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Generalized Features for Electrocorticographic BCls

Pradeep Shenoy*, Kai J. Miller, Jeffrey G. Ojemann, and Rajesh P. N. Rao

Abstract—This paper studies classifiability of electrocortico-
graphic signals (ECoG) for use in a human brain—-computer
interface (BCI). The results show that certain spectral features
can be reliably used across several subjects to accurately classify
different types of movements. Sparse and nonsparse versions of
the support vector machine and regularized linear discriminant
analysis linear classifiers are assessed and contrasted for the
classification problem. In conjunction with a careful choice of
features, the classification process automatically and consistently
identifies neurophysiological areas known to be involved in the
movements. An average two-class classification accuracy of 95%
for real movement and around 80% for imagined movement is
shown. The high accuracy and generalizability of these results,
obtained with as few as 30 data samples per class, support the use
of classification methods for ECoG-based BClIs.

Index Terms—Brain—computer interfaces, classification, electro-
corticography, feature selection, neural interfaces.

1. INTRODUCTION

RAIN-COMPUTER interfaces (BCls) [1] attempt to pro-
B vide control of prosthetic or communication devices by di-
rect use of an individual’s brain signals. These brain signals can
be measured noninvasively (e.g., [2], [3]) in humans using elec-
troencephalography (EEG), and invasively at the level of single
neurons and local field potentials in rats and monkeys [4], [5].
Although the invasive BClIs typically outperform EEG-based
BClTs, there is significant concern about neural recordings in hu-
mans [6] due in part to the invasive nature of the procedure and
concerns regarding long-term health risks.

Electrocorticography (ECoG) [7]-[10] has recently gained
attention as a recording technique for use in brain—computer
interfaces. ECoG involves recording electrical signals from the
surface of the human brain, typically in patients being monitored
prior to surgery. ECoG is less invasive than neuronal record-
ings since the brain is not penetrated and has a much higher
signal-to-noise ratio (SNR) than EEG, as well as higher spec-
tral and spatial resolution. This higher resolution necessitates
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re-engineering of the signal processing and classification tech-
niques used in traditional EEG-based BCIs. An obstacle to ef-
fectively characterize the information present in ECoG signals
is the extreme sparsity of data due to the limited time available
for volunteering patients (see Section II).

We study ECoG recordings of 64—104 channels from eight
subjects during both overt and imagined movement of the
tongue and hand. In contrast to the BCI experiments in the
literature, our experiments were limited to only 30 examples of
each class. This presents significant challenges for learning, and
the danger of overfitting the data. We address these problems
by 1) using a single, carefully chosen set of bandpower features
for all subjects and 2) using simple linear classifiers, including
powerful sparse methods that automatically incorporate the
benefits of feature/channel selection. Our results show that overt
hand and tongue movements can be distinguished with very
high accuracy. Imagined movements are also distinguishable,
but with lower accuracy.

We examine the features and channels naively chosen by our
classifiers in a posthoc analysis. The classifiers successfully se-
lect cortical hand and tongue areas, independently confirming
the efficacy of our chosen feature representation. The sparse
classification methods choose channels that are more tightly de-
fined over the relevant brain areas and, thus, may perform well in
practice as integral components of ECoG-based BCIs. We show
that data from overt movements can be used to significantly im-
prove performance on classification of imaginary movements.

A. Related Work

EEG-based BClIs exploit well-characterized electrophysi-
ological phenomena in humans. It is known [11] that signal
power in certain spectral bands of individual channels (mu and
beta rhythms, 9-13 Hz, 18-24 Hz) varies with motor action
or imagery. Further, certain specific channels over the motor
cortex in a standardized electrode placement montage have the
highest information with reference to motor activity. Several
BCIs are designed around this knowledge, and additionally
(see, for example, [12]) customize this spatial and spectral
feature selection to better fit each individual’s data.

There is no broad consensus regarding channel locations or
feature representations to use for the classification of ECoG.
One significant issue here is that the subject population is un-
dergoing the procedure for medical purposes (see Section II)
and, thus, the electrode locations are different in each subject.
Another issue is that ECoG is an invasive procedure that is only
performed for medical needs. As a result, access to ECoG data
and subjects is limited.

Lal et al. [7] classify ECoG data from tongue and hand imag-
ined movements. They use autoregressive model coefficients as
features for each channel, and recursive channel elimination for
selecting the best channels for classification. Graimann et al. [8]

0018-9294/$25.00 © 2007 IEEE



274 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 55, NO. 1, JANUARY 2008

use wavelet packet analysis and genetic algorithms (GAs) for se-
lecting features related to event-related desynchronization and
synchronization (ERD/ERS) that detect single-trial movement
of body parts, such as the finger and lip. They have reported the
presence of ERD/ERS features in delta (<3.5 Hz), beta (12.5-30
Hz), and gamma (70-90 Hz) bands associated with the onset
of a single discrete movement. Leuthardt et al. [9] show con-
tinuous one-dimensional ECoG-based control by modulation of
carefully chosen spectral power features that are selected via a
screening task.

II. EXPERIMENTAL SETUP

A. Subject Population

Simple motor action and motor imagery tasks were studied
in patients with intractable epilepsy with implanted intracranial
electrode arrays. These electrodes are implanted in order to lo-
calize seizure foci prior to surgical resection of the epileptic
focus, and their location is determined independently by clinical
criteria. Only patients with some peri-Rolandic coverage were
included. Patients underwent craniotomy for electrode place-
ment and were typically studied 4-6 days after placement to
allow for recovery from the original surgery.

Each patient typically had an implanted 8 x 8 electrode plat-
inum electrode array (Ad-Tech, Racine, WI), sometimes accom-
panied by linear strips, with 1-cm interelectrode distance. The
electrodes were embedded in silastic with 2.3-mm diameter ex-
posed (of a 4-mm diameter electrode). The arrays varied in size
from a total of 62-104 electrodes across the patients. Fig. 1
shows an example of an implanted ECoG grid and electrode
strips. The signal was recorded with Synamps2 (Neuroscan, El
Paso, TX) amplifiers at 1000 Hz and bandpass filtered from 0.15
to 200 Hz (well outside the spectral ranges we use for classifi-
cation). Although 60-Hz signal contamination is ubiquitous in
the recordings, our choice of features avoids this contamination.
Stimuli are presented and data are collected using the multipur-
pose BCI2000 software [13].

B. Tasks

We examined data from eight subjects as they performed or
imagined repetitive hand or tongue movements in response to
a visual cue. All eight subjects performed the motor movement
tasks, and six of the subjects also performed the motor imagery
task.

Thirty 3-s visual word cues for hand and tongue movement
were presented interleaved in random order with a 3-s rest
period between each cue. The cues were delivered in a 10 x
10-cm presentation window at a distance of 75-100 cm from
the subject. In response to each stimulus, the subject performed
a repetitive movement of the hand (clenching and unclenching)
or tongue (sticking out the tongue) for the period of the stimulus
presentation. In a separate session, the subjects imagined these
movements in response to the stimulus, without performing
physical movements.

Our study used repetitive motion, rather than tonic contrac-
tion, in order to accentuate the spectral shift during each interval,
as attenuation of alpha and beta ERD [14] and gamma ERS [15]
has been reported during tonic contraction.

Fig. 1. Example of ECoG electrode grid locations: Part A shows an X-ray
image of the patient’s brain with a grid and strip electrodes implanted on the
surface of the brain. The white lines are used to estimate 3-D electrode loca-
tions from the image, in conjunction with other X-ray images. Part B shows the
electrode locations as placed on a 3-D computer model of a standardized brain.

Due to clinical circumstances, we cannot collect large
amounts of training data, and our subjects’ compliance with the
experimental protocol is likely to be variable across subjects
and during sessions.

III. FEATURE REPRESENTATION

We transform a window of data from each channel into two
features: 1) the lowband power (11-40 Hz) and 2) the highband
power (71-100 Hz) features (see Fig. 2). The features are cal-
culated as the log variance of the specified window of data from
a channel after it has been bandpass-filtered in the appropriate
band. The bands are chosen in order to exclude the possibility
of 60-Hz line noise artifacts.

Fig. 2 shows two fairly typical examples of spectral power
changes associated with motor activity or imagery. The two
electrodes marked in the figure are from the hand and tongue
areas, respectively, and show that, broadly speaking, there is a
decrease in spectral power in the lowband feature and an in-
crease in spectral power for the highband feature during move-
ment.

Our choice of feature selection was motivated by two com-
pelling reasons: 1) We have consistently seen quantitative dif-
ferences in these bands between the average spectra for move-
ment and rest across subjects and motor actions, showing that
this is a general physiological phenomenon. Recent work [16]
has shown that this spectral change can be reliably used in place
of electrical stimulation to localize motor representations in the
brain. 2) The paucity of data (only 30 trials per class, for up
to 100 channels) forces us to use a single, simple set of fea-
tures across all subjects in order to prevent overfitting. Finally,
Section V shows, in post-hoc analysis, that the feature weighting
chosen by the classification methods also shows the character-
istic lowband suppression and highband increase in activity that
is described here.

Individual differences in bandpower feature modulation cer-
tainly do exist in our subject populations, and our reported re-
sults may benefit from additional training data that can be used
to customize the bandpower features to each individual subject.

IV. CLASSIFICATION METHODS

We explored four classification methods in our experiments:
the (regularized) linear discriminant analysis (LDA) classifier,
the support vector machine (SVM), and sparse variants of these
two methods. All four methods used are linear binary classifiers
(i.e., they assume linear separability of two classes of data and
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Fig. 2. Spectral features: The figure illustrates our choice of spectral features. Shown are average spectra during tongue and hand movement tasks for two channels
taken from the classical hand and tongue cortical representation areas. We see that for electrodes over the relevant body part representation, activity in that body
part produces suppression in the lowband power and an increase in the highband feature.

attempt to find a hyperplane separating the data points belonging
to the two classes). We first describe the binary classifiers in
detail and subsequently describe how multiclass problems can
be solved by combining binary classifiers.

A linear classifier is represented by (w,b) which are the
normal to the separating hyperplane, and its distance from the
origin, respectively. The classifier is used to compute the label
y € {+1,—1} of any given point x as y = sign(w’x + b).
Linear classifiers have two powerful advantages: simplicity
and interpretability. For example, since the classifier output
is a weighted linear combination of all input features, we can
examine the components of the weight vector w to see which
features are considered important by the classifier. Also, in
problems with limited training data (as in our case), they help
alleviate the risk of overfitting.

Sparse linear classifiers seek a sparsely populated projection
vector w (i.e., a weight vector with most components at zero or
close to zero). Typically, these sparse methods allow a tradeoff
between sparseness of w and training set error. This allows us to
automatically discover and use only the most important features
in the input vector x. Thus, sparse classifiers are useful when the
input data has a large number of irrelevant features.

A. Regularized Linear Discriminant Analysis (LDA)

LDA, also known as the Fisher’s linear discriminant, is a
simple statistical approach to separating data from multiple
classes, and is commonly used for classification, feature ex-
traction, and dimensionality reduction. LDA (see, for example,
[17] for details) chooses a projection vector w that maximizes
the separation between the projected means of the two classes.
This direction is computed using the class means j1, p2, and
the within-class scatter, S,,. The within-class scatter is the sum
of the a priori probability of each class times the covariance of
that class

Sw = g Pe X COV,..
C

In the two-class case, we take p; = p = 0.5. Using the within-
class scatter matrix S,,, we define w and the offset b as

inv(S,) x (2 — )"

w =inv(
h= — 1
2

(1 + p2) X W. (H

The traditional LDA classifier contains an implicit constraint in
that it requires S,, to be invertible and, hence, nonsingular. In
our case, the sample size is significantly smaller than the dimen-
sionality of the data, and this constraint is often not satisfied.
RLDA is a simple variant of LDA that regularizes the scatter
matrix S, by adding constant values to the diagonal elements,
thereby guaranteeing the nonsingularity of S,,. For a choice of
parameter value 0 < A < 1, the regularized scatter matrix is
given by

Sw — (1 = X)Sw + Al,,. 2)
As A — 1, the information in S, is lost and as A — 0, the regu-
larization term is discarded. The parameter A is a free parameter
chosen via model selection to minimize generalization error.

B. Support Vector Machines (SVMs)

The SVM classifier [ 18] chooses the hyperplane of maximum
margin, or “thickness” that separates the two classes of data.
This choice is expected to be more robust to outliers in the data,
and SVMs have been popular and successful in a wide variety of
applications. It can be shown that the margin width of the sep-
arating hyperplane is inversely proportional to ||w||3. Here, we
use || - ||2 to represent the Euclidean or l3-norm, and || - ||; for
the ly-norm (i.e., ||wl||1 = Y |w]). The search for the optimal
w can thus be framed as a quadratic optimization problem, sub-
ject to the constraints that each training data point is correctly
classified. Further, to allow for misclassifications and outliers,
slack variables &, are introduced. Thus, if the m-dimensional
data samples are x5,k = 1,..., K, where K is the number of
samples, and the class membership with y,, € {—1,+1}, then
the optimization problem for the SVM is

1 C )
Slwll3 + E||f||1 subject to

minwygyb 2
yk(WTXk + b)Z 1—¢& and
& >0, for k=1,...,K. 3)

The constraints ensure that the training data are correctly clas-
sified, and the &, terms are used as a regularization term and
allow for errors, with C being a free parameter that controls the
regularizer.
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C. Sparse Classification Methods

The standard linear Fisher’s discriminant can be recast [19]
as the solution to the following quadratic optimization problem:

1 c
min Slwl3+ Il subjeet o

y(wixp +b)=1—-¢&, for k=1,....,K. (4)

This formulation is very similar to the quadratic program used
for the SVM. Both of these quadratic programs can be converted
to linear programming problems by replacing the /5-norm on
the regularizer with the /;-norm. In the case of the Fisher’s dis-
criminant, the /;-norm is also used on the slack variable £. An
additional advantage to sparseness is that the resulting linear
programs are simpler to solve than the original quadratic pro-
gramming counterparts.

Thus, we have two sparse classification methods—the linear
programming machine (LPM), and the linear sparse fisher’s dis-
criminant (LSFD). The LPM is the solution to the following op-
timization problem:

. 1 c .
Milw ¢b NHWHI + ?||£||1 subject to

yr(wlixp +0)>1—¢, and

&> 0, for .o K. 5

The LSFD is the solution to the following optimization
problem:
1 C
min NIl + g llEll - subject to

yr(Wwixp +b)=1-¢&, for ,o.., K. (6)

While the two sparse methods are solutions to very similar op-
timization problems, they are conceptually addressing different
goals: maximizing the margin between the two classes (LPM),
and maximizing the distance between the two class means while
minimizing variance along the projection dimension (LSFD).

Also, in these two methods, the free parameter C' now con-
trols the tradeoff between sparsity of the weight vector and the
errors made by the classifier—a high value of C' would impose a
more severe penalty on misclassifications, and a lower C' value
would favor sparseness of the weight vector w. This parameter
is selected empirically using model selection.

D. Model Selection and Evaluation

Each classifier has a free parameter that is chosen empiri-
cally to minimize generalization error. This is accomplished by
evaluating cross-validation accuracy of the classifier on a given
dataset data for a range of parameter values, and choosing the
parameter value that minimizes cross-validation error. In order
to test the generalization of the classifier with the chosen param-
eter value, we use double-crossvalidation as our performance
measure. Specifically, we randomly divide the trials into five
blocks, using four for training and one for testing. In each train
step, we select classifier parameters by minimizing five-fold
cross-validation error on the training data. We then use all of the
training data with the selected parameter value to train the classi-
fier and evaluate its performance on the test data. Thus, the clas-
sifier is tested on data points that are unseen during the training

and parameter selection phase. The entire nested cross-valida-
tion routine is repeated ten times and the average error over all
runs is presented as a measure of classifier performance.

We implemented our classifiers with the use of Matlab’s
linprog linear optimization package. For SVM, we used the
LIBSVM package [20].

V. RESULTS

A. Classification Error

Fig. 3 presents the classification error of each method on each
subject for both real and imagined movements. For this experi-
ment, windows of data from 1-3 s in each trial were converted to
bandpower features, thus yielding 30 trials. Even with so little
data, the motor action classification results (average 6% error
for LPM, including one outlier) are better than previously re-
ported EEG results (e.g., the Berlin BCI [3]) where the best re-
ported results are in the 10% range. The motor imagery results
are comparatively worse (average 23% error for the LPM classi-
fier), but are still comparable to previous ECoG results (e.g., Lal
et al. [7] who used 100-200 samples in three subjects to obtain
errors of 17-23%). The interesting feature about the motor im-
agery results is the high amount of intersubject variance, where
we believe subject compliance is an issue.

In a recent initial study [21], we have also shown that for
motor movement, individual fingers of one hand can be clas-
sified with 77% accuracy in a five-class classification problem,
indicating that ECoG may indeed have substantially more infor-
mation about movements compared to EEG.

B. Spatial Features

We examined the weights chosen by each classifier to see
which spatial features were selected by the classifier. In order
to understand the spatial selectivity in aggregate, we normalized
each subject’s classifier weights to unit length and projected the
weights onto a standard brain using estimated electrode posi-
tions. The electrode positions in Talairach standardized coordi-
nates [22] were calculated using anterior-posterior and lateral
skull X-rays [23].

Fig. 4 shows the cumulative projection of all subjects’ weight
vectors onto the brain. These figures were created by scaling and
linearly superimposing spherical Gaussian kernels (width 5-mm
variance 25 mm) centered at the location of each electrode on a
template brain.

The figures clearly indicate spatial clustering of the selected
features across subjects, showing that the classifiers have au-
tomatically extracted generalizable spatial features which cor-
respond to known somatotopic locations. This result also indi-
rectly supports our argument for choosing a single, general set of
spectral features, since the low and high spatial features chosen
by each classifier are spatially similar and opposite in sign (see
Section III).

Not suprisingly, the sparse methods select more spatially fo-
cused features compared to the other two methods, especially
for the motor imagery data. This useful property may help re-
duce the problem of overfitting, as well as reduce the number of
channels required online for control.
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Fig. 3. Classification Error: This figure shows the double-cross-validation error of the classifiers on all datasets. Figure (a) shows the results for all eight subjects
during overt motor actions, and (b) shows results for the six subjects who also participated in the motor imagery task.

(a)
Fig. 4. Spatial features for motor action and imagery: The weight vectors for each subject are plotted onto the brain in separate low-feature and high-feature plots

per classifier. Each column in figure (a) shows the low- and high-frequency features selected by the methods for motor action data. The sparse methods can be seen
to select spatially more focused channels. Figure (b) shows similar results for motor imagery.

C. Using Fewer Features

We saw in the previous sections that while the average error
for the different methods does not differ significantly, the sparse
methods select a highly focussed feature set for classification.
In this experiment, we attempt to quantify this property of the
sparse methods. Specifically, we train the classifiers on the
training data exactly as before (in a nested cross-validation
routine), but subsequently select a fraction, say 20%, of the
weights in the classifier’s projection vector w. The weights
with the largest absolute magnitude are selected, and the other
components of w are zeroed out. This trimmed weight vector
is then used to classify the unseen test data.

Note that this is not a completely fair evaluation, since the
classifier optimization criterion does not include this additional
constraint. Nevertheless, the outcome of this experiment is in-
formative. Figs. 5 and 6 show the results for motor action and
motor imagery, respectively, averaged over all subjects. In each
pair, the first plot shows the distribution of weights in the weight
vector, normalized by the largest value. For example, Fig. 5(a)
indicates that for the LPM classifier, on average more than half
the weights are zero while, for the nonsparse methods, all of the
weights are up to 40% of the largest weight. The second plot
shows the classifier performance when using only the weights
with the largest magnitude. We see that for the LPM classifier,

(b)

the error drops steeply, and is constant after the top 20% com-
ponents are used. This is strong evidence that for the sparse
methods, the magnitude of the weights for each individual fea-
ture can be used for ranking them in order of importance and
used directly for classification.

It is conceivable that the other methods also contain ranking
information in the weight magnitudes. However, an additional
thresholding and retraining step would be required to exploit
this information (e.g., as in recursive channel elimination [7]).
Given the paucity of data, we refrain from attempting a second
training step and evaluation.

Fig. 6 shows similar results for motor imagery. Interestingly,
even though, on average, a greater number of components are
nonzero for the sparse methods, the average error still drops to
its lowest with the use of around 20% of the features.

D. Leveraging Data From Overt Movements

The very high classifiability of overt movement data, com-
bined with the focal nature of the selected features, naturally
leads one to consider the following question: Can we use the
features selected for classifying overt movements to improve
classification performance on the imagery data?

To test this idea, we used the magnitude of the weights from
the learned classifiers as a score for channels. We then selected
the top 20% channels, ranked by magnitude, for each classifier
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Fig. 5. Fewer features for motor action. (a) The distribution of weight magnitudes for each classifier is shown. The sparse classifiers have on average a large
number of zeros, whereas the nonsparse methods have very large weight components. (b) The error when only the components with the highest magnitudes are
retained in the classifier is shown. The error for the sparse methods drops steeply, and reaches the minimum with approximately 20% of the features being used.
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Fig. 6. Fewer features for motor imagery. Analysis of weight magnitudes for the different classifiers (see Fig. 5).

and subject. The imagery data were then restricted to only those
selected channels, and the methods were again evaluated using
double-cross-validation on this restricted set of channels.

We see in Fig. 7 that this method indeed does improve the
performance (cf. Fig. 3). This is an important result since
only a fifth of the channels are used for classification in this
experiment. Surprisingly, the nonsparse methods—SVM and
RLDA—improve the most, on average, with a 5% and 4% re-
duction in error, respectively. The sparse methods do not show
an overall trend in error, with improvements in some datasets
and decrease in performance for other subjects. One possibility
is that after restricting the channels to only the relevant motor
channels, the sparsity constraint is a severe penalty. This result
also supports the claim that information is indeed encoded in
the feature weights chosen by the SVM (cf. the RCE method
used by Lal et al. [7]).

In the ideal case of infinite data, this step should not be nec-
essary (i.e., the classifier should automatically select relevant
features for motor imagery). However, given the small amount

of high dimensional training data, and the fact that classifying
motor imagery data is significantly harder, a preprocessing step
that identifies neurophysiologically relevant channels improves
performance in practice. Since the selection is made on a dif-
ferent dataset, overfitting is unlikely.

This method can only be directly used in subjects who still
retain some degree of motor control, and may not be applicable
to paralyzed or already incapacitated individuals. However, the
similarity of real and imagined movements that is implied by
these results allow us to use algorithms that are designed and
tested on real movements by healthy subjects as a starting point
for incapacitated users.

E. Discussion

We see from the results that ECoG signals recorded during
motor action are highly separable, with very low average er-
rors. In contrast, the classification performance on motor im-
agery data is harder and more variable, with errors ranging from
2% to 30%, and an average error of 20%. While these errors
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Fig. 7. Using action features for imagery data. For each method, the top 20%
channels from the motor action task (chosen by weight magnitude) are used to
train and test the classifiers on the motor imagery data. The SVM classifier error
improves by 5% on average.

are comparable to previous ECoG classification results (e.g.,
Lal et al. [7], who obtain 17.5%-23.3% on three subjects, with
100-200 data points for training), they are significantly worse
than classifying motor action. In this regard, we make the fol-
lowing observations: First, only 30 samples of data per class
were used, an amount considerably smaller than that used in
typical BCI studies. Second, the neurophysiologically relevant
hand and tongue areas are also weighed heavily in the motor
imagery task. Third, restricting the channels to those ranked
highest for the motor action task significantly improved predic-
tion performance on imagery data. Fourth, patient compliance
is difficult to guarantee in a motor imagery task. These observa-
tions indicate that more data are likely to improve performance.
Further studies would be needed to confirm this hypothesis and
discover the limits of the ECoG signal for BCI.

We explored four classification methods, and a new gener-
alized spectral feature representation for classifying ECoG sig-
nals. Our choice of spectral features was strongly supported by
the posthoc analysis of the feature weightings chosen by the dif-
ferent classifiers (see Fig. 4), where the neurophysiologically
relevant channels were ranked the highest, and the LPM classi-
fier selected spatial features that were highly focused on these
areas. Our results indicate that while all methods performed
comparably, sparse classification methods used a much smaller
set of features for very good classification performance. In ad-
dition, the magnitude of the weights can be used as an explicit
ranking of the feature quality, allowing us to restrict the number
of features used. We also showed that using information learned
from motor actions for interpreting data from motor imagery is
both feasible and beneficial. This fact suggests that similar spa-
tial areas are involved in ECoG changes during motor action and
motor imagery.

Our study forms a first step toward exploring the usability of
ECoG signals as a BCI input mechanism. This paper shows that,
in contrast to EEG, motor movements can be classified with high
accuracy, using very little training data. Subsequent work [21]
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has shown that very fine distinctions can be made using ECoG,
including the classification of individual fingers of one hand in a
five-class classification setting. This level of information is not
available on a single-trial basis using EEG. However, the inva-
sive nature of the ECoG recording procedure means that a sub-
stantial further study, especially long-term implantation, may be
required before ECoG becomes a viable method for brain-actu-
ated control.

VI. CONCLUSION

We examined classifiability of ECoG signals for use in a min-
imally invasive human brain—computer Interface. We showed
that across eight subjects, the same spectral features and spatial
features are involved in motor actions, and these features closely
correspond to the underlying neurophysiology of the motor ac-
tivity. Data from motor actions are highly classifiable, with an
average error of about 5%, and motor imagery is classifiable
with an average of 20%.

Our comparison of sparse and nonsparse classification
methods indicates that in the scenario of minimal training data,
the sparse methods may provide significant benefits in terms of
interpretability and noise rejection. They are also very useful
as automatic feature selection methods.

Future work includes testing classification-based methods in
an online feedback scenario, examining the very quick learning
and adaptation that takes place in the brain in ECoG-based BCIs
[10] and exploring multiclass BClIs.
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