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Abstract. Imitation-based learning is a general mechanism for rapid
acquisition of new behaviors in autonomous agents and robots. In this
paper, we propose a new approach to learning by imitation based on
parameter learning in probabilistic graphical models. Graphical models
are used not only to model an agent’s own dynamics but also the dynam-
ics of an observed teacher. Parameter tying between the agent-teacher
models ensures consistency and facilitates learning. Given only observa-
tions of the teacher’s states, we use the expectation-maximization (EM)
algorithm to learn both dynamics and policies within graphical mod-
els. We present results demonstrating that EM-based imitation learning
outperforms pure exploration-based learning on a benchmark problem
(the FlagWorld domain). We additionally show that the graphical model
representation can be leveraged to incorporate domain knowledge (e.g.,
state space factoring) to achieve significant speed-up in learning.

1 Introduction

Learning by imitation is a general mechanism for rapidly acquiring new skills
or behaviors in humans and robots. Several approaches to imitation have previ-
ously been proposed (e.g., [1,2]). Many of these treat the problem of imitation
as trajectory-following where the goal is to follow the teacher’s trajectory as
best as possible. However, imitation often involves the need to infer intentions
and goals which introduces considerable uncertainty into the problem, besides
the uncertainty already existing in the observation process and in the environ-
ment. Previous models of imitation have typically not been probabilistic and
are therefore not geared towards handling uncertainty. There have been some
recent efforts in modeling goal-based imitation [3] but these either assume that
the dynamics of environment are given or need to learn the dynamics using a
time-consuming exploration stage.

A different approach to imitation is based on ideas from the field of Rein-
forcement Learning (RL) [4]. In reinforcement learning, the agent is assumed
to receive rewards in certain states and the agent’s goal is to learn a state-to-
action mapping (“policy”) that maximizes the total future expected reward. The
computational challenge of solving RL problem is hard for a variety of reasons:
(1) the state space is often exponential in the number of attributes, and (2) for
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uncertain environments with large state spaces, the agent needs to perform a
large amount of exploration to learn a model of the environment before learning
a good policy. These problems can be ameliorated by using imitation [5] ( or
“apprenticeship” [6]) where a teacher exhibits the optimal behavior that is ob-
served by the student or the teacher guides the student to the most important
states for exploration. Price and Boutilier formulate this in the RL framework
as Implicit Imitation [7], in which the student learns the dynamics of the envi-
ronment by passively observing the teacher without any explicit communication
regarding what actions to take. This speeds up the learning of policies. However,
these approaches rely on knowing or inferring an explicit reward function in the
environment, which may not always be available or easy to infer.

In this paper, we propose a new approach to imitation that is based on prob-
abilistic Graphical Models (GMs). We pose the problem of imitation learning as
learning the parameters of the underlying GM for the mentor’s and observer’s be-
havior (we use the terms mentor/teacher (and observer/student) interchangeably
in the paper). To facilitate the transfer of knowledge from mentor to observer
we tie the parameters of dynamics for the mentor with that of the observer,
and update the observer’s policy using the learned mentor policy. Parameters
are learned using the expectation-maximization (EM) algorithm for learning in
GMs from partial data. Our approach provides a principled approach to imita-
tion based completely on an internal GM representation, allowing us to leverage
the growing number of efficient inference and learning techniques for GMs.

2 Graphical Models for Imitation

Notation: We use capital letters for variables and small case letters to denote
specific instances. We assume there are two agents, the observer Ao and the
mentor Am operating in the environment1. Let ΩS be the set of states in the
environment and ΩA the set of all possible actions available to the agent2 (both
finite). At time t, the agent is in state St and executes action At. The agent’s
state changes in a stochastic manner given by the transition probability P (St+1 |
St, At), which is assumed to be independent of t, i.e., P (St+1 = s′ | St = s, At =
a) = τs′sa. When obvious from context, we use s for St = s and a for At = a,
etc. For each state s and action a, there is a real valued reward Rm(s, a) for
the mentor (Ro(s, a) for the observer) associated with being in state s and
executing the action a (with negative values denoting undesirable states or the
cost of the action). The parameters described above define a Markov Decision
Process (MDP) [9]. Solving an MDP typically involves computing an optimal
policy a = π(s) that maximizes total expected future reward (either a finite

1 We use the superscript to distinguish the two agents and omit it for common variables
(e.g., dynamics of the environment).

2 For simplicity of exposition, we assume that agents operate (non-interactively) in
the same environment. However, as discussed in [8], this assumption is not essential
and one can apply the techniques discussed here to the more general setting where
observer and mentor(s) have different action and state spaces.
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horizon cumulative reward or discounted infinite horizon cumulative reward)
when action a is executed in state s.

In a typical Reinforcement Learning problem, the dynamics and the reward
function are not known, and one cannot therefore compute an optimal policy
directly. One can learn both these functions by exploration but this requires the
agent to execute a large number of exploration steps before an optimal policy
can be computed. Learning can be greatly sped up via implicit imitation [7]
which involves an agent (the observer) observing another agent (mentor) who
has similar goals. . The main idea is to allow the agent to quickly learn the
parameters in the relevant portion of the state space, thereby cutting down on
the exploration required to compute a near-optimal policy.

We assume that the mentor follows a stationary policy πm(s) which defines
its behavior completely. The observer is only able to observe the sequence of
states that mentor has been in (Sm

1:t) and not the actions: this is important be-
cause some of the most useful forms of imitation learning are those in which the
teacher’s actions are not available, e.g., when a robot must learn by watching a
human – in such a scenario, the robot can observe body poses but has no access
to the human’s actions (muscle or motor commands). The task of the observer
is then to compute the best estimate of the dynamics τ̂ and mentor policy π̂m,
given its own history So

1:t, A
o
1:t and the mentor’s state history Sm

1:t. Note that πm

can be completely independent of the observer’s reward function Ro: in fact, the
problem as formulated above does not require the introduction of a reward func-
tion at all. The goal is simply to imitate the mentor by estimating and executing
the mentor’s policy. In the special case where the mentor is optimizing the same
reward function as the observer, πm becomes the optimal MDP policy. Note that
since the observer cannot see actions that the mentor took and the transition
parameters are not given, the problem is different from other approaches which
speed up RL via imitation [6,10].

2.1 Generative Graphical Model

Both the mentor and the observer are solving an MDP. One key observation
we make is that given the mentor policy the action choice and dynamics can
be modeled easily using a generative model based on the well-known graphical
model for MDP shown in Fig. 1(a). One does not need to know the mentor’s
reward model as πm completely explains the mentor state sequence observed.
The figure shows the 2-slice representation of the Dynamic Bayesian Network
(DBN) used to model the imitation problem. Since we are assuming that the two
agents are operating in the same environment, they have the same transition
parameters (τm=τo=τ). Note that the two graphical models (for the mentor and
observer respectively) are disconnected as the two agents are non-interacting.
The mentor’s actions are guided by the optimal mentor policy P (Am

t = a|Sm
t =

s) = πm(a|s) and the observer’s actions by the policy P (Ao
t = a|Sm

t = s) =
πo

t (a|s). Unlike the mentor, the observer updates its policy over time (hence
the subscript t on πo). We require only the mentor to have a stationary policy.
The mentor observations sm

1:T are generated by “sampling” the DBN. In our
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Fig. 1. Model and Domain for Imitation. (a) Graphical Model Representation for
Imitation. (b) FlagWorld Domain.

experiments, when a goal state is reached, we jump to the start state in the next
step. T thus represents the total number of steps taken by agent, which could
span multiple “episodes” of reaching a goal state.

3 Imitation Via Parameter Learning

Our approach to imitation is based on estimating the unknown parameters θ =
(τ, πm) of the graphical model in Fig. 1(a) given observed data as “evidence,”
i.e., θ̂ = (τ̂ , π̂m) = argmax

θ
P (θ|sm

1:T , so
1:T , ao

1:T ). Note that the evidence does not
include mentor actions Am

1:T . This means that the data is “incomplete” as not all
nodes of the graphical model are observed. A well-known approach to learning
the parameters of a GM from incomplete data [11] is to use the expectation-
maximization (EM) algorithm [12]. Although any parameter learning method
could be used, we use EM in the present study since it is a general-purpose,
well-understood algorithm widely used in machine learning.

The EM algorithm involves starting with an initial estimate θ0 (chosen ran-
domly or incorporating any prior knowledge) which is then iteratively improved
by performing the following two steps:

Expectation: The current set of parameters θi is used to compute a distribution
(expectation) over the hidden nodes: h(Am

1:T ) = P (Am
1:T |θi, sm

1:T , so
1:T , ao

1:T ). This
allows the expected sufficient statistics to be computed for the complete data set.

Maximization: The distribution h is then used to compute the new parameters
θi+1 which maximize the (expected) log-likelihood of evidence:

θi+1=argmax
θ

∑

a1:T

h(am
1:T )log(P (sm

1:T , am
1:T , so

1:T , ao
1:T |θ))

When states and actions are discrete, the new estimate can be computed by sim-
ply using the expected counts. The two steps above are performed alternatively
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until convergence. The method is guaranteed to improve performance in each
iteration in that the incomplete log likelihood of data (log P (sm

1:T , so
1:T , ao

1:T |θi))
is guaranteed to increase in every iteration and converge to a local maximum
[12]. We then use the estimate for θ̂ to control the observer. In particular, the
observer combines the learned mentor policy π̂m with an exploration strategy
to arrive at the policy πo

t .

3.1 Parameter Learning Results

Domain: We tested our results on a benchmark problem known as the “Flag-
World” domain [13] shown in Fig. 1(b). The agent’s objective is to reach the
goal state G starting from the state S and pick up a subset of the three flags
located at states F1, F2 and F3. It receives a reward of 1 point for each flag
picked up but rewards are discounted by a factor of γ = 0.99 at each time step
until the goal is reached; the latter constraint favors shortest paths to goal. The
environment is a standard maze environment used in RL [4] in that each action
(N,E,S,W) takes the agent to the intended state with a high probability (0.9)
and to a state perpendicular to the intended state with a small probability (0.1).
The probability mass going into the wall or outside the maze is assigned to the
state in which action taken. This domain is interesting in that there are 264
states (33 locations, augmented with a boolean attribute for each flag picked),
resulting in a large number of parameters that needs to be learned (264 × 4
state action pairs for which τ(s, a, :) and πm(a|s) needs to be learned). However,
the optimal policy path is sparse and hence only a small subset of parameters
needs to be learned to compute a near-optimal policy, thereby making it ideal
for demonstrating the utility of imitation as a medium to speed up RL.

Exploration versus Exploitation: We used the ε−greedy method to trade-
off exploration of the domain with exploitation of the current learned policy: a
random action is chosen with probability ε, with ε gradually decreased over time
to favor exploration initially and exploitation of the learned policy in later time
steps.

Results: The results of EM-based learning are shown in Fig 2(a) (averaged
over 50 runs). The parameters were learned in a “batch” mode where T was
increased from 0 to 5000 in steps of 200 and reward in the last 200 steps was
reported. Average reward received is shown in top right corner. Also shown
are the Error in parameters (mean absolute difference w.r.t. true parameters3),
the log-likelihood of the learned parameters and value function of start state
under the current estimate for observer policy Vπ̂o(S) w.r.t the true transition
parameters. The results show that the observer is able to learn the mentor policy
to a high degree of accuracy, though not perfectly. The uncertain dynamics of
the environment leads it to collect less rewards than the mentor as the optimal
policy is not learned everywhere. An important point to note is that the error in

3 The error between uniformly random parameters and true parameters is 1.5 for πm

and ≈1.75 for τ .
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Fig. 2. Imitation Learning Results for FlagWorld Domain. (a) (Clockwise)
Error in parameters (mean absolute difference w.r.t. true parameters), average re-
ward received, the log-likelihood of the learned parameters, and value function of start
state Vπ̂o(S) w.r.t the true transition parameters. (b) Comparison of learned policy
(ParamImit) with some popular exploration techniques (measured in terms of aver-
age discounted reward obtained per 200 steps). ParamImit outperforms all the pure
exploration-based methods.

parameters is still quite high even when observer policy is quite good, thereby
confirming the intuition that only a small (relevant) subset of parameters needs
to be learned well before the agent can start exploiting a learned policy.

Figure 2(b) compares the relative quality of the learned policy with a number
of pure exploration-based techniques used in [13]. The bars represent the average
discounted reward obtained per 200 steps in the 2nd stage, i.e., obtained in next
20,000 steps after an initial 1st stage of exploration consisting of 20,000 steps.
For ParamImit (our algorithm) the average is taken after only 4000 steps of
exploration. The rightmost bar is the Mentor value. As can be seen, ParamImit
outperforms all the exploration strategies with far less experience.

3.2 Factored Graphical Model

A major advantage of using a graphical models-based approach to imitation is
the ability to leverage domain knowledge to speed up learning. For example,
the number of true parameters in the FlagWorld is actually much less than the
number that was learned in the previous section since there are only 33 loca-
tions for which the transition parameters need to be learned: the dynamics are
the same irrespective of which flags have been picked up. To reflect this fact,
we can factor the mentor state Sm

t into location Lm
t and flag status variable

“Picked Flag” PFm
t as shown in Fig. 3(a) (and similarly for the observer). This

reduces the number of transition parameters significantly (from τsas′ to τlal′).



Imitation Learning Using Graphical Models 763

We can incorporate domain knowledge about the flags by defining the CPT
P (PFt+1|Lt+1, PFt) as the ,

P (PFt+1|Lt+1, PFt) = δ(PFt+1, pf(PFt, i)) if Lt+1 = Fi

= δ(PFt+1, PFt) otherwise

where pf(PFt, i) is the determinstic function4 which maps the old value of PFt

to one in which the ith flag is picked up.
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Fig. 3. Fast Learning using Factored Graphical Models. (a) Factored model for
FlagWorld (only the mentor model is shown). (b) Results using factored model. Note
the speed-up in learning w.r.t. the unfactored case (Fig. 2(a)).

The results of EM-based parameter learning for the factored graphical model
are shown in Fig. 3(b). As expected, the error in transition parameters goes
down much more rapidly than in the unfactored case (compare with Fig. 2(a)).

4 Conclusion

This paper introduces a new framework for learning by imitation based on mod-
eling the imitation process in terms of probabilistic graphical models. Imitative
policies are learned in a principled manner using the expectation-maximization
(EM) algorithm. The model achieves transfer of knowledge by tying the param-
eters for the mentor’s dynamics with those of the observer. Our results5 demon-
strate that the mentor’s policy can be estimated directly from observations of
4 This is a common trick used in GMs to encode deterministic domain knowledge.
5 Additional results are presented in the extended version of the paper available at
http://neural.cs.washington.edu/. In particular, we show how learning can be
further sped up by incorporating reward information collected on the way. Also, we
demonstrate the generality of parameter learning by extending the graphical model
to learn task-oriented policies.
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the mentor’s state sequences and that significant speed-up in learning can be
achieved by exploiting the graphical models framework to factor the state space
in accordance with domain knowledge. Our current work is focused on testing
the approach more exhaustively, especially in the context of robotic imitation.
Not only do Graphical Models provide a computationally efficient framework for
general imitation, they are also being used for modeling behavior [14]. An excit-
ing prospect of using graphical models for imitation is the ease of extension to
models with more abstraction, including partially observable, hierarchical, and
relational models.
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