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Programming a humanoid robot to perform an action that takes into account the
robot’s complex dynamics is a challenging problem. Traditional approaches typi-
cally require highly accurate prior knowledge of the robot’s dynamics and the en-
vironment in order to devise complex control algorithms for generating a stable
dynamic motion. Training using human motion capture (mocap) data is an intuitive
and flexible approach to programming a robot but direct usage of kinematic data
from mocap usually results in dynamically unstable motion. Furthermore, optimiza-
tion using mocap data in the high-dimensional full-body joint-space of a humanoid
is typically intractable. In this chapter, we purposes a new model-free approach to
tractable imitation-based learning in humanoids by using eigenposes.

The proposed framework is depicted in Fig. 1. A motion capture system trans-
forms the Cartesian positions of markers attached to the human body to joint angles
based on kinematic relationships between the human and robot bodies. Then, linear
PCA is used to create eigenpose data, which are representation of whole-body pos-
ture information in a compact low-dimensional subspace. Optimization of whole-
body robot dynamics to match human motion is performed in the low dimensional
subspace by using eigenposes. In particular, sensory feedback data are recorded
from the robot during motion and a causal relationship between eigenpose actions
and the expected sensory feedback is learned. This learned sensory-motor mapping
allows humanoid motion dynamics to be optimized. An inverse mapping that maps
optimized eigenpose data from the low-dimensional subspace back to the original
joint space is then used to generate motion on the robot. We present several results
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Fig. 1 A framework for learning human behavior by imitation through sensory-motor map-
ping in low dimensional subspaces.

demonstrating that the proposed approach allows a humanoid robot to learn to walk
based solely on human motion capture without the need for a detailed physics-based
model of the robot.

1 Related Work

Imitation is an important learning mechanism in many biological systems including
humans [16]. In humans, a wide range of behaviors, from styles of social interaction
to tool use, are passed from one generation to another through imitative learning.
Unlike trial-and-error-based learning methods such as reinforcement learning (RL)
[18], imitation-based learning is fast: given a demonstration of a desired behavior,
the learning agent only has to search for the optimal solution within a small search
space. The potential for rapid behavior acquisition through demonstration has made
imitation learning an increasingly attractive alternative to manually programming
robots. It is straightforward to recover kinematic information from human motion
using, for example, motion capture, but imitating the motion with stable robot dy-
namics is a much harder problem. Stable imitation requires deriving appropriate
action commands that matches the robot’s dynamics and the dynamic interaction
between the robot and its environment. Sensory feedback data must also be taken
into account for achieving stable imitation.

The idea of using imitation to train robots has been explored by a number of
researchers. Demiris and Hayes [5] demonstrated imitative learning using a wheeled
mobile robot that learned to solve a maze problem by imitating another homologous
robot. Billard [2] showed that imitation is a mechanism that allows the robot imitator
to share a similar set of proprio- and exteroceptions with teacher. Ijspeert et al. [8]
designed a nonlinear dynamical system to imitate trajectories of joints and end-
effectors of a human teacher; the robot learned and performed tennis swing motions
by imitation. The mimesis theory of [9, 4] is based on action acquisition and action
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symbol generation but does not address dynamics compensation for real-time biped
locomotion.

Traditional model-based approaches based on zero-moment point (ZMP) [20, 17]
or the inverted pendulum model [11, 10] require a highly accurate model of robot
dynamics and the environment in order to achieve a stable walking gait. Learning-
based approaches such as RL are more flexible and can adapt to environmental
change but such methods are typically not directly applicable to humanoid robots
due to the “curse of dimensionality” problem engendered by the high dimensionality
of the full-body joint space of the robot. Morimoto et al. [15] demonstrated that
stepping and walking policies could be improved by using RL and kernel dimension
reduction (KDR): stepping and walking controllers are provided, and the learning
system improves the performance of these controllers. The framework proposed
in this chapter does not assume a specific type of nonlinear dynamical system or
a specific gait as in [15] but is designed for learning general human motion from
demonstrations. It can be used for learning different gaits for different tasks without
redesign the algorithm.

Gaussian Process Dynamical Model (GPDM) [21] is a dimensionality reduction
method for modeling high-dimensional sequential data. A temporal sequence of
human walking data was modeled and reproduced without prior information. The
resulted walking gait was reproduced kinematically without involving interactions
with the environment. In contrast, the motion learning framework proposed in this
chapter learns a dynamic model of interaction between the robot and its environment
by learning a causal relationship between low-dimensional posture commands and
sensory feedback.

2 3-D Eigenposes

Nonlinear dimensionality reduction algorithms had previously been applied to rep-
resentation of human posture [3, 7]. Tatani and Nakamura [19] explored using a
low-dimensional subspace to kinematically reproduce human motion on a humanoid
robot via non-linear principal components analysis (NLPCA) [13]. However, these
methods have some parameters that have to be well-tuned. Properties of the result-
ing low-dimensional subspaces used in these algorithms have not been well studied.
Principal components analysis (PCA) is a linear dimensionality reduction technique
whose properties have been well studied. We utilize PCA for the motion learning
framework in this chapter.

2.1 Eigenposes as Low-Dimensional Representation of Postures

Particular classes of motion such as walking, sidestepping, or reaching for an ob-
ject are intrinsically low-dimensional. We apply linear PCA to parameterize the
low-dimensional motion subspace X. Vectors in the high-dimensional joint angle
space are mapped to the low-dimensional space by multiplication with the trans-
formation matrix C. The rows of C consist of the eigenvectors, computed via
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Fig. 2 Posture subspace and example poses from a hand coded walking gait. A three-
dimensional space produced by PCA represents the posture of the Fujitsu HOAP2 robot.
Blue points along a loop represent different robot postures during a single walk cycle. The
first two labeled postures are intermediate postures between an initial stable standing pose
and a point along the periodic gait loop represented by postures three through eight.

eigenvalue decomposition of the motion covariance matrix. Eigenvalue decomposi-
tion produces transformed vectors whose components are uncorrelated and ordered
according to the magnitude of their variance. These transformed vectors shall be
referred as eigenposes.

For example, let Θ be the 20× 1 vector of joint angles (the high-dimensional
space) and x be the 3×1 vector of eigenpose in a 3D subspace. We can calculate x
by first calculating p = CΘ , where p is a 20× 1 vector of all principal component
coefficients of Θ and C is the 20×20 PCA transformation matrix. We then pick the
first three elements of p (corresponding to the first three principal components) to
be x. The inverse mapping Θ̃ , which is an approximation to Θ , can be computed by
Θ̃ = CTp̃ when the first three components of a full-rank-vector p̃ are the elements
of x and the rest of the elements are zero.

Examples of the low dimensional representation of the joint angle space of a
HOAP-2 robot executing a walking gait (in the absence of gravity) are shown in
Fig. 2. The robot images in the figure were produced by inverse PCA mapping. The
figure demonstrates that the temporal sequence of motion data is still preserved in
the low-dimensional subspace representation of the motion.
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2.2 Action Subspace Embedding

PCA reduces the redundancy of posture data in high dimensional joint space. We
use the reduced dimensional subspace X for constraining the postures of a motion
pattern.
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Fig. 3 Embedded action subspace of a humanoid walking gait. Training data points in the
reduced posture space (shown in blue-dots) are converted to cylindrical coordinates relative
to the coordinate frame xθ ,yθ ,zθ . The points are then represented as a function of the phase
angle ϕ , which forms an embedded action subspace (shown as a red solid-line curve).

A periodic movement such as walking can be represented by a closed-curve pat-
tern X. As an example, the periodic part of the data in Fig. 2 was manually seg-
mented and is shown as the blue dots pattern in Fig. 3. In the general case, we
consider a non-linear manifold representing the action space A ⊆ X. Non-linear pa-
rameterization of the action space allows further reduction in dimensionality. In
particular, a one-dimensional representation of the original motion in the three-
dimensional subspace is obtained by converting each point to its representation in a
cylindrical coordinate frame. This is done by establishing a coordinate frame with
three basis directions xθ ,yθ ,zθ . The zero point of the coordinate frame is the empir-
ical mean of the data points in the reduced space. The data are re-centered around
this new zero point and the resulting data is labeled x̂i.

Then, the principal axis of rotation zθ is computed as:

zθ =
Σi(x̂i × x̂i+1)
‖Σi(x̂i × x̂i+1)‖ (1)

Next, xθ is chosen to align with the maximal variance of xi in a plane orthogonal to
zθ . Finally, yθ is specified as orthogonal to xθ and zθ . The final embedded training
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data is obtained by cylindrical conversion to (ϕ ,r,h) where r is the radial distance,
h is the height above the xθ − yθ , and ϕ is the angle in xθ − yθ plane measured
counter-clockwise from xθ .

Given the loop topology of the latent training points, one can parameterize r
and h as a function of ϕ . The embedded action space is represented by a learned
approximation of the function:

[r,h] = g(ϕ) (2)

where 0 ≤ ϕ ≤ 2π . This function is approximated using a radial basis function
(RBF) network. Note that the angle ϕ can be interpreted as the motion phase an-
gle because it indicates how far the current posture is from the beginning of the
motion cycle, which in our case is a walking gait. The first-order time derivative of
ϕ tells us the speed of movement.

2.3 Action Subspace Scaling

The high-dimensional joint angle data are normalized before PCA. The data for each
joint dimension are originally in different scales of values, but after normalization,
they are scaled to the same range. When the normalized data are multiplied by a
scalar value, the results are similar postures but with a different magnitude, allowing
posture scaling. Note that posture scaling yields reasonable results only when the
motion data set contains one specific type of motion.

Fig. 4 Motion scaling of a walking gait. The first row shows four different postures of a
walking gait. The second row shows coherent postures of the first row when a multiplying
factor f = 2.0 is applied to the low-dimensional representation of this walking gait.
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Scaling up and down motion patterns in the low-dimensional subspace produces
similar motion patterns but with differences in the magnitude of motion. This means
posture scaling ability is preserved after PCA is applied. If A represents a walking
gait, multiplying A by a factor f > 1 will result in a similar walking gait but with
larger steps. Multiplying A by a factor f < 1 results in a walking gait with a smaller
step size. Fig. 4 shows an example of posture scaling of a walking motion.

It should be noted that action subspace scaling only produces similarity in kine-
matic postures. The result of scaling may not be dynamically stable, especially when
the scaling factor f > 1. To achieve stable motion, the new motion has to be gradu-
ally learned as will be described in Section 5.1. We use action subspace scaling for
f < 1 to initialize the learning process.

3 Learning to Predict Sensory Consequences of Actions

A key component of the proposed framework is learning to predict future sensory
inputs based on current actions. This learned predictive model is used for optimal
action selection. The goal is to predict, at time step t, the future sensory state of
the robot, denoted by st+1. In general, the state space S = Θ ×P is the Cartesian
product of the high-dimensional joint space Θ and the space of other percepts P.
Other percepts include, for example, measurements from the torso accelerometer or
gyroscope, foot pressure sensors, and information from camera images. The goal is
to learn a function F : S×A �→ S that maps the current state and action to the next
state. In this framework, F is assumed to be deterministic.

Often the perceptual state st by itself is not sufficient for predicting future states.
In such cases, one may learn a higher order mapping based on a history of perceptual
states and actions, as given by an n-th order Markovian function:

st+1 = F(st ,st−1, ...,st−n−1,at ,at−1, ...,at−n−1) (3)

For this chapter, unless stated otherwise, we use a second-order (n = 2) time-delay
radial basis function (RBF) network for learning the predictive model. The state

Fig. 5 Sensory signals (e.g., gyroscope signals) at the next time step are predicted based on
the current posture command (eigenpose) as well as sensory signals and posture commands
from previous time steps. The predictor is learned by comparing the predicted sensory signals
to the actual sensor readings from the robot.
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vector is taken to be the three-dimensional gyroscope signal (st ≡ ωt). As discussed
in the previous section, an action is represented by a phase angle, radius, and height
in latent posture space (at ≡ χt ∈ X). A schematic diagram of the learning method
is shown in Fig. 5.

4 Predictive Model Motion Optimization

The algorithm presented in this section combines optimization and sensory predic-
tion (see previous section) to select an optimal action plan for a humanoid robot.
Fig. 6 illustrates this optimization process.

One may express the desired sensory states that the robot should attain during a
particular class of actions using an objective function Γ (s). The algorithm then se-
lects actions a∗t , . . . ,a∗T such that the predicted future states st , . . . ,sT will be optimal
with respect to Γ (s):

a∗t = argmin
at

Γ (F(st , . . . ,st−n−1,at , . . . ,at−n−1)). (4)

In our work, the objective function Γ measures torso stability as defined by the
following function of gyroscope signals:

Γ (ω) = λxω2
x + λyω2

y + λzω2
z , (5)

where ωx,ωy,ωz refer to gyroscope signals in the x,y,z axes respectively. The con-
stants λx,λy,λz allow one to weight rotation in each axis differently. Assuming that

Fig. 6 Model predictive motion generator for optimizing motion stability. At time t, the op-
timization algorithm generates tentative actions or posture commands (at ≡ χ ∈ X). The
predictive model predicts values of subsequent gyroscope signals ωp. The optimization al-
gorithm then selects the optimal posture command χ∗ based on ωp. The optimal posture
command χ∗ is executed by a robot/simulator. The resulting gyroscope signals are recorded
for retraining the predictive model.
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the starting posture is statically stable, one may simply minimize overall rotation of
the robot body during motion in order to maintain balance by minimizing the sum of
squares of the gyroscope signals. The objective function (5) thus provides a measure
of stability of the posture during motion.

For the second-order predictive function F , the optimization problem becomes
one of searching for the optimal stable action at time t given by:

χ∗
t = argmin

χt∈S
Γ (F(ωt ,ωt−1,χt ,χt−1)) (6)

S =
{[

ϕs rs hs
]T |ϕ ,r,h defined in Section 2.2

}
(7)

For efficient optimization, the search space is restricted to a local region in the action
subspace:

ϕt−1 < ϕs ≤ ϕt−1 + εϕ (8)

ra − εr ≤ rs ≤ ra + εr (9)

ha − εh ≤ hs ≤ ha + εh (10)

0 < εϕ < 2π (11)

[ra,ha] = g(ϕs) (12)

In the above, the phase-motion-command search-range ϕs begins after the position
of the phase motion command ϕt−1 at the previous time step, the range for the radius
search rs begins from a point in the action subspace embedding A defined by (12) in
both positive and negative directions from ra along r for the distance εr ≥ 0, and the
search range for hs is defined in the same manner as rs according to ha and εh. In the
experiments, the parameters εϕ ,εr ,and εh were chosen to ensure efficiency while at
the same time allowing a reasonable range for searching for stable postures.

Note that the search process exploits the availability of a human demonstrator by
using the demonstrated action, as captured by (12), to constrain the search for sta-
ble robot actions. This imitation-based approach contrasts with more traditional ap-
proaches based on trial-and-error reinforcement learning or complex physics-based
models.

Additionally, since selected actions will only truly be optimal if the sensory pre-
dictor is accurate, the prediction model is periodically re-trained based on the pos-
ture commands generated by the optimization algorithm and the sensory feedback
obtained from executing these commands.

The entire motion optimization and action selection process can be summarized
as follows:

1. Use PCA to obtain eigenpose data from the human-demonstrated joint angle data.
2. Apply action subspace embedding for parameterization of the periodic motion

pattern.
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3. Start the learning process by inverse mapping the eigenpose actions back to the
original joint space and executing the corresponding sequence of servo motor
commands in a simulator or a real robot.

4. Use the sensory measurements and motor commands from the previous step to
update the sensory-motor predictor as described in Section 3. In the present work,
the state vector comprised of three channels of the gyroscope signal and the ac-
tion variables were ϕ , r, and h in the low-dimensional subspace.

5. Use the learned model to estimate a sequence of actions according to the model
predictive controller scheme described above (Fig.6).

6. Execute the computed actions and record sensory (gyroscope) feedback.
7. Repeat steps 4 through 6 until satisfactory motion is obtained.

4.1 One-Dimensional Motion Optimization

Our first experiment involved simulation in the Webots dynamic environment [14].
The goal was to increase the stability of a hand-coded walking gait (shown in Fig. 2)
by using the motion optimization technique. The experiment also demonstrates the
utility of action subspace embedding and the physical meaning of the parameter ϕ .
Since this experiment involves one-dimensional optimization along ϕ , the parame-
ters εr and εh in (9) and (10) are set to zero. Thus, (6) becomes:

ϕ∗
t = argmin

ϕt
Γ (F(ωt ,ωt−1,ϕt ,ϕt−1)). (13)

We refer to this process as motion-phase optimization because only the parame-
ter ϕ is optimized – the values of r and h are implicitly optimized through (2).
The three channels of the gyroscope signal are regarded as state and the motion
phase ϕ is regarded as the action. This state-action data is used for training the
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Fig. 7 Motion-phase optimization.
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Fig. 8 Comparison of initial and optimized walking gait. The composite image at the top
depicts the robot performing the initial walking gait for 2 seconds. Motion-phase optimization
results in a faster walking gait as shown in the bottom image.

time-delay RBF network (depicted in Fig.5) to predict the gyroscope signals at the
next time step. The optimization algorithm uses the learned predictor to obtain a
new optimized action plan, which is then executed in the simulator.

The optimization result after three iterations of learning is shown in Fig.7. As
seen in the figure, motion-phase optimization is essentially a line-search and the
result of the optimization remains on the constraint pattern. Thus, no new posture
is derived from this optimization. However, the phase of the motion is altered in
such a way that the selected actions minimize gyroscope signal oscillation. Fig. 8
shows that the optimized walking gait is significantly faster than the original gait.
The walking speed of the optimized walking gait could be increased to three times
the original gait in further optimization. Thus, we conclude that ϕ is controlling the
timing of motion.

4.2 Three-Dimensional Motion Optimization

The second experiment focused on three-dimensional optimization of an initial
walking gait based on equations (6)-(12). Since the optimization process is per-
formed in the three-dimensional space of φ , r and h in cylindrical coordinates, novel
postures resulting from optimized actions that do not lie on the constraint pattern can
be expected.

The optimized walking gait in the low dimensional subspace shown in Fig. 9 was
obtained after three iterations of sensory-motor prediction learning. An improved
dynamically balanced walking gait was achieved. The new trajectory has a shape
similar to the initial one but has a larger magnitude and is shifted. After remapping
this trajectory back to the high dimensional space, the optimized motion pattern was
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Fig. 9 Three-dimensional optimization results for a walking motion pattern based on an ac-
tion subspace embedding in a low-dimensional subspace.

Fig. 10 Walking gait on a Fujitsu HOAP2 robot after three-dimensional optimization.

tested with the simulator and the real robot. The gyroscope readings from the new
walking pattern are shown in Fig.11. The RMS values for the optimized walking
gait along the x, y and z axes are 0.0521, 0.0501 and 0.0533 respectively, while
the values for the original walking gait were 0.3236, 04509 and 0.3795. The RMS
values for the optimized gait are thus significantly less than the original walking gait,
indicating significant improvement in the dynamic stability of the robot. The robot
walks with a larger step size but slower walking speed than the original walking
gait.

The original and optimized gaits are shown in Fig. 10. The optimized walking
gait has a different balance strategy compared to the original walking gait. In the
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Fig. 11 Comparison of gyroscope signals before and after optimization. The plots from top
to bottom show the gyroscope signals for the axes x, y and z recorded during the original and
optimized walking motion. Notice that the root mean squared (RMS) values are significantly
reduced for the optimized motion.

original gait, the robot quickly swings the whole body on the side of the support
leg while it moves the other leg forward. For the optimized gait, the robot leans on
the side of the support leg, bends the torso back in the opposite direction while it
moves the other leg forward slowly. With the optimized gait, the robot also keeps its
torso vertically straight throughout the motion. Fig.11 confirms that the algorithm
was able to optimize the motion in such a way that the gyroscopic signals for the
optimized motion are almost flat.

5 Learning Human Motion through Imitation

To be able to imitate a human motion, one must first solve the correspondence prob-
lem, which in our case is the problem of kinematic mapping of whole-body postures
between a human demonstrator and a humanoid robot (we use a Fujitsu HOAP-2
robot). The human subject and the robot share similar humanoid appearances, but
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their kinematic structure (skeletons) are dissimilar. The correspondence problem is
solved by searching for a set of joint angles for the robot that generates the best
matching pose with respect to the human demonstration. A Vicon optical system
running at 120Hz and a set of 41 reflective markers was used for recording human
motion. Initially, the markers are attached to the human subject and the 3-D posi-
tions of the markers are recorded for each pose during motion. The recorded marker
positions provide a set of Cartesian points in the 3D capture volume for each pose.
To obtain the robot’s poses, the marker positions are used as positional constraints
on the robot’s skeleton and a set of joint angles is obtained using the standard nu-
merical inverse kinematics (IK) solver in the Vicon motion capture system.

As depicted in Fig. 12, in order to generate robot joint angles, the human subject’s
skeleton is simply replaced by a robot skeleton of the same dimension. For exam-
ple, the shoulders were replaced with three distinct 1-dimensional rotating joints
rather than a single 3-dimensional human ball joint. The IK routine then directly
generates the desired joint angles on the robot skeleton for each pose. One limi-
tation of this technique is that there may be particular kinds of motion for which
the robot’s joints cannot approximate the human pose. This implies that the human
demonstrator should try to avoid certain types of motion that the robot cannot imi-
tate. For example, using toes in a walking gait should be avoided. In the case of arm
movement, since the learner robot is a HOAP-2 robot having only four degrees of
freedom (DoFs) in each arm, demonstration of actions that require six DoFs should
be avoided. For the present work, since we only considered human motion that the
robot has the potential to achieve, the above method proved to be a very efficient
way of generating large sets of human motion data for robotic imitation.

Fig. 12 Human skeleton (left) and robot skeleton (right) for kinematic mapping.
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Fig. 13 Posture subspace and example poses obtained from human motion capture. Linear
PCA was applied to joint angle data from a human kinematic configuration obtained via mo-
tion capture as described in Section 5. Blue diamonds represent different human postures
during a single walking cycle. Red circles mark various example poses as shown in the num-
bered images.

5.1 Optimization of Motion Capture Data

Our first experiment with human motion capture data focused on making robot learn
how to walk from a human demonstration of walking. An example of the low-
dimensional representation of joint angle data from human walking are shown in
Fig. 13. Note that the data pattern from human mocap data in Fig. 13 is more irregu-
lar than the data from the hand-coded walking gait in Fig. 2. Optimization based on
human mocap data is difficult because the initial gait is unstable. We therefore used
a motion scaling strategy in a low-dimensional subspace as described in Section 2.3.
When the initial walking pattern in the low-dimensional subspace is scaled down, it
produces smaller movements of the humanoid robot, resulting in smaller changes in
dynamics during motion. The initial walking pattern is scaled down until a dynami-
cally stable motion is found, after which the learning process is started. The motion
optimization method in Section 4 is applied to the scaled-down pattern until its dy-
namic performance reaches an optimal level. The trajectory of the optimized result
is gradually scaled up toward the target motion pattern. In this experiment, a scaling
factor of 0.3 applied to the original motion pattern was found to be stable enough
to start the learning process. The final optimization result is shown as a trajectory
of red circles in Fig. 14. It corresponds to about 80% of the full scale motion from
mocap data.
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Fig. 14 Motion pattern scaling and optimization of human motion capture data. The target
motion pattern is scaled down until it can produce a stable motion which is used to start the
motion optimization process.

For the results in Fig. 14, five learning iterations with scale values 0.3, 0.5 and
0.7 were performed, and for the final result, ten iterations were performed for the
scale 0.8. Note that the optimization time depends on the parameters εϕ ,εr and εh.
The parameter εϕ must be defined such that value of ϕs is greater than the maximum
difference in motion-phase-angle in the original mocap data. This will ensure that
the optimization algorithm can search for a pose in a range that the original move-
ment achieved. The longer the range of ϕs, the better the exploration but greater the
optimization time. For r and h, the same parameter setup as ϕ can be applied. The
value of εr and εh were set to 0.5 for all of the optimizations. The objective function
in (5) has three tuning parameters, which are λx,λy and λz. At the beginning, we set
the values of these parameters to 1. From observation of the first learning iteration,
the parameters may be tuned, after which the values are maintained for the rest of
learning iterations. In this chapter, λx and λz were set to 1.0. λy, which corresponds
to the vertical direction, was set to 2.0 to allow the algorithm to compensate for the
unexpected turns seen during the first learning iteration.

The simulation and experimental results are shown in Fig. 15. The learning pro-
cess is performed in the simulator [14] and the resulting motion is tested on the real
robot to minimize damage to the robot during the learning process. We observed
that as expected, the walking gait on the real robot is not as stable as the results in
the simulator because of differences in the frictional forces modeled in the simulator
and the actual forces on the floor. We believe that performing further learning di-
rectly on the real robot (where permissible) could rectify this problem and improve
performance.
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Fig. 15 Learning to walk through imitation. The first row shows a human subject demonstrat-
ing a walking gait in a motion capture system. The second row shows simulation results for
this motion before optimization. The third row shows simulation results after optimization.
The last row shows results obtained on the real robot.

Note that the learned motion is indeed dynamic and not quasi-static motion be-
cause there are only two postures in the walking gait that can be considered statically
stable, namely, the two postures in the walking cycle where the two feet of the robot
contact the ground. The rest of the postures in the walking gait do not need to be
statically stable to maintain balance.

6 Lossless Motion Optimization

In the previous sections, the eigenposes that have been used for motion learn-
ing were three-dimensional. 3-D data are convenient for visualization and for



374 R. Chalodhorn and R.P.N. Rao

developing motion optimization algorithms based on analytical geometry. Periodic
motion patterns such as hand coded walking and human mocap walking can be suc-
cessfully learned using 3-D eigenposes but for some motion patterns, using only
three dimensions cannot preserve the significant characteristics of the original mo-
tion. In this section, we extend our technique to larger-dimensional eigenposes.
In particular, we show how the phase-motion optimization concept in Section 4.1
can be implemented with a new cylindrical coordinate transformation technique for
large dimensional subspaces. We demonstrate how the algorithm can be used in a
HOAP-2 humanoid robot to learn a sidestepping motion from a human demonstrator
using a motion capture system.

6.1 Human Motion Capture of Sidestepping Motion

A motion capture session of a human demonstrator performing a sidestepping mo-
tion (to the right) as shown in Fig.16 was used as the target motion to be imitated.
The motion sequence can be divided into four major steps starting from a standing
posture. First, the right leg is lifted off the ground. Second, the right leg lands on
the ground. Third, the left leg lifts off the ground. Fourth, the left leg swings in to-
ward the right leg. For purposes of later discussion, we define the sidestep motion as
being comprised of four phases: right-lift, right-landing, left-lift, and left-landing.

The kinematic mapping process described in Section 5 resulted in 20 dimensions
of joint angle data, which were transformed into orthogonal principal axes using
PCA as described in Section 2.1.

Fig.17 plots the accuracy of data reconstruction as a function of the number of
principal components of the mocap data. When only the first three principal com-
ponents are used, less than 80% of accuracy is achieved in reconstructing the origi-
nal joint angle data. Accuracy increases gradually until 100% accuracy is obtained

a) b) c)

d) e) f)

Fig. 16 Motion capture of sidestepping motion. Six samples of a rightward sidestepping
motion sequence are shown in a) through f). Note that f) is a standing posture after one cycle
of sidestepping. Each sidestepping cycle takes about 1 second.



Learning to Imitate Human Actions through Eigenposes 375

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

90

100

A
cc

u
ra

cy
 %

Principal components

Fig. 17 Reconstruction accuracy as a function of the number of principal components of the
sidestepping motion data from Figure 16.

when all 20 dimensions of eigenpose data are used. In this section, we illustrate our
technique using 20-dimensional eigenposes for learning.

6.2 Large-Dimensional Cylindrical Coordinate System
Transformation

The motion-phase optimization described above was performed in a cylindrical co-
ordinate system. Transformation of data from a 3-D Cartesian coordinate system to a
3-D cylindrical coordinate is straightforward. However, that is not the case for trans-
formation of data that have more than three dimensions. In this section, we suggest
an extension of the cylindrical coordinate transformation idea to higher dimensions.

When n = 3, transformation from a Cartesian space X to a cylindrical coordinate
system Φ is given by the mapping:

f (x,y,z) → f (ϕ ,r,h) (14)

where
ϕ = arctan(

y
x
), (15)

r =
√

x2 + y2, (16)

and
h = z. (17)

When n > 3, an n-dimensional function may be written as:

f (d1,d2,d3, . . . ,dn) (18)

where the di, i = 1, . . . ,n (n > 3), represent variables along orthogonal axes in R
n.
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We can express the function in (18) as:

f (x,y,z1, . . . ,zn−2) (19)

The key idea is to represent the function f using a set of multiple cylindrical coordi-
nate frames. Suppose, for example, that f is a 5-dimensional function. Then, f can
be expressed in the form of (19) as:

f (x,y,z1,z2,z3). (20)

We use a piecewise mapping of f to cylindrical coordinates as follows:

f (x,y,z1)
f (x,y,z2)
f (x,y,z3)

⇒
f (ϕ ,r,h1)
f (ϕ ,r,h2)
f (ϕ ,r,h3)

(21)

where ϕ and r are defined by Equations (15) and (16). Similarly, h1,h2 and h3 are
defined as in Equation (17).

Thus, the n-orthogonal dimensions of f are mapped to multiple cylindrical coor-
dinate systems as:

f (x,y,z1, . . . ,zn−2) → f (ϕ ,r,h1, . . . ,hn−2). (22)

For the 20-dimensional eigenpose data for sidestepping, 18 cylindrical coordinate
frames are used by the above method.

6.3 Motion-Phase Optimization of Hyperdimensional Eigenposes

Trying to perform optimization on all of the orthogonal components of high-
dimensional eigenposes may be intractactable, due to the curse of dimensionality
problem. We therefore extend the one-dimemsional motion optimization idea from
Section 4.1 to the higher dimensional case. For 3-D data, the action subspace em-
bedding (described in section 2.2) is a single parameter function of motion-phase
angle ϕ that produces values for the radius r and the height h of a periodic motion
pattern in a cylindrical coordinate system. For n-dimensional eigenpose data, the
action subspace embedding is a single parameter function of motion-phase angle ϕ
that produces values for r,h1,h2, . . . ,hn−2 of a periodic motion pattern. In particular,
for the sidestepping motion pattern, the action subspace embedding is given by:

[r,h1,h2, . . . ,h18] = g(ϕ). (23)

The motion-phase optimization procedure in (13) can be directly applied to (23).
Fig. 18 shows the result of optimization (after five learning episodes) in the 3-D

coordinate frame defined by the first three principal axes. From the figure, it can
be seen that the optimized eigenposes are points on the original motion pattern, but
distributed differently from the original pattern. This is because the motion-phase
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Fig. 18 Result of motion-phase angle optimization for sidestepping eigenpose data.

optimization is a one-dimensional optimization of the parameter ϕ in (23). The op-
timized eigenposes are thus strictly constrained to be within the original set of pos-
tures. The differences in distribution between the original pattern and the optimized
pattern means that timing of postures during the motion have been altered. Notice in
the figure that some gaps in the original pattern have been closed by the optimized
postures. There are two reasons for this phenomena. First, the action subspace em-
bedding is modeled as a closed-curve. Second, based on sensory feedback during
learning episodes, the optimization algorithm found that it can achieve lower gyro-
scopic signal oscillation by choosing postures in the gap in the motion trajectory.
As a result, the movement is smoother. Another attempt by the algorithm to obtain
smoother movement can be noticed in the lower-left corner of the trajectory: the
algorithm decided to plan the trajectory across the irregular corner of the original
trajectory.

Fig. 19 show the simulation results for sidestepping motion. Column a) shows the
original sidestepping motion of a human demonstrator. Column b) shows HOAP-2
robot performing the sidestep motion sequence at motion scale 0.5 without opti-
mization in a dynamics simulator. Column c) shows the sidestep motion after five
learning episodes at motion scale 0.5. The first and the last rows are the standing
postures at the beginning and end of the motion sequence, respectively. The second
row is the right-lift phase. The third row is the right-landing phase. The fourth row
is the left-lift phase, and the fifth row is the left-landing phase. In column b), the
right foot of the robot was bouncing at the right-landing phase, causing the robot to
be unable to lift its left foot up in the subsequent lift phase. As a result, the robot
dragged its left foot along the ground during the left-landing period. This made the
whole body of the robot turn, as can be observed in the last two rows of column b).
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a) b) c)

Fig. 19 Simulation results for sidestepping. Column a) shows original sidestepping motion
sequence by the human demonstrator. Column b) shows the sidestep motion sequence on a
HOAP-2 robot in a dynamics simulator without optimization at the motion scale 0.5. Column
c) shows the sidestep motion after five learning episodes at motion scale 0.5.

In column c), the robot could perform the sidestep motion without the undesirable
turn of the body.

While all of the key postures in column c) look very similar to the human postures
in column a), timing of the movements are significantly different. The right-landing
and left-landing phases of the optimized motion in column c) are relatively slower
than the original human motion. These can also be observed in Fig. 18: there are
two regions of the motion pattern with high density of optimized postures. These
corespond to the slow landing phases. The slow landing phases also prevented the
robot from dragging its left foot on the ground. As a result, the undesirable turn of
the body was avoided and the sidestep motion was successfully learned.
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7 Conclusion

This chapter proposed a framework that allows a humanoid robot to learn bipedal
locomotion by imitation of human motion. Whole-body postures are represented
using eigenposes computed from PCA. These eigenposes are used for learning a
predictive sensory-motor model that allows a humanoid robot learn to walk by im-
itation of a human gait. Taken together, our results demonstrate that the physics of
a complex dynamical system can be learned and manipulated in a low-dimensional
subspace. Using a low-dimensional subspace greatly reduces computational com-
plexity and facilitates the learning process. Since all of the joints are always con-
strained to encode postures near the ones to be imitated, the low-dimensional sub-
space reduces the occurrence of unmeaningful or potentially harmful actions (such
as self-intersection) in the learning process.

The action subspace embedding in cylindrical coordinates not only further re-
duces dimensionality and complexity, but also provides meaningful variables in the
low-dimensional subspace such as the motion-phase-angle ϕ and radius r. Opti-
mization of the motion-phase-angle was shown to be equivalent to optimizing pos-
ture timing during the motion, while the radius r reflects magnitude of the motion, as
determined by the first two principal components of the motion pattern. The physi-
cal meaning of the parameter h is yet to be clearly interpreted.

The human imitation-based learning framework described in this chapter demon-
strates how a humanoid robot can learn basic human actions such as walking. These
basic actions could be used a building blocks for learning more complex behav-
iors using approaches such as reinforcement learning. To learn actions other than
walking and sidestepping, the objective function in (5) could be modified to accom-
modate different sensory variables. The robustness of the learned models to noise
could be improved using a probabilistic approach as described in [6].

The proposed framework functions as an off-line motion planner rather than an
on-line feedback controller. Thus, it cannot be applied directly to the problem of
navigation on uneven terrain. One way of adding robustness to an off-line mo-
tion planner is to use a motion stabilizer [12], which is a combination of simple
force/torque and gyroscope-based feedback controllers. We also investigating the
possibility of a real-time feedback controller based on learning an inverse model
of the predictor (3). Also under investigation are methods for learning non-periodic
human motion as well as motion parameterization using eigenposes.

Acknowledgements. This work was supported by National Science Foundation (NSF) grant
0622252, the Office of Naval Research (ONR) Cognitive Science program, and a Packard
Fellowship to RPNR.
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