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Online Electromyographic Control
of a Robotic Prosthesis

Pradeep Shenoy�, Kai J. Miller, Beau Crawford, and Rajesh P. N. Rao

Abstract—This paper presents a two-part study investigating the
use of forearm surface electromyographic (EMG) signals for real-
time control of a robotic arm. In the first part of the study, we ex-
plore and extend current classification-based paradigms for my-
oelectric control to obtain high accuracy (92–98%) on an eight-
class offline classification problem, with up to 16 classifications/s.
This offline study suggested that a high degree of control could be
achieved with very little training time (under 10 min). The second
part of this paper describes the design of an online control system
for a robotic arm with 4 degrees of freedom. We evaluated the
performance of the EMG-based real-time control system by com-
paring it with a keyboard-control baseline in a three-subject study
for a variety of complex tasks.

Index Terms—Classification, electromyography, online, pros-
thetics, support vector machines.

I. INTRODUCTION

THE surface electromyogram (EMG) provides a noninva-
sive method of measuring muscle activity, and has been

extensively investigated as a means of controlling prosthetic de-
vices. Amputees and partially paralyzed individuals typically
have intact muscles that they can exercise varying degrees of
control over. Further, there is evidence [2] that amputees who
have lost their hand are able to generate signals in the forearm
muscles that are very similar to those generated by healthy sub-
jects. Thus, the ability to decode EMG signals can prove ex-
tremely useful in restoring some or all of the lost motor func-
tionality in these individuals.

While the research community has focused on the use of so-
phisticated signal-processing techniques to achieve accurate de-
coding, clinical studies observe that widespread acceptance of
prosthetic devices is difficult to achieve, and that such a pros-
thetic needs to be both highly accurate and intuitive to control.
Thus, although offline studies [3], [4] have shown that up to six
classes of gestures can be decoded from forearm electrodes with
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very high accuracy, the questions of online control and its ex-
pressivity and ease of use have been left open.

In this paper, we present results from a two-stage pilot study
that addresses many of the issues involved in EMG control of
prosthetic devices. In the first part, we extend the results ob-
tained by other offline studies and show a classification accu-
racy of 92–98% on an eight-class classification problem, with
a classification rate of 16 outputs/s. Our results rely on careful
selection of physiologically relevant sites for recording EMG
signals, and on the use of simple but powerful classification
methods. These offline results provide the basis for the devel-
opment of an expressive and accurate interface for online con-
trol. In the second part, we design and evaluate an online 4DOF
control system for a robotic arm. Here, we address the issues
of ease of use and quality of control, by choosing an intuitive
gesture-to-control mapping, and by comparing control perfor-
mance against a baseline obtained via keyboard-based control.
We demonstrate the robustness of our method in a variety of
reasonably complex online robotic control tasks involving 3-D
goal-directed movements, obstacle avoidance, and pickup and
accurate placement of objects.

Our results show that healthy subjects can gain significantly
expressive EMG-based control of a prosthetic device, and pave
the way for the design of powerful prosthetics with multiple
degree-of-freedom control. We believe that our techniques can
also be applied to the design of novel user interfaces based
on EMG signals for human–computer interaction and activity
recognition.

II. BACKGROUND AND RELATED WORK

Muscle contraction is the result of the activation of a number
of muscle fibers. This process of activation is mediated by the
firing of neurons that recruit muscle fibers. In order to gen-
erate more force, a larger number of muscle fibers must be re-
cruited through neuronal activity. The associated electrical ac-
tivity can be measured in sum at the surface of the skin as an
EMG signal. The EMG signal is thus a measure of muscle ac-
tivity. Its properties have been studied extensively [5]. The am-
plitude of the EMG signal is correlated with the force generated
by the muscle; in particular, isometric steady-state contraction
of an individual muscle is proportional to the force produced
by the muscle. However, this relationship is noisy, and changes
significantly with the change in the shape of the muscle, fatigue
in a muscle, etc. It is also very difficult to isolate activity from a
single muscle using noninvasive surface measurements. In addi-
tion, the same gesture can be generated using different combina-
tions of forces in groups of coordinated muscles. Thus, decoding
the pose of the forearm or hand using EMG signals and muscle
models for the individual muscles involved is a challenging task.

0018-9294/$25.00 © 2008 IEEE
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TABLE I
ELECTRODE LOCATIONS CHOSEN ON THE FOREARM (SEE FIG. 2)

Fig. 1. Static hand gestures chosen for classification. The goal is to use gross
gestures at the wrist, and decode the gesture from windows of data recorded
while the gesture is maintained (the gestures in the second column show a top-
down perspective). These gestures intuitively correspond to pairs of actions:
grasp–release, left–right, up–down, and rotate.

For obtaining control over a prosthetic device, we need to
solve a simpler problem–we only need to identify the signals
produced by a small number of gestures. This means that we
only need enough information from the EMG signals to distin-
guish between the given gestures, without explicitly identifying
the source of the EMG signals, or modelling the muscles and
forces involved. Several researchers have attempted to distin-
guish a variety of gestures using transient signals recorded at
the onset of the gesture. For example, Englehart et al. [6] clas-
sify four discrete elbow and forearm movements and capture
the transient structure in the EMG using various time–frequency
representations such as wavelets. They achieve accuracy up to
93.7% with four channels of EMG data from the biceps and tri-
ceps. Reischl et al. [7] present multiclass classification methods
for distinguishing between 5–8 classes of movement onset in
amputees using two upper-arm electrodes, with errors of 4–9%.
Nishikawa et al. [8] classified ten discrete movements of the
wrist and fingers using four electrodes placed on the forearm.
They propose an online learning scheme, and obtain an average
accuracy of 91.5%. Sebelius et al. [9] also classify ten sim-
ilar gestures of wrist/fingers based on EMG onset recorded at
eight bipolar electrodes on the forearm. They use a virtual hand
for feedback, and a data glove for monitoring movement and
training their classifier. Boostani and Moradi [10] present exten-
sive offline analysis comparing the quality of various features
extracted from the EMG signal in distinguishing between the
onset of a number of different movements in disabled subjects.
Ju et al. [11] address applications in user interfaces and con-
sumer electronics. They achieve 85% accuracy in classifying
four finger movements with the aid of two electrodes placed
close to the wrist. The electrode locations are suboptimal but
chosen for appropriateness in the chosen applications. Carrozza
et al. [12] compare foot action versus EMG signals for control-
ling grasping functions on a hand prosthesis, and find that foot

movements were more effective and more easily learned than
their EMG-based control scheme.

As remarked by Englehart and Hudgins [13], using transient
EMG signals for control is a suboptimal choice for a variety of
reasons. For example, this scheme requires initiating a gesture
from a state of rest in order to produce a single command. This
makes continuous control of devices cumbersome and slow. In
addition, the decoding problem for transient signals is signifi-
cantly harder than that of decoding steady-state signals from a
statically heldhand gesture.

Thus, many recent papers [3], [4], [14] have explored con-
tinuous control, where a variety of sophisticated algorithms,
such as multilayer perceptrons, hidden Markov models, and
Gaussian mixtures have successfully decoded six different
gestures from continuous data with an accuracy of more than
90%. As an example, Chan and Englehart [3] propose the use
of hidden Markov models along with rms and autoregressive
features to decode six wrist gestures using four electrodes
placed around the forearm. They achieve an accuracy of 94.6%
across 12 subjects.

We build on this work and extend it in several interesting di-
rections. Similar to the successful prior work, we use simple fea-
tures (rms values over windows) and continuously classify win-
dows of data collected while the subject maintains a static hand
gesture. In addition, we use knowledge of the physiology of the
forearm to carefully choose electrode locations likely to have
interesting information about the gestures. This fact, in combi-
nation with powerful classification techniques (support vector
machines), allow us to classify eight gestures with an accuracy
of 92–98% in our pilot study. Finally, we address several in-
teresting and important issues in the design and evaluation of
online controllers that have been left open by previous studies.

III. OFFLINE STUDY METHODS

A. Gestures for Robot Arm Control

Fig. 1 shows a list of the actions we chose in our study. These
gestures are gross movements at the wrist and involve a number
of forearm muscles. Further, they lend themselves easily to in-
terpretation and could serve as a basis for control of a prosthesis.

B. Electrode Placement

The muscles we chose and their relevant functions are listed
in Table I. Fig. 2 shows the location of the electrodes on the
forearm. In contrast to the differential pair at each recording site
traditionally used in the literature [5], we use an eighth electrode
on the upper arm as a reference for all other electrodes, and a
single electrode at each site of interest. This reference is mainly
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Fig. 2. Electrode positions on the forearm chosen for our study. See also
Table I.

Fig. 3. Samples of EMG signals. The top left and right figure show the differ-
ence between unreferenced signals (heavily contaminated with line noise) and
signals referenced from an additional electrode on the left forearm, removing
the line noise. The computed features (see Section III-D) shown in the bottom
frame span a rest period and onset of a gesture, and demonstrate that features
during the onset of movement are substantially different from steady-state fea-
tures while maintaining a gesture.

used to remove 60-Hz contamination due to line noise. Fig. 3
shows how the individual channels have line noise, but the ref-
erencing removes this noise.

The particular muscles chosen in our study are implicated
in wrist-centered movements and gestures, as shown in the
table. The coordinated action of these muscles spans the dif-
ferent movement types which we classify. Although there is
redundancy amongst the actions of these muscles as well as
redundancy amongst deeper muscles that contribute to the
signal, we expect this to lead to robust interpretation across
subjects and sessions.

The recording sites corresponding to these muscles were
chosen to make the interpretation of the signal as intuitive as
possible and as reproducible from subject to subject as pos-
sible. While no electrode position will isolate a single muscle,
placing a given electrode on the skin directly above a given
superficial muscle should ensure that the largest contribution to
the signal at that electrode location is from the desired muscle.
This comes with the known caveat that the muscles of deeper
layers will contribute to the signal, as will adjacent superficial
muscles. Since our goal is classification of discrete gestures
into a discrete set of actions, and not the study of individual
muscles, we rely on the classifier to extract the important
features for each class from this mixture of information from
each electrode.

C. Data Collection

We collected data from 3 subjects over 5 sessions each. A
session consisted of the subject maintaining the 8 chosen ac-
tion states shown in Fig. 1 for 10 s each. The gestures were
chosen to intuitively correspond to pairs of actions: grasp-re-
lease, left-right, up-down, and rotate (see Fig. 1). The subjects
cycled through the actions in order, separated by 5-s rest pe-
riods. The sessions were separated by a 20-s rest period. The
subjects were instructed to relax the forearm/hand and main-
tain each gesture comfortably without exerting excessive force.
We did not measure or restrict the force exerted by the subjects
while maintaining a given hand pose.

We use five sessions in order to prevent overfitting, as a given
action may be slightly different each time it is performed. Thus,
in our evaluations, we use each the entire session as testing data,
and average the classification results across all five splits.

D. Feature Extraction

We sample the EMG signal at 2048 Hz. Our feature extraction
from this is simple: we calculate the rms of windowed steady-
state EMG signals from each channel. One-hundred twenty-
eight-sample windows are used, and the rms amplitude in this
window is computed for each of the seven electrodes. This fea-
ture vector serves as the input to our classifier. The choice of a
128-sample window length is empirical, and results in 16 com-
mands/s. This update rate is sufficient for developing a respon-
sive EMG-based controller.

Other work [10] has evaluated the performance of a large
number of features for distinguishing between onsets of various
kinds of movements. Our scenario involved steady-state EMG
signals. However, it is possible that these features may further
improve our classification results. We will explore these feature
sets as part of future work.

E. Classification With Linear Support Vector Machines

We use linear support vector machines (SVMs) [15] for clas-
sifying the feature vectors generated from the EMG data into
the respective classes for the gestures. SVMs have proved to be
a remarkably robust classification method across a wide variety
of applications.

1) Binary Classification: We first consider a two-class clas-
sification problem. Essentially, the SVM attempts to find a hy-
perplane of maximum “thickness” or margin that separates the
data points of the two classes. This hyperplane then forms the
decision boundary for classifying new data points. Let be the
normal to the chosen hyperplane. Then, the classifier will label
a data point as or , based on whether is greater
than 1, or less than . Here, are chosen to maximize the
margin of the decision boundary while still classifying the data
points correctly.

This leads to the following learning algorithm for linear
SVMs. For the classifier to correctly classify the training data
points with labels drawn from , the
following constraints must be satisfied [15]:
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This set of constraints ensures that each data point is cor-
rectly classified, allowing for some small amount of error
since real-life data are noisy. The optimization goal for the noisy
classification case is to minimize , where

is a user-specified cost parameter. Intuitively, the criterion
is trading off the margin width with the amount of error in-
curred. We refer the reader to appropriate texts [15] for more
technical details. This is the formulation we use, and in this for-
mulation, the classifier has a single-free parameter that needs
to be chosen by model selection.

2) Multiclass Classification and Probabilities: The
two-class formulation for the linear SVM can be extended
to multiclass problems. Our system uses the following generic
method for combining binary classifiers for multiclass classifi-
cation [16]: for each pair of classes, a separate binary classifier
is trained on data from the two classes. In order to classify a test
data point, the datapoint is classified by each binary classifier,
and each result is counted as a vote for the respective class.
The output of the classifier is the class label with the maximum
number of votes.

In our system, we use the LIBSVM [17] package which im-
plements the SVM classification algorithm, along with support
for multiclass classification. There is also support for estimating
class-conditional probabilities for a given datapoint (see [18]
for more details on the algorithm used). This can be useful in
reducing the number of false classifications due to noisiness
in the data. Specifically, the class-conditional probabilities re-
turned can be tested against a threshold, and a “no-operation”
command can be executed if the classifier is uncertain about
the correct class label for the datapoint. In our online experi-
ments, we used an empirically determined threshold to discard
predicted actions that had low probabilities.

IV. OFFLINE RESULTS

A. Classification Accuracy

We use leave-session-out cross-validation error as a measure
of performance. That is, we average the results from five runs,
in each of which, an entire session of data is used as testing data
for a classifier trained on the remaining four sessions.

We used the collected data to train a linear SVM classifier,
and performed parameter selection using across-session cross-
validation error as measure. Fig. 4 shows the SVM classifier
error as a function of the cost parameter . The graph demon-
strates two aspects of the data: First, eight-class classification is
performed with an accuracy of 92–98% for all three subjects.
Second, the classification results are stable over a wide range
of parameters for all three subjects, indicating that in an online
setting, we can use a preselected value for this parameter. It is
important to note, however, that careful selection is important,
as the error can be significant for bad choices of .

We also note that ten-fold cross-validation on any one ses-
sion of data yielded 0–2% errors for all subjects, which is sig-
nificantly less than the across-session error. Since each gesture
for a session is essentially one static handpose, the data within
a session is likely to be more homogeneous, and thus easier to
decode. The fact that across-session error is greater implies that

Fig. 4. Classifier error on the eight-gesture classification problem as a function
of the SVM cost parameter C (see Section IV-A).

Fig. 5. Classifier error as a function of the number of channels dropped, from
an initial set of seven channels. The legend describes the degrees of freedom
included in the classification problem lr = left-right, ud = up- down, gr =

grasp-release, rot = rotate.

each session does, in fact, have different data, and using mul-
tiple sessions is essential to avoid overfitting.

B. Evaluating Choice of Recording Locations

In previous sections, we noted that our choice of recording
sites for muscle activity is motivated by the relevance of the
chosen muscles to the gestures we wish to classify. We can,
however, quantitatively assess aspects of this selection process.
Do all of the channels of EMG data contribute to classification
accuracy—is there redundancy for classification in our measure-
ments? How many channels or electrodes would we need for
highly accurate control of a given set of degrees of freedom?

Fig. 5 addresses these questions. The figure quantifies the
impact of the number of electrode channels used on perfor-
mance of the linear SVM classifier for various subsets of
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Fig. 6. Schematic for an EMG-based robotic control.

classes. For any single classification problem, the channel
dropped at each step was chosen using a ”greedy heuristic.”
That is, at each step, the channel dropped was the one that
least increased the cross-validation error of the classifier
trained on the remaining channels. This feature-selection
procedure was carried out for the following classification prob-
lems: 1) grasp–release, 2) left–right, 3) left–right-up–down,
4) left–right–up–down–grasp–release, and 5) all eight classes.
These choices represent control of an increasing number of
degrees of freedom.

The figure clearly illustrates that, as expected, more degrees
of freedom require more channels of information for accurate
classification. For example, the two-class classification prob-
lems need only one or two channels of information, but the
six-class problem requires three or more channels for a low error
rate. The figure also shows that the full eight-class classification
problem can be accurately solved with fewer than seven elec-
trodes. The order in which the physical channels were dropped
was different for each subject. We ascribe this to the variation in
the performance of actions by different individuals, and in the
spatial distribution of recording quality across individuals.

Since the apriori selection of the recording sites themselves
was not based on a quantitative optimality criterion, it is possible
that fewer electrodes, when more judiciously placed, can prove
sufficient. The results of this experiment do not support selec-
tion of any particular subset of channels. More important, we
do not address the question: “for x electrodes that can be placed
anywhere, what is the best performance that can be obtained?”
Instead, this experiment indicates that there is information re-
dundancy in this particular choice of channel locations, and that
this redundancy contributes to making our classification recipe
robust across subjects.

V. ONLINE SYSTEM DESIGN AND EVALUATION

Fig. 6 details our online system design: The user maintains a
static hand pose that corresponds to one of a predefined set of
gestures in Fig. 1. We record EMG activity from various loca-
tions on the forearm as used in the offline study. This data stream
is transformed into feature vectors which are updated at 16 Hz,
and classified by a linear SVM classifier. This classifier’s output
serves as a discrete command that moves the robotic arm by a
small, fixed amount in the designated direction. Maintaining a
specific hand gesture will make the arm move continuously in a
chosen direction.

Fig. 7 shows the chosen mapping from gestures to degrees of
freedom in the robotic arm. Care was taken to make the map-
ping as intuitive as possible, and the chosen gestures are appro-
priate metaphors for the corresponding movement of the robotic

Fig. 7. Mapping between static hand gestures and degrees of control of the
robotic arm. Each column shows the degree of freedom controlled, along with
the two hand gestures that move it in either direction. (The gestures in the second
column show a top–down perspective.).

arm. For control of prosthetic devices, one has the option of cus-
tomizing the actions to better suit the device in question and
the desired control, and such customization must be done on a
case-by-case basis.

A. Online Experiments

1) Procedure: We had the same three subjects return for
a second study and perform three real-time tasks of varying
complexity with EMG-based control of the robotic arm. We re-
trained the classifier used for the online control system with the
following prescription: The subjects were once again connected
to the EMG recording device, five sessions of training data were
recorded, and the SVM classifier was trained online with these
five sessions and a parameter value that was recommended by
the offline study. The process of collecting training data took
10 min, and the classifier was trained in less than a minute.

2) Task Selection: We chose three different tasks for our
study—simple, intermediate, and complex. The metric used to
quantify performance in each task was time to completion. The
simple task was a gross-movement task in which the subject
moved the robotic arm left and right to two specific locations
in succession to knock off objects placed there. The goal was
to test basic reach ability where fine control is not necessary. In
the intermediate task, the robotic arm must be moved to a des-
ignated object, pick it up, and carry it over an obstacle, and drop
it into a bin. In this task, accurate positioning of the arm is im-
portant, and additional degrees of freedom are needed to move
the arm up and down and grasp and release the object. Fig. 8
describes the first two tasks in more detail. The third, complex,
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Fig. 8. Simple and intermediate online tasks. The first row shows the simple
task, where the robot arm starts in the middle, and the goal is to topple the two
objects placed on either side. The second row shows the intermediate task, where
the goal is to pick up a designated object, carry it over an obstacle, and drop it
in the bin.

Fig. 9. Complex online task. Five pegs are placed at various fixed locations,
and the goal is to stack them according to their size. The pictures show, in order,
the initial layout, an intermediate step in moving a peg to the target location,
and the action of stacking the peg.

task involves picking up a number of pegs placed at chosen lo-
cations, and stacking them in order at a designated place. This
requires very fine control of the robotic arm both for reaching
and picking up objects, and also for placing them carefully on
the stack, with an added degree of freedom to rotate the gripper,
as shown in Fig. 9.

3) Measure and Baseline: The time to completion is used as
the metric to assess task performance. Each subject performed
each task three times, and the average time across trials was
recorded. For the third task, only two repetitions were used since
each task run was composed of four similar components. We use
two baselines for comparison. The first of these is the theoret-
ical time needed to perform these tasks by counting the number
of commands needed for the robotic arm to perform a perfect
sequence of operations, and assuming that the task is accom-
plished at the rate of 16 commands/s. The second was to have
a fourth person perform these same sequence tasks with a key-
board-based controller for the robotic arm. This second baseline
is more realistic, as it accounts for cognitive delays in planning
various stages of a task as well as the time spent in making fine
adjustments to the arm position for picking and placing pegs.
There are differences in the skill of any given subject at task per-
formance, as well as an important learning component where the
same subject improves his or her performance at the task as he
or she become accustomed to it. These issues are, however, pe-
ripheral to the scope of this paper, where the primary objective

Fig. 10. Performance of three subjects using the EMG-based robotic arm con-
trol for three online tasks. The graph includes the baselines of theoretical time
required, and time taken with a keyboard-based controller.

is to demonstrate that this type of EMG-to-command mapping
can be robust and provide complex, intuitive control of a robotic
arm for task performance in real time.

Algorithm: The control process used for the robotic arm is
as shown in Fig. 6. The features and window lengths were the
same as those used in the offline study. In addition, we use the
probabilities returned by the classifier, along with a threshold,
in order to discard commands that the controller is uncertain
about. This is because the transitional periods when the user
switches between different steady states may generate data that
the classifier has not seen, and does not actually correspond to
any of the chosen classes. Although we do not investigate this
in our paper, we believe that by using a conservative threshold,
the user can optimize his or her behavior to the classifier via
feedback and produce more easily classifiable gestures.

B. Online Task Performance

Fig. 10 shows the performance of the three subjects and
the baselines on the three online tasks. For the simple task,
involving gross movements, all subjects take time close to the
theoretical time required. The keyboard-based control takes
less time, since the rate of keyboard control in our paradigm
was faster than the EMG controller’s control rate of 16 com-
mands/s. For the intermediate task, where a moderate amount
of planning and precision is required, the keyboard baseline
is only slightly faster than the performance time of the three
subjects.

Finally, for the complex task, it is interesting to note that the
keyboard-based control also takes a comparable amount of time,
thus showing that the bottleneck is not the control scheme (key-
board or EMG-classification-based control), but the task com-
plexity and the performance of the EMG-based control regime
do not add significantly to this.

C. Task Performance With Fewer Electrodes

For our final result, we present the performance of one subject
on the three tasks as the number of electrodes used was dropped
from seven to five, four, and three. Our offline analysis indi-
cates that while there is redundancy in the electrode selection,
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Fig. 11. Performance of subject 1 with fewer channels. Shown are the time
taken by the subject on the three tasks with seven, five, four, and three electrodes.
With three electrodes, the subject was unable to perform the intermediate and
complex tasks.

the electrodes to drop are not consistent across subjects, and per-
haps even across trials. Nevertheless, we drop two, three, and
four electrodes, in order, based on the previously performed of-
fline analysis of the subject’s data. During the subject’s online
session, we trained four different classifiers with successively
fewer channels of data. After the subject had successfully com-
pleted the tasks with the use of one classifier, we switched the
classifier to the next in sequence, and the subject repeated the
tasks with the new classifier in place.

Fig. 11 shows the performance of the subject on the three
tasks. The results show clearly that with five, and even four
channels, the subject was able to perform the tasks, although
the complex task took significantly longer. With only three
channels, however, the subject was no longer able to control
the gripper and, thus, could not perform the intermediate and
complex tasks. These data further support the robustness of our
system, since the complex task could be achieved even with
fewer electrodes, at the cost of efficiency.

VI. DISCUSSION

This study established that a reliable SVM classifier-based
technique could be used by individuals with intact forearm mus-
culature to control a robotic arm in real time. While the imple-
mentation of these findings will be most useful for amputee indi-
viduals, we chose to first demonstrate its efficacy in individuals
with intact forearm structures. Demonstration of the technique
with amputee individuals will be useful as further proof of prin-
ciple, but individual partial-limb amputee cases are each unique
derivatives of the intact case. Residual muscle function will vary
greatly between different amputee cases, and what is true for
one amputee case will not generalize to another. Since our elec-
trode positions were chosen anatomically to attempt to isolate
individual muscles, (and, in turn, minimize the degenerate rep-
resentation of a muscle across the electrode array), the reduc-
tion in electrode number simulates the reduction in musculature
(shown in Fig. 5). Further, our method emphasizes learning and
adaptation to the user’s signals, allowing the EMG interface to
be automatically tailored for an individual’s musculature. This

suggests that our system will be robust in the amputee setting,
and ongoing studies will attempt to evaluate this hypothesis.

VII. CONCLUSION AND FUTURE WORK

We have shown that EMG signals can be classified in real
time with an extremely high degree of accuracy for control-
ling a robotic arm-and-gripper. We presented a careful offline
analysis of an eight-class action classification problem based on
EMG signals for three subjects as a function of the number of
recording sites (electrodes) used for classification. Classifica-
tion accuracies of more than 90% were obtained using a linear
SVM-based classifier and a sparse feature representation of the
EMG signal. We then demonstrated that the proposed method
allows subjects to use EMG signals to efficiently solve several
reasonably complex real-time motor tasks involving 3-D move-
ment, obstacle avoidance, and pick-and-drop movements using
a 4 degrees-of-freedom robotic arm.

Our ongoing work is focused on extending our results to
other types of movements (e.g., discriminating finger move-
ments). A separate effort is targeted toward replicating the
results presented in this paper with actual amputees in collab-
oration with the rehabilitation department at our university.
A parallel study [19] involves combining EEG signals from
the scalp (reflecting underlying brain activity) with EMG
signals for more accurate classification of motor patterns, with
potential applications in brain–computer interfaces (BCIs). An
interesting theoretical question that we are beginning to study is
whether the EMG-based control system can be adapted online
rather than only at the start of an experiment. This is a difficult
problem since the subject is also presumably adapting online to
generate the best muscle activation patterns possible for control
and to compensate for changes in electrode conductivity with
the passage of time. We intend to explore variations of our
SVM-based classification technique to tackle this challenging
nonstationary learning problem.
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