the implicit basis func-
tion associated with neuron i in the population. The basis function of each
neuron is assumed to be linearly related to the tuning function of the neuron as
measured in physiological experiments. The basis function approach is similar
to the approach described in this chapter in that the stimulus space is spanned
by a limited number of neurons with preferred stimuli or state vectors. The
two approaches differ in how probability distributions are represented by neu-
ral responses, one using an additive method and the other using a logarith-
mic transformation either in the firing rate representation (sections 11.3.1 and
11.3.2) or in the membrane potential representation (section 11.3.3).

A limitation of the basis function approach is that due to its additive na-
ture, it cannot represent distributions that are sharper than the component dis-
tributions. A second class of models addresses this problem using a genera-
tive approach, where an encoding model (e.g., Poisson) is first assumed and
a Bayesian decoding model is used to estimate the stimulus x (or its distribu-
tion), given a set of responses ri [28, 46, 48, 49, 51]. For example, in the distribu-
tional population coding (DPC) method [48, 49], the responses are assumed to
depend on general distributions P (x) and a maximimum a posteriori (MAP)
probability distribution over possible distributions over x is computed. The
best estimate in this method is not a single value of x but an entire distribu-
tion over x, which is assumed to be represented by the neural population. The
underlying goal of representing entire distributions within neural populations
is common to both the DPC approach and the models presented in this chap-
ter. However, the approaches differ in how they achieve this goal: the DPC
method assumes prespecified tuning functions for the neurons and a sophisti-
cated, non-neural decoding operation, whereas the method introduced in this
chapter directly instantiates a probabilistic generative model with an exponen-
tial or linear decoding operation. Sahani and Dayan have recently extended
the DPC method to the case where there is uncertainty as well as simultane-
ous multiple stimuli present in the input [38]. Their approach, known as dou-
bly distributional population coding (DDPC), is based on encoding probability
distributions over a function m(x) of the input x rather than distributions over
x itself. Needless to say, the greater representational capacity of this method
comes at the expense of more complex encoding and decoding schemes.

The distributional coding models discussed above were geared primarily to-
ward representing probability distributions. More recent work by Zemel and
colleagues [50] has explored how distributional codes could be used for infer-
ence as well. In their approach, a recurrent network of leaky integrate-and-
fire neurons is trained to capture the probabilistic dynamics of a hidden vari-
able X(t) by minimizing the Kullback-Leibler (KL) divergence between an in-
put encoding distribution P (X(t)|R(t)) and an output decoding distribution
Q(X(t)|S(t)), where R(t) and S(t) are the input and output spike trains re-
spectively. The advantage of this approach over the models presented in this
chapter is that the decoding process may allow a higher-fidelity representation
of the output distribution than the direct representational scheme used in this
chapter. On the other hand, since the probability representation is implicit in

11.5 Discussion 255

the neural population, it becomes harder to map inference algorithms such as
belief propagation to neural circuitry.

Hierarchical Inference

There has been considerable interest in neural implementation of hierarchical
models for inference. Part of this interest stems from the fact that hierarchical
models often capture the multiscale structure of input signals such as images in
a very natural way (e.g., objects are composed of parts, which are composed of
subparts,..., which are composed of edges). A hierarchical decomposition often
results in greater efficiency, both in terms of representation (e.g., a large num-
ber of objects can be represented by combining the same set of parts in many
different ways) and in terms of learning. A second motivation for hierarchical
models has been the evidence from anatomical and physiological studies that
many regions of the primate cortex are hierarchically organized (e.g., the visual
cortex, motor cortex, etc.).

Hinton and colleagues investigated a hierarchical network called the
Helmholtz machine [16] that uses feedback connections from higher to lower
levels to instantiate a probabilistic generative model of its inputs (see also [18]).
An interesting learning algorithm termed the “wake-sleep” algorithm was pro-
posed that involved learning the feedback weights during a “wake” phase
based on inputs and the feedforward weights in the “sleep” phase based on
“fantasy” data produced by the feedback model. Although the model employs
feedback connections, these are used only for bootstrapping the learning of the
feedforward weights (via fantasy data). Perception involves a single feedfor-
ward pass through the network and the feedback connections are not used for
inference or top-down modulation of lower-level activities.

A hierarchical network that does employ feedback for inference was ex-
plored by Lewicki and Sejnowski [22] (see also [17] for a related model). The
Lewicki-Sejnowski model is a Bayesian belief network where each unit encodes
a binary state and the probability that a unit’s state Si is equal to 1 depends on
the states of its parents pa[Si] via:

P (Si = 1|pa[Si],W) = h(
∑

j

wjiSj), (11.47)

where W is the matrix of weights, wji is the weight from Sj to Si (wji = 0 for
j < i), and h is the noisy OR function h(x) = 1 − e−x (x ≥ 0). Rather than
inferring a posterior distribution over states as in the models presented in this
chapter, Gibbs sampling is used to obtain samples of states from the posterior;
the sampled states are then used to learn the weights wji.

Rao and Ballard proposed a hierarchical generative model for images and
explored an implementation of inference in this model based on predictive
coding [34]. Unlike the models presented in this chapter, the predictive cod-
ing model focuses on estimating the MAP value of states rather than an en-
tire distribution. More recently, Lee and Mumford sketched an abstract hier-
archical model [21] for probabilistic inference in the visual cortex based on an

256 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

inference method known as particle filtering. The model is similar to our ap-
proach in that inference involves message passing between different levels, but
whereas the particle-filtering method assumes continuous random variables,
our approach uses discrete random variables. The latter choice allows a con-
crete model for neural representation and processing of probabilities, while it
is unclear how a biologically plausible network of neurons can implement the
different components of the particle filtering algorithm.

The hierarchical model for attention described in section 11.4.3 bears some
similarities to a recent Bayesian model proposed by Yu and Dayan [47] (see
also [7, 32]). Yu and Dayan use a five-layer neural architecture and a log proba-
bility encoding scheme as in [30] to model reaction time effects and multiplica-
tive response modulation. Their model, however, does not use an interme-
diate representation to factor input images into separate feature and location
attributes. It therefore cannot explain effects such as the influence of attention
on neighboring unattended locations [4]. A number of other neural models
exist for attention, e.g., models by Grossberg and colleagues [13, 14], that are
much more detailed in specifying how various components of the model fit
with cortical architecture and circuitry. The approach presented in this chapter
may be viewed as a first step toward bridging the gap between detailed neural
models and more abstract Bayesian theories of perception.

11.5.2 Open Problems and Future Challenges

An important open problem not addressed in this chapter is learning and adap-
tation. How are the various conditional probability distributions in a graphical
model learned by a network implementing Bayesian inference? For instance,
in the case of the HMM model used in section 11.4.1, how can the transition
probabilities between states from one time step to the next be learned? Can
well-known biologically plausible learning rules such as Hebbian learning or
the Bienenstock-Cooper-Munro (BCM) rule (e.g., see [5]) be used to learn con-
ditional probabilities? What are the implications of spike-timing dependent
plasticity (STDP) and short-term plasticity on probabilistic representations in
neural populations?

A second open question is the use of spikes in probabilistic representations.
The models described above were based directly or indirectly on instantaneous
firing rates. Even the noisy spiking model proposed in section 11.3.3 can be
regarded as encoding posterior probabilities in terms of instantaneous firing
rates. Spikes in this model are used only as a mechanism for communicat-
ing information about firing rate over long distances. An intriguing alternate
possibility that is worth exploring is whether probability distributions can be
encoded using spike timing-based codes. Such codes may be intimately linked
to timing-based learning mechanisms such as STDP.

Another interesting issue is how the dendritic nonlinearities known to exist
in cortical neurons could be exploited to implement belief propagation as in
equation (11.19). This could be studied systematically with a biophysical com-
partmental model of a cortical neuron by varying the distribution and densities

11.5 Discussion 257

of various ionic channels along the dendrites.
Finally, this chapter explored neural implementations of Bayesian inference

in only two simple graphical models (HMMs and a three-level hierarchical
model). Neuroanatomical data gathered over the past several decades pro-
vide a rich set of clues regarding the types of graphical models implicit in
brain structure. For instance, the fact that visual processing in the primate
brain involves two hierarchical but interconnected pathways devoted to spa-
tial and object vision (the “what” and “where” streams) [24] suggests a mul-
tilevel graphical model wherein the input image is factored into progressively
complex sets of object features and their transformations. Similarly, the ex-
istence of multimodal areas in the inferotemporal cortex suggests graphical
models that incorporate a common modality-independent representation at
the highest level that is causally related to modality-dependent representa-
tions at lower levels. Exploring such graphical models that are inspired by
neurobiology could not only shed new light on brain function but also furnish
novel architectures for solving fundamental problems in machine vision and
robotics.

Acknowledgments This work was supported by grants from the ONR Adap-
tive Neural Systems program, NSF, NGA, the Sloan Foundation, and the
Packard Foundation.

References

[1] Anderson CH (1995) Unifying perspectives on neuronal codes and processing. In 19th
International Workshop on Condensed Matter Theories. Caracas, Venezuela.

[2] Anderson CH, Van Essen DC (1994) Neurobiological computational systems. In Zu-
rada JM, Marks II RJ, Robinson CJ, eds., Computational Intelligence: Imitating Life,
pages 213–222, New York: IEEE Press.

[3] Carpenter RHS, Williams MLL (1995) Neural computation of log likelihood in control
of saccadic eye movements. Nature, 377:59–62.

[4] Connor CE, Preddie DC, Gallant JL, Van Essen DC (1997) Spatial attention effects in
macaque area V4. Journal of Neuroscience, 17:3201–3214.

[5] Dayan P, Abbott LF (2001) Theoretical Neuroscience: Computational and Mathematical Mod-
eling of Neural Systems. Cambridge, MA: MIT Press.

[6] Dayan P, Hinton G, Neal R, Zemel R (1995) The Helmholtz machine. Neural Computa-
tion, 7:889–904.

[7] Dayan P, Zemel R (1999) Statistical models and sensory attention. In Willshaw D,
Murray A, eds., Proceedings of the International Conference on Artificial Neural Networks
(ICANN), pages 1017–1022, London: IEEE Press.

[8] Deneve S (2005) Bayesian inference in spiking neurons. In Saul LK, Weiss Y, Bottou L,
eds., Advances in Neural Information Processing Systems 17, pages 353–360, Cambridge,
MA: MIT Press.

[9] Eliasmith C, Anderson CH (2003) Neural Engineering: Computation, Representation, and
Dynamics in Neurobiological Systems. Cambridge, MA: MIT Press.

258 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

[10] Freeman WT, Haddon J, Pasztor EC (2002) Learning motion analysis. In Probabilistic
Models of the Brain: Perception and Neural Function, pages 97–115, Cambridge, MA:
MIT Press.

[11] Gerstner W (2000) Population dynamics of spiking neurons: Fast transients, asyn-
chronous states, and locking. Neural Computation, 12(1):43–89.

[12] Gold JI, Shadlen MN (2001) Neural computations that underlie decisions about sen-
sory stimuli. Trends in Cognitive Sciences, 5(1):10–16.

[13] Grossberg S (2005) Linking attention to learning, expectation, competition, and con-
sciousness. In Neurobiology of Attention, pages 652–662. San Diego: Elsevier.

[14] Grossberg S, Raizada R (2000) Contrast-sensitive perceptual grouping and object-
based attention in the laminar circuits of primary visual cortex. Vision Research,
40:1413–1432.

[15] Hanes DP, Schall JD (1996) Neural control of voluntary movement initiation. Science,
274:427–430.

[16] Hinton G, Dayan P, Frey B, Neal R (1995) The wake-sleep algorithm for unsupervised
neural networks. Science, 268:1158–1161.

[17] Hinton G, Ghahramani Z (1997) Generative models for discovering sparse distributed
representations. Philosophical Transactions of the Royal Society of London, Series B.,
352:1177–1190.

[18] Hinton G, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets.
Neural Computation, 18:1527–1554.

[19] Hinton G, Sejnowski T (1983) Optimal perceptual inference. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 448–453, Washington DC
1983, New York: IEEE Press.

[20] Hinton G, Sejnowski T (1986) Learning and relearning in Boltzmann machines. In
Rumelhart D, McClelland J, eds., Parallel Distributed Processing, volume 1, chapter 7,
pages 282–317, Cambridge, MA: MIT Press.

[21] Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. Journal
of the Optical Society of America A, 20(7):1434–1448.

[22] Lewicki MS, Sejnowski TJ (1997) Bayesian unsupervised learning of higher order
structure. In Mozer M, Jordan M, Petsche T, eds., Advances in Neural Information Pro-
cessing Systems 9, Cambridge, MA: MIT Press.

[23] McAdams CJ, Maunsell JHR (1999) Effects of attention on orientation-tuning func-
tions of single neurons in macaque cortical area V4. Journal of Neuroscience, 19:431–
441.

[24] Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two
cortical pathways. Trends in Neuroscience, 6:414–417.

[25] Murphy K, Weiss Y, Jordan M (1999) Loopy belief propagation for approximate infer-
ence: an empirical study. In Laskey K, Prade H eds., Proceedings of UAI (Uncertainty
in AI), pages 467–475, San Francisco: Morgan Kaufmann.

[26] Pearl J (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. San Mateo: CA,Morgan Kaufmann.

[27] Plesser HE, Gerstner W (2000) Noise in integrate-and-fire neurons: from stochastic
input to escape rates. Neural Computation, 12(2):367–384, .

11.5 Discussion 259

[28] Pouget A, Zhang K, Deneve S, Latham PE (1998) Statistically efficient estimation using
population coding. Neural Computation, 10(2):373–401.

[29] Rao RPN (1999) An optimal estimation approach to visual perception and learning.
Vision Research, 39(11):1963–1989.

[30] Rao RPN (2004) Bayesian computation in recurrent neural circuits. Neural Computa-
tion, 16(1):1–38.

[31] Rao RPN (2005) Bayesian inference and attentional modulation in the visual cortex.
Neuroreport, 16(16):1843–1848.

[32] Rao RPN (2005) Hierarchical Bayesian inference in networks of spiking neurons. In
Saul LK, Weiss Y, Bottou L, eds., Advances in Neural Information Processing Systems 17,
pages 1113–1120, Cambridge, MA: MIT Press.

[33] Rao RPN, Ballard DH (1997) Dynamic model of visual recognition predicts neural
response properties in the visual cortex. Neural Computation, 9(4):721–763.

[34] Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: a functional inter-
pretation of some extra-classical receptive field effects. Nature Neuroscience, 2(1):79–
87.

[35] Reddi BA, Carpenter RH (2000) The influence of urgency on decision time. Nature
Neuroscience, 3(8):827–830.

[36] Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms subserve at-
tention in macaque areas V2 and V4. Journal of Neuroscience, 19:1736–1753.

[37] Roitman JD, Shadlen MN (2002) Response of neurons in the lateral intraparietal area
during a combined visual discrimination reaction time task. Journal of Neuroscience,
22:9475–9489.

[38] Sahani M, Dayan P (2003) Doubly distributional population codes: simultaneous
representation of uncertainty and multiplicity. Neural Computation, 15:2255–2279.

[39] Schall JD, Hanes DP (1998) Neural mechanisms of selection and control of visually
guided eye movements. Neural Networks, 11:1241–1251.

[40] Schall JD, Thompson KG (1999) Neural selection and control of visually guided eye
movements. Annual Review of Neuroscience, 22:241–259.

[41] Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal
cortex (area LIP) of the rhesus monkey. Journal of Neurophysiology, 86(4):1916–1936.

[42] Shon AP, Rao RPN (2005) Implementing belief propagation in neural circuits. Neuro-
computing, 65-66:393–399.

[43] Simoncelli EP (1993) Distributed Representation and Analysis of Visual Motion. PhD the-
sis, Department of Electrical Engineering and Computer Science, MIT, Cambridge,
MA.

[44] Weiss Y, Fleet DJ (2002) Velocity likelihoods in biological and machine vision. In Rao
RPN, Olshausen BA, Lewicki MS, eds., Probabilistic Models of the Brain: Perception and
Neural Function, pages 77–96, Cambridge, MA: MIT Press.

[45] Weiss Y, Simoncelli EP, Adelson EH (2002) Motion illusions as optimal percepts. Na-
ture Neuroscience, 5(6):598–604.

[46] Wu S, Chen D, Niranjan M, Amari SI (2003) Sequential Bayesian decoding with a
population of neurons. Neural Computation, 15.

260 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

[47] Yu A, Dayan P (2005) Inference, attention, and decision in a Bayesian neural archi-
tecture. In Saul LK, Weiss Y, Bottou L, eds., Advances in Neural Information Processing
Systems 17, pages 1577–1584. Cambridge, MA: MIT Press, 2005.

[48] Zemel RS, Dayan P (1999) Distributional population codes and multiple motion mod-
els. In Kearns MS, Solla SA, Cohn DA, eds., Advances in Neural Information Processing
Systems 11, pages 174–180, Cambridge, MA: MIT Press.

[49] Zemel RS, Dayan P, Pouget A (1998) Probabilistic interpretation of population codes.
Neural Computation, 10(2):403–430.

[50] Zemel RS, Huys QJM, Natarajan R, Dayan P (2005) Probabilistic computation in spik-
ing populations. In Saul LK, Weiss Y, Bottou L, eds., Advances in Neural Information
Processing Systems 17, pages 1609–1616. Cambridge, MA: MIT Press.

[51] Zhang K, Ginzburg I, McNaughton BL, Sejnowski TJ (1998) Interpreting neuronal
population activity by reconstruction: A unified framework with application to hip-
pocampal place cells. Journal of Neurophysiology, 79(2):1017–1044.

11.5 Discussion 261

50 100 150 200 250 300
−0.05

0

0.05

50 100 150 200 250 300
−0.05

0

0.05

50 100 150 200 250 300

−0.1

0

0.1

50 100 150 200 250 300
−0.05

0

0.05

50 100 150 200 250 300

−0.1

0

0.1

Time (no. of time steps) Time (no. of time steps)

25.6%51.2%

N
eu

ra
l

A
ct

iv
ity N

eu
ra

l
A

ct
iv

ity

d

d

d LR

R

75% (Rightward)65% (Leftward)

d L

A

100%

50%

60% 90%
30%

CB

(Leftward)

E

Time from stimulus (ms)
Time from

motion onset (ms)

F

D

Time (no. of time steps)

30

50

70

0

0

−0.05

0.05

0.1

−0.1

300150 300150 3001500 0 0

c

300 150 3001500 0

0 100 200
4000 800

Figure 11.7 Output of Decision Neurons in the Model. (A) Depiction of the random
dots task. Two different levels of motion coherence (50% and 100%) are shown. A 1-D
version of this stimulus was used in the model simulations. (B) & (C) Outputs dL(t)
and dR(t) of model decision neurons for two different directions of motion. The deci-
sion threshold is labeled “c.” (D) Outputs of decision neurons for three different levels
of motion coherence. Note the increase in rate of evidence accumulation at higher co-
herencies. For a fixed decision threshold, the model predicts faster reaction times for
higher coherencies (dotted arrows). (E) Activity of a neuron in area FEF for a monkey
performing an eye movement task (from [40] with permission). Faster reaction times
were associated with a more rapid rise to a fixed threshold (see the three different neu-
ral activity profiles). The arrows point to the initiation of eye movements, which are
depicted at the top. (F) Averaged firing rate over time of 54 neurons in area LIP during
the random dots task, plotted as a function of motion coherence (from [37] with per-
mission). Solid and dashed curves represent trials in which the monkey judged motion
direction toward and away from the receptive field of a given neuron, respectively. The
slope of the response is affected by motion coherence (compare, for example, responses
for 51.2% and 25.6%) in a manner similar to the model responses shown in (D).

262 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1 2 3 4 5
0

0.2

0.4

0.6

0.8

21 3 4 5 RtLt
Up DnRtLtUp

Dn

BA

Spatial Positions

Figure 11.8 Input Image Configuration and Conditional Probabilities used in the At-
tention Experiments. (A) Example image locations (labeled 1-5 and Up, Dn, Lt, and Rt
for up, down, left, and right) relevant to the experiments discussed in the paper. (B)
Each bar plot shows P (Ci|L, F) for a fixed value of L (= Lt, Rt, Up, or Dn) and for an
arbitrary fixed value of F . Each bar represents the probability for the feature-location
combination Ci encoding one of the locations 1-5.

−90 −60 −30 0 30 60 90
0.0

0.3

0.5

R
es

po
ns

e

Model V4 Neuron

Orientation (in degrees)

A B

Figure 11.9 Multiplicative Modulation due to Attention. (A) Orientation tuning curve
of a feature coding model neuron with a preferred stimulus orientation of 0 degrees
with (filled squares) and without (unfilled circles) attention (from [31]). (B) Orienta-
tion tuning curves of a V4 neuron with (filled squares) and without attention (unfilled
circles) (from [23]).

11.5 Discussion 263

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1
Model V4 Neuron

N
or

m
al

iz
ed

 F
iri

ng
 R

at
e

Time steps

A B

Figure 11.10 Attentional Response Restoration in the presence of Distractors. (A) (Top
Panel) The three line plots represent the vertical feature coding neuron’s response to a
vertical bar (“Reference”), a horizontal bar at a different position (“Probe”), and both
bars presented simultaneously (“Pair”). In each case, the input lasted 30 time steps,
beginning at time step 20. (Bottom Panel) When “attention” (depicted as a white oval)
is focused on the vertical bar, the firing rate for the Pair stimulus approximates the
firing rate obtained for the Reference alone (from [31]). (B) (Top Panel) Responses from
a V4 neuron without attention. (Bottom Panel) Responses from the same neuron when
attending to the vertical bar (see condition Pair Att Ref) (from [36]).

264 11 Neural Models of Bayesian Belief Propagation Rajesh P. N. Rao

1 2 3 4 5

1 2 3 4 5
0

0.1

0.2

0.3

0.4

1 2 3 4 5
0

0.1

0.2

0.3

0.4

1 2 3 4 5
0

0.1

0.2

0.3

0.4

1 2 3 4 5
0

0.1

0.2

0.3

0.4N
or

m
al

iz
ed

 fi
rin

g
ra

te
Attend Upper

Attend Right

Attend Lower

Bar position

Attend Left

C

A

B

Figure 11.11 Spatial Distribution of Attention. (A) Example trial based on Connor
et al.’s experiments [4] showing five images, each containing four horizontal bars and
one vertical bar. Attention was focused on a horizontal bar (upper, lower, left, or right)
while the vertical bar’s position was varied. (B) Responses of the vertical feature coding
model neuron. Each plot shows five responses, one for each location of the vertical bar,
as attention was focused on the upper, lower, left, or right horizontal bar (from [31]).
(C) Responses of a V4 neuron (from [4]).

Index

acausal, 122
attention, 101
attention, Bayesian model of, 249
average cost per stage, 273

Bayes filter, 9
Bayes rule, 298
Bayes theorem, 6
Bayesian decision making, 247
Bayesian estimate, 8, 9
Bayesian estimator, 114
Bayesian inference, 235
Bayesian network, 12
belief propagation, 12, 235
belief state, 285
bell-shape, 111
Bellman equation, 267
Bellman error, 272
bias, 113
bit, 6

causal, 122
coding, 112
conditional probability, 4
continuous-time Riccati equation, 281
contraction mapping, 268
contrasts, 94
control gain, 282
convolution code, 119
convolution decoding, 121
convolution encoding, 119
correlation, 5
costate, 274
covariance, 4
Cramér-Rao bound, 113, 115
Cramér-Rao inequality, 11
cross-validation, 65
curse of dimensionality, 272

decision theory, 295
decoding, 53, 112
decoding basis function, 121
deconvolution, 120
differential dynamic programming,

282
direct encoding, 117
discounted cost, 273
discrete-time Riccati equation, 282
discrimination threshold, 116
distributional codes, 253
distributional population code, 117
doubly distributional population code,

121
Dynamic Causal Modeling (DCM), 103
dynamic programming, 266

economics, 295
EEG, 91
encoding, 112
entropy, 7
estimation-control duality, 287
Euler-Lagrange equation, 278
evidence, 12
expectation, 4
expectation-maximization, 121
extended Kalman filter, 285
extremal trajectory, 275

filter gain, 284
firing rate, 112
Fisher Information, 11
Fisher information, 115
fMRI, 91
Fokker-Planck equation, 286

gain of population activity, 118
general linear model, 91

318 Index

generalized linear model (GLM), 60
graphical model, 12

Hamilton equation, 278
Hamilton-Jacobi-Bellman equation,

271
Hamiltonian, 275
hemodynamic response function, 92
hidden Markov model, 238, 285
hierarchical inference, 255
hyperparameter, 12
hypothesis, 6

importance sampling, 285
independence, 5
influence function, 277
information, 6
information filter, 284
information state, 285
integrate-and-fire model, generalized,

62
iterative LQG, 282
Ito diffusion, 269
Ito lemma, 271

joint probability, 4

Kalman filter, 9, 283
Kalman smoother, 285
Kalman-Bucy filter, 284
kernel function, 119
KL divergence, 8
Kolmogorov equation, 286
Kullback-Leiber divergence, 8

Lagrange multiplier, 276
law of large numbers, 118
Legendre transformation, 278
likelihood, 6
linear-quadratic regulator, 281
log posterior ratio, 248
loss function, 114

MAP, 8
marginal likelihood, 12
marginalization, 12
Markov decision process, 269
mass-univariate, 91
maximum a posterior estimate, 8
maximum a posteriori estimator, 67

maximum aposterior estimator, 287
maximum entropy, 122
maximum likelihood, 55, 114
maximum likelihood estimate, 8
maximum likelihood Estimator, 114
maximum principle, 273
mean, 4
MEG, 91
Mexican hat kernel, 120
minimal variance, 114
minimum-energy estimator, 287
MLE, 8
model selection, 12
model-predictive control, 276
motion energy, 118
multiplicity, 121
mutual information, 7

neural coding problem, 53

optimality principle, 266
optimality value function, 266

particle filter, 9, 285
Poisson distribution, 112
Poisson noise, 115
Poisson process, 56
policy iteration, 267
population code, 111
population codes, 111
population vector, 113
posterior distribution, 114
posterior probability, 6
posterior probability mapping(PPM),

99
preferred orientation, 111
PrimerMarginal, 12
prior distribution, 114
prior probability, 6
probabilistic population code, 118
probability, 3
probability density, 3
probability distribution, 3
product of expert, 122

random field, 122
random field theory (RFT), 99
Rauch recursion, 285
recurrent network, linear, 240
recurrent network, nonlinear, 242

Index 319

regularization, 11
reverse correlation, 56
rollout policy, 276

spike count, 112
spike-triggered average (STA), 56
spike-triggered covariance (STC), 58
spiking neuron model, 243
square-root filter, 284
statistical parametric mapping (SPM),

99
stimulus decoding, 113
stimulus encoding, 112
sufficient statistics, 285

temporally changing probability, 122
time-rescaling, 53
tuning curve, 111, 114

unbiased, 114
unbiased estimate, 115
uncertainty, 7, 116, 118, 120, 296
unscented filter, 285
utility, 296

value iteration, 267
variance, 4, 113
variance components , 97
visual attention, 249
visual motion detection, 244
Viterbi algorithm, 287

Zakai’s equation, 286

