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Recent algorithms for sparse coding and independent component analy-
sis (ICA) have demonstrated how localized features can be learned from
natural images. However, these approaches do not take image transforma-
tions into account. We describe an unsupervised algorithm for learning
both localized features and their transformations directly from images
using a sparse bilinear generative model. We show that from an arbitrary
set of natural images, the algorithm produces oriented basis filters that
can simultaneously represent features in an image and their transforma-
tions. The learned generative model can be used to translate features to
different locations, thereby reducing the need to learn the same feature at
multiple locations, a limitation of previous approaches to sparse coding
and ICA. Our results suggest that by explicitly modeling the interaction
between local image features and their transformations, the sparse bilin-
ear approach can provide a basis for achieving transformation-invariant
vision.

1 Introduction

Algorithms for redundancy reduction and efficient coding have been the
subject of considerable attention (Olshausen & Field, 1996, 1997; Bell & Se-
jnowski, 1997; Hinton & Ghahramani, 1997; Rao & Ballard, 1999; Lewicki
& Sejnowski, 2000; Schwartz & Simoncelli, 2001). Although the basic ideas
can be traced to earlier work (Attneave, 1954; Barlow, 1961), recent tech-
niques such as independent component analysis (ICA) and sparse coding
have helped formalize these ideas and have demonstrated the feasibility of
efficient coding through redundancy reduction. These techniques produce
an efficient code by using appropriate constraints to minimize the depen-
dencies between elements of the code.

One of the most successful applications of ICA and sparse coding has
been in the area of image coding. Olshausen and Field (1996, 1997) showed
that sparse coding of natural images produces localized, oriented basis fil-
ters that resemble the receptive fields of simple cells in primary visual cortex.
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Bell and Sejnowski (1997) obtained similar results using their algorithm for
ICA. However, these approaches do not take image transformations such
as translation into account. Thus, the model cannot take advantage of the
fact that certain basis features model the same image features but under
different transformations. As a result, for each oriented feature, a number
of independent units must code for the same feature at different locations,
making it difficult to scale the approach to large image patches and hierar-
chical networks.

In this letter, we propose an approach to sparse coding that explicitly
models the interaction between image features and their transformations.
A bilinear generative model is used to learn both the independent features
in an image as well as their transformations. Our approach extends Tenen-
baum and Freeman’s (2000) work on bilinear models for learning content
and style by casting the problem within a probabilistic sparse coding frame-
work. Thus, whereas prior work on bilinear models used global decompo-
sition methods such as singular value decomposition (SVD), the approach
presented here emphasizes the extraction of local features by removing
higher-order redundancies through sparseness constraints. We show that
for natural images, this approach produces localized, oriented filters that
can be translated by different amounts to account for image features at ar-
bitrary locations. Our results demonstrate how an image can be factored
into a set of basic local features and their transformations, providing a basis
for transformation-invariant vision. In particular, we focus on the problem
of invariance to transformations caused by moving objects or smooth self-
motion. We assume that for a given object, the goal is to estimate the motion
of the object and learn bilinear features for both the object and its transforma-
tion. We conclude by discussing related work and suggest an extension of the
approach to parts-based object recognition, wherein an object is modeled as
a collection of local features (or “parts”) and their relative transformations.

2 Bilinear Generative Models

We begin by considering the standard linear generative model used in al-
gorithms for ICA and sparse coding (Bell & Sejnowski, 1997; Olshausen &
Field, 1997; Rao & Ballard, 1999):

z =
m∑

i=1

wixi = Wx, (2.1)

where z is a k-dimensional input vector (for instance, an image), wi is a
k-dimensional basis vector, and xi is its scalar coefficient. Given the linear
generative model above, the goal of ICA is to learn the basis vectors wi (i.e.,
the matrix W) such that the xi are as independent as possible, while the
goal in sparse coding is to make the distribution of xi highly kurtotic given
equation 2.1.
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Now consider adding a transformation parameterized by λ to the gener-
ative process of an image z, so that z = Tλ(Wx). Given the linear model
as described above, as λ varies, the x will need to change accordingly.
Transformation-invariance methods seek to model the image formation pro-
cess in such a way that x is independent (or at least uncorrelated) with λ.

A simple method for achieving invariance is to introduce another vari-
able y, which accounts for the changes in the image due to the transformation
Tλ. Invariance is achieved once y is known because x and λ are conditionally
independent given y. Thus, the key requirement of any such model is that
y can easily be inferred.

Using a probabilistic approach, we specify the form of the image like-
lihood function P(z|x, y). To model this likelihood, we introduce an inter-
action function f (x, y) that models the interactions between x and y in the
image formation process. For an additive gaussian noise model, the likeli-
hood becomes P(z|x, y) = G(z; f (x, y), σ 2).

The function f (x, y) should not only be able to represent the transfor-
mations of interest, but must also be invertible in the sense that x and/or
y can be inferred given z and possibly one of x or y. Perhaps the simplest
function f is the linear function: f (x, y) = Wx + W′y. Unfortunately, this
model is too impoverished to represent most common classes of transfor-
mations such as affine transformations in the image plane. A logical next
step is to consider multiplicative interactions between x and y. In this work,
we explore the use of the bilinear function, which is the simplest form of f
allowing multiplicative interactions.

The linear generative model in equation 2.1 can be extended to the bi-
linear case by using two sets of coefficients xi and yj (or equivalently, two
vectors x and y) (Tenenbaum & Freeman, 2000):

z = f (x, y) =
m∑

i=1

n∑
j=1

wijxiyj. (2.2)

The coefficients xi and yj jointly modulate a set of basis vectors wij to pro-
duce an input vector z. For this study, the coefficient xi can be regarded as
encoding the presence of object feature i in the image while the yj values
determine the transformation present in the image. In the terminology of
Tenenbaum and Freeman (2000), x describes the content of the image, while
y encodes its style.

Equation 2.2 can also be expressed as a linear equation in x for a fixed y:

z = f (x)|y =
m∑

i=1


 n∑

j=1

wijyj


 xi =

m∑
i=1

wy
i xi. (2.3)

The notation wy
i signifies a transformed feature computed by the weighted

sum shown above of the bilinear features wi,∗ by the values in a given y
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Figure 1: Examples of linear and bilinear features. A comparison of learned
features between a standard linear model and a bilinear model, both trained
using sparseness constraints to obtain localized, independent features. The two
rows in the bilinear case depict the translated object features wy

i (see equation 2.3)
for different y vectors corresponding to translations of −3, . . . , 3 pixels.

vector. Likewise, for a fixed x, one obtains a linear equation in y. Indeed,
this is the definition of bilinear: given one fixed factor, the model is linear
with respect to the other factor. The power of bilinear models stems from
the rich nonlinear interactions that can be represented by varying both x
and y simultaneously.

Note that the standard linear generative model (see equation 2.1) can
be seen as a special case of the bilinear model when n = 1 and y = 1.
A comparison between examples of features used in the linear generative
model and the bilinear model is given in Figure 1. The features in the linear
model represent a single instance within the range of features that can be
learned by the bilinear model.

3 Learning Sparse Bilinear Models

3.1 Learning Bilinear Models. Our goal is to learn from image data an
appropriate set of basis vectors wij that effectively describe the interactions
between the feature vector x and the transformation vector y. A commonly
used approach in unsupervised learning is to minimize the sum of squared
pixel-wise errors over all images:

E1({wij}, x, y) =
∥∥∥∥∥∥z −

m∑
i=1

n∑
j=1

wijxiyj

∥∥∥∥∥∥
2

(3.1)

=

z −

m∑
i=1

n∑
j=1

wijxiyj




T 
z −

m∑
i=1

n∑
j=1

wijxiyj


 , (3.2)
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where ‖ · ‖ denotes the L2 norm of a vector. A standard approach to min-
imizing such a function is to use gradient descent and alternate between
minimization with respect to {x, y} and minimization with respect to wij.
Unfortunately, the optimization problem as stated is underconstrained. The
function E1 has many local minima, and results from our simulations in-
dicate that convergence is not obtainable with data drawn from natural
images. There are many different ways to represent an image, making it dif-
ficult for the method to converge to a basis set that can effectively represent
images that were not in the training set.

A related approach is presented by Tenenbaum and Freeman (2000)
in their article dealing with style and content separation. Rather than us-
ing gradient descent, their method estimates the parameters directly by
computing the SVD of a matrix A containing input data corresponding
to each content class in every style. Their approach can be regarded
as an extension of methods based on principal component analysis (PCA)
applied to the bilinear case. The SVD approach avoids the difficulties
of convergence that plague the gradient-descent method and is much
faster in practice. Unfortunately, the learned features tend to be
global and nonlocalized, similar to those obtained from PCA-based meth-
ods based on second-order statistics. As a result, the method is unsuit-
able for the problem of learning local features of objects and their
transformations.

The underconstrained nature of the problem can be remedied by im-
posing constraints on x and y. In particular, we cast the problem within a
probabilistic framework and impose specific prior distributions on x and
y with higher probabilities for values that achieve certain desirable prop-
erties. We focus here on the class of sparse prior distributions for several
reasons: (1) by forcing most of the coefficients to be zero for any given input,
sparse priors minimize redundancy and encourage statistical independence
between the various xi and between the various yj (Olshausen & Field, 1997);
(2) there is some evidence for sparse representations in the brain (Földiák &
Young, 1995): the distribution of neural responses in visual cortical areas is
typically highly kurtotic, that is, cells exhibit little activity for most inputs
but respond vigorously for a few inputs, causing a distribution with a high
peak near zero and long tails; (3) previous approaches based on sparseness
constraints have obtained encouraging results (Olshausen & Field, 1997);
and (4) enforcing sparseness on the xi encourages the parts and local fea-
tures shared across objects to be learned while imposing sparseness on the
yj allows object transformations to be explained in terms of a small set of
basis vectors.

3.2 Probabilistic Bilinear Sparse Coding. Our probabilistic model for
bilinear sparse coding follows a standard Bayesian MAP (maximum a pos-
teriori) approach. Thus, we begin by factoring the posterior probability of
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the parameters given the data as

P(x, y, {wij}|z) = P(z|x, y, wij)

m∏
i=1

P(xi)

n∏
j=1

P(yj)P({wij}) (3.3)

∝ P(z|x, y, wij)

m∏
i=1

P(xi)

n∏
j=1

P(yj). (3.4)

Equation 3.3 assumes independence between x, y, and {wij} as well as inde-
pendence within the individual dimensions of x and y. Equation 3.4 assumes
a uniform prior for P({wij}), which is thus ignored.

We assume the following priors for xi and yj:

P(xi) = 1
Qα

e−αS(xi) (3.5)

P(yj) = 1
Qβ

e−βS(yj), (3.6)

where Qα and Qβ are normalization constants, α and β are parameters that
control the degree of sparseness, and S is a “sparseness function.” For this
study, we used S(a) = log(1 + a2). As shown in Figure 2, our choice of
S(a) corresponds to a Cauchy prior distribution, which exhibits a useful
nonlinearity in the derivative S′(a).

The squared error function E1 in equation 3.2 can be interpreted as repre-
senting the negative log likelihood (− log P(z|x, y, wij)) under the assump-
tion of gaussian noise with unit variance (see, e.g., Olshausen & Field, 1997).
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Figure 2: A probabilistic sparse coding prior. (a) The probability distribution
function for the Cauchy sparse coding prior. Although the distribution appears
similar to a gaussian distribution, the Cauchy is supergaussian (highly kurtotic).
(b) The derived sparseness error function. (c) The nonlinearity introduced in the
derivative of the sparseness function. Note that the function differentially forces
small coefficients toward zero, and only at some threshold are large coefficients
made larger.
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Maximizing the posterior in equation 3.3 is thus equivalent to minimizing
the following log posterior function over all input images:

E({wij}, x, y) =
∥∥∥∥∥∥z −

m∑
i=1

n∑
j=1

wijxiyj

∥∥∥∥∥∥
2

+ α

m∑
i=1

S(xi) + β

n∑
j=1

S(yj). (3.7)

The gradient of E can be used to derive update rules at time t for the
components xa and yb of the feature vector x and transformation vector y,
respectively, for any image z, assuming a fixed basis wij:

dxa

dt
= −1

2
∂E
∂xa

=
n∑

q=1

wT
aq


z −

m∑
i=1

n∑
j=1

wijxiyj


 yq + α

2
S′(xa) (3.8)

dyb

dt
= −1

2
∂E
∂yb

=
m∑

q=1

wT
qb


z −

m∑
i=1

n∑
j=1

wijxiyj


 xq + β

2
S′(yb). (3.9)

Given a training set of inputs zl, the values for x and y for each image after
convergence can be used to update the basis set wij in batch mode according
to

dwab

dt
= −1

2
∂E

∂wab
=

q∑
l=1


zl −

m∑
i=1

n∑
j=1

wijxiyj


 xayb. (3.10)

One difficulty in the sparse coding formulation of equation 3.7 is that
the algorithm can trivially minimize the sparseness function by making x
or y very small and compensate by increasing the wij basis vector norms
to maintain the desired output range. Therefore, as previously suggested
(Olshausen & Field, 1997), in order to keep the basis vectors from growing
without bound, we adapt the L2 norm of each basis vector in such a way that
the variance of xi (and yj, as discussed below) were maintained at a fixed
desired level (σ 2

g ). Simply forcing the basis vectors to have a certain norm
can lead to instabilities; therefore, a “soft” variance normalization method
was employed. The element-wise variance of the x vectors inferred during
a single batch iteration was tracked in the vector xvar and adapted at a rate
given by the parameter ε (see algorithm 1, line 18). A gain term gx is com-
puted (see lines 19–20 in algorithm 1), which determines the multiplicative
factor for adapting the norm of a particular basis vector:

ŵij = gx,i
wij

‖wij‖2 . (3.11)

An additional complication in the bilinear case is that ‖wij‖2 is related to
the variance of both xi and yj. One possible solution is to compute a joint



54 D. Grimes and R. Rao

gain matrix G (which specifies a gain Gi,j for each wij basis vector) as the
geometric mean of the elements in the gain vectors gx and gy:

G =
√

gxgy
T. (3.12)

However, in the case where sparseness is desired for x but not y (i.e.,
β = 0.0), the variance of y will rapidly increase, as the variance of x rapidly
decreases, and no perturbations to the norm of the basis vectors wij will solve
this problem. To avoid this problem, the algorithm performs soft variance
normalization directly on the evolving y vectors, and scales the basis vectors
wij based only on the variance of xi (see algorithm 1, lines 12–14).

3.3 Algorithm for Learning Bilinear Models of Translating Image
Patches. This section describes our unsupervised learning algorithm that
uses the update rules (see equations 3.8–3.10) to learn localized bilinear fea-
tures in natural images for two-dimensional translations. Figure 3 presents

Figure 3: Example training data from natural scene images. Training data are
formed by randomly selected patch locations from a set of natural images (a).
(b) The patch is then transformed to form the training set of patches zij. In this
case, the patch is shifted using horizontal translations of ±2 pixels. To learn a
model of style/content separation, a single x vector is used to represent each
image in a column, and a single y vector represents each image in a row.
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a high-level view of the training paradigm in which patches are randomly
selected from larger images and subsequently transformed.

We initially tested the application of the gradient-descent rules simulta-
neously to estimate {wij}, x, and y. Unfortunately, obtaining convergence
reliably was rather difficult in this situation, due to a degeneracy in the
model in the form of an unconstrained degree of freedom. Given a con-
stant c, there is ambiguity in the model since P(z|cx, 1

c y) = P(z|x, y). Our
use of the priors P(x), P(y) largely mitigates problems stemming from this
degeneracy, yet oscillations are still possible when both x and y are adapted
simultaneously.

Fortunately, we found that minimizing E({wij}, x, y) with respect to a sin-
gle variable until near convergence yields good results, particularly when
combined with a batch derivative approach. This approach of iteratively
performing MAP estimation with respect to a single variable at a time is
known within the statistics community as iterated conditional modes (ICM)
(Besag, 1986). ICM is a deterministic method shown to generally converge
quickly, albeit to a local minimum. In our implementation, we use a conju-
gate gradient method to speed up convergence, minimizing E with respect
to x and y.

The algorithm we have developed for learning the model parameters
{wij} is essentially an incremental expectation-maximization (EM) algorithm
applied to randomly selected subsets (“batches”) of training image patches.
The algorithm is incremental in the sense that we use a single step in the
parameter spaces, increasing the log likelihood of the model but not fully
maximizing it. We have observed that an incremental M-step often produces
better results than a full M-step (equivalent to fully minimizing equation 3.7
with respect to {wij} for fixed x and y)). We believe this is because performing
a full M-step on each batch of data can potentially lead to many shallow
local minima, which may be avoided by taking the incremental M-steps.

The algorithm can be summarized as follows (see also the pseudocode
labeled algorithm 1). First, randomly initialize the bilinear basis W, and the
matrix Y containing a set of vectors describing each style (ys). For each batch
of training image patches, estimate the per patch (indexed by i) vectors
xi and yi,s for a set of transformations (indexed by s). This corresponds
to the E-step in the EM algorithm. In the M-step, take a single gradient
step with respect to W using the estimated xi and yi,s values. In order to
regularize Y and avoid overfitting to a particular set of patches, we slowly
adapt Y over time as follows. For each particular style s, adapt ys toward
the mean of all inferred vectors y∗,s corresponding to patches transformed
according to style s (line 11 in algorithm 1). Averaging ys across all patches
for a particular transformation encourages the style representation to be
invariant to particular patch content.

Without additional constraints, the algorithm above would not neces-
sarily learn to represent content only in x and transformations only in y. In
order to learn style and content separation for transformation invariance,
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Algorithm 1: LearnSparseBilinearModel(I, T, l, α, β, ε, η, ε)

1: W ⇐ RandNormalizedVectors(k, m, n)

2: Y ⇐ RandNormalizedVectors(n, r)
3: for iter ⇐ 1, · · · , maxIter do
4: P ⇐ SelectPatchLocations(I, q)
5: Z ⇐ ExtractPatches(I, P)

6: X ⇐ InferContent(W, Y(:, c), Z, α)

7: dW ⇐ Zeros(k, m, n)

8: for s ⇐ 1, · · · , r do
9: Z ⇐ ExtractPatches(I, Transform(P, T(:, s)))

10: Ybatch ⇐ InferStyle(W, X, Z, β)

11: Y(:, s) ⇐ (1 − ε)Y(:, s) + ε · SampleMean(Ybatch)

12: yvar ⇐ (1 − ε)yvar + ε · SampleVar(Ybatch)

13: gy ⇐ gy 


(
yvar

σ 2
g

)γ

14: Y(:, s) ⇐ NormalizeVectors(Y(:, s), gy)

15: dW ⇐ dW + ( 1
r

)
dEdW(Z, W, X, Y(:, s))

16: end for
17: W = W + ηdW
18: xvar ⇐ (1 − ε)xvar + ε · SampleVar(X)

19: gx ⇐ gx 


(
xvar
σ 2

g

)γ

20: W ⇐ NormalizeVectors(W, gx)

21: end for

Algorithm 2: InferStyle(W, X, Z, β)

1: Y ⇐ ConjGradSparseFit(W, X, Z, β)

we estimate x and y in a constrained fashion. We first infer xi. Finding the
initial x vector relies on having an initial y vector. Thus, we refer to one of
the transformations as “canonical,” corresponding to the identity transfor-
mation. This transformation vector yc is used for initially bootstrapping the
content vector xi, but besides this use is adapted exactly like the rest of the
style vectors in the matrix Y. We then use the same xi to infer all yi,s vectors
for each transformed patch zi,s. This ensures that a single content vector xi

codes for the content in the entire set of transformed patches zi,s.
Algorithm 1 presents the pseudocode for the learning algorithm. It makes

use of algorithms 2 and 3 for inferring style and content, respectively. Table 1
describes the variables used in the learning of the sparse bilinear model from
natural images. Capital letters indicate matrices containing column vectors.
Individual columns are indexed using Matlab style “slicing,” for example,
Y(:, s) is the ith column of Y yi. The 
 indicates the element-wise product.
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Algorithm 3: InferContent(W, Y, Z, α)

1: X ⇐ ConjGradSparseFit(W, Y, Z, α)

Table 1: Variables for Learning and Inference.

Name Size Description Name Size Description

m scalar x (content) dim. n scalar y (style) dim.
k scalar z (patch) dim. l scalar Number of patches in batch
I [k′, l′] Full-sized images Z [k, l] Image patches
α scalar xi prior weight β scalar yj prior weight
η scalar W adaptation rate ε scalar Y adaptation rate
ε scalar yvar adaptation rate γ scalar Variance penalty
σ 2

g scalar xi goal variance c scalar Canon. transform idx.
r scalar Number of transforms T [2, r] Transform parameters

4 Results

4.1 Training Methodology. We tested the algorithms for bilinear sparse
coding on natural image data. The natural images we used are distributed
by Olshausen and Field (1997) along with the code for their algorithm.
Except where otherwise noted in an individual experiment, the training
set of images consisted of 10 × 10 pixel patches randomly extracted from 10
512×512 pixel source images. The images are prewhitened to equalize large
variances in frequency, helping to speed convergence. To assist convergence,
all learning occurs in batch mode, where each batch consists of l = 100 image
patches.

The effects of varying the number of bilinear basis units m and n were
investigated in depth. An obvious setting for m, the dimension of the content
vector x, is to use the value corresponding to a complete basis set in the linear
model (m equals the number of pixels in the patch). As we will demonstrate,
this choice for m yields good results. However, one might imagine that
because of the ability to merge representations of features that are equivalent
with respect to the transformations, m can be set to a much lower value and
still effectively learn the same basis. As we discuss later, this is true only if
the features can be transformed independently.

An obvious choice for n, the number of dimensions of the style vector y,
is simply the number of transformations in the training set. However, we
found that the model is able to perform substantial dimensionality reduc-
tion, and we present the case where the number of transformations is 49
and a basis of n = 10 is used to represent translated features.

Experiments were also performed to determine values for the sparseness
parameters α and β. Settings between 25 to 35 for α and between 0 and 5
for β appear to reliably yield localized, oriented features. Ranges are given
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here because optimum values seem to depend on n for two reasons. First,
as n increases, the number of prior terms in equation 3.8 is significantly less
than the mn likelihood terms. Thus, α must be increased to force sparseness
on the posterior distribution on x. This intuitive explanation is reinforced
by noting that α is approximately a factor of n larger than those found
previously (Olshausen & Field, 1997). Second, if dimensionality reduction
is desired (i.e., n is reduced), β must be lowered or set to zero, as the elements
of y cannot be coded in an independent fashion. For instance, in the case of
dimensionality reduction from 49 to 10 transformation basis vectors β = 0.

The W step size η for gradient descent using equation 3.10 was set to
0.25. Variance normalization used ε = 0.25, γ = 0.05, and σ 2

g = 0.1.
These parameters are not necessarily the optimum parameters, and the

algorithm is robust with respect to significant parameter changes. Gener-
ally, only the amount of time required to find a good sparse representa-
tion changes with untuned parameters. In the cases presented here, the
algorithm converged after approximately 2500 iterations, although to en-
sure that the representations had converged, we ran several runs for 10,000
iterations.

The transformations for most of the experiments were chosen to be two-
dimensional translations in the range [−3, 3] pixels in both the axes. The
experiments measuring transformation invariance (see section 4.4) consid-
ered one-dimensional translations in the range of [−8, 8] in 12 × 12 sized
patches.

4.2 Bilinear Sparse Coding of Natural Images. Experimental results
are analyzed as follows. First, we study the qualitative properties of the
learned representation, then look quantitatively at how model parameters
affect these and other properties, and finally examine the learned model’s
invariance properties.

Figures 4 and 5 show the results of training the sparse bilinear model on
natural image data. Both show localized oriented features resembling Gabor
filters. Qualitatively, these are similar to the features learned by the model
for linear sparse coding. Some features appear to encode more complex
features than is common for linear sparse coding. We offer several possi-
ble explanations here. First, we believe that some deformations of a Gabor
response are caused by the occlusion introduced by the patch boundaries.
This effect is most pronounced when the feature is effectively shifted out
of the patch based on a particular translation and its canonical (or starting)
location. Second, we believe that closely located and similarly oriented fea-
tures may sometimes be representable in the same basis feature by using
slightly different transformations representations. In turn, this may “free
up” a basis dimension for representing a more complex feature.

The bilinear method is able to model the same features under different
transformations. In this case, horizontal translations in the range [−3, 3]
were used for training the model. Figure 4 provides an example of how
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Figure 4: Representing natural images and their transformations with a sparse
bilinear model. The representation of an example natural image patch and of
the same patch translated to the left. Note that the bar plot representing the x
vector is indeed sparse, having only three significant coefficients. The code for
the translation vectors for both the canonical patch and the translated one is
likewise sparse. The wij basis images are shown for those dimensions that have
nonzero coefficients for xi or yj.

the model encodes a natural image patch and the same patch after it has
been translated. Note that in this case, both the x and y vectors are sparse.
Figure 5 displays the transformed features for each translation represented
by a learned ys vector.

Figure 6 shows how the model can account for a given localized feature
at different locations by varying the y vector. As shown in the last column
of the figure, the translated local feature is generated by linearly combining
a sparse set of basis vectors wij. This figure demonstrates that the bilinear
form of the interaction function f (x, y) is sufficient for translating features
to different locations.

4.3 Effects of Sparseness on Representation. The free parameters α and
β play an important role in deciding how sparse the coefficients in the
vectors x and y are. Likewise, the sparseness of the vectors is intertwined
with the desired local and independent properties of the wij bilinear ba-
sis features. As noted in other research on sparseness (Olshausen & Field,
1996), both the attainable sparseness and independence of features also
depend on the model dimensionality—in our case, the parameters m and
n. In all of our experiments, we use a complete basis (in which m = k) for
content representation, assuming that the translations do not affect the num-
ber of basis features needed for representation. We believe this is justified
also by the very idea that changes in style should not change the intrinsic
content.
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Figure 5: Localized, oriented set of learned basis features. The transformed ba-
sis features learned by the sparse bilinear model for a set of five horizontal
translations. Each block of transformed features wys

i is organized with values of
i = 1, . . . , m across the rows and values of s = 1, . . . , r down the columns. In this
case, m = 100 and r = 5. Note that almost all of the features exhibit localized
and oriented properties and are qualitatively similar to Gabor features.

In theory, the style vector y could also use a sparse representation. In
the case of affine transformations on the plane, using a complete basis for y
means using a large value on n. From a practical perspective, this is unde-
sirable, as it would essentially equate to the tiling of features at all possible
transformations. Thus, in our experiments, we set β to a small or zero value
and also perform dimensionality reduction by setting n to a fraction of the
number of styles (usually between four and eight). This configuration allows
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Figure 6: Translating a learned feature to multiple locations. The two rows of
eight images represent the individual basis vectors wij for two values of i. The yj

values for two selected transformations for each i are shown as bar plots. y(a, b)
denotes a translation of (a, b) pixels in the Cartesian plane. The last column
shows the resulting basis vectors after translation.

learning of sparse, independent content features while taking advantage of
dimensionality reduction in the coding of transformations.

We also analyzed the effects of the sparseness weighting term α. Figure 7
illustrates the effect of varying α on the sparseness of the content represen-
tation x and on the log posterior optimization function E (see equation 3.7).
The results shown are based on 1000 x vectors inferred by presenting the
learned model with a random sample of 1000 natural image patches. For
each value of α, we also average over five runs of the learning algorithm.
Figure 8 illustrates the effect of the sparseness weighting term α on the
kurtosis of x and the basis vectors learned by the algorithm.

4.4 Style and Content Invariance. A series of experiments were con-
ducted to analyze the invariance properties of the sparse bilinear model.
These experiments examine how transformation (y) and content represen-
tations (x) change when the input patch is translated in the plane. After
learning a sparse bilinear model on a set of translated patches, we se-
lect a new test patch z0 and estimate a reference content vector x0 using
InferContent(W, yc, z0). We then shift the patch according to transforma-
tion i: zi = Ti(z0). Next, we infer the new yi using InferStyle(W, x0, zi)

(without using knowledge of the transformation parameter i). Finally, we
infer the new content representation xi using a call to the procedure
InferContent(W, yi, zi).

To quantify the amount of change or variance in a given transformation or
content representation, we use the L2 norm of the vector difference between
the reestimated vector and the initial vector. To normalize our metric and
account for different scales in coefficients, we divide by the norm of the
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Figure 7: Effect of sparseness on the optimization function. As the sparseness
weighting value is increased, the sparseness term (log P(x)) takes on higher
values, increasing the posterior likelihood. Note that the reconstruction likeli-
hood (log P(z|x, y, {wij)) is effectively unchanged, even as the sparseness term
is weighted 20 times more heavily, thus illustrating that the sparse code does
not cause a loss of representational fidelity.

reference vector:

�xi = |xi − x0|
|x0| �yi = |yi − y0|

|y0| . (4.1)

For testing invariance, the model was trained on 12 × 12 patches and
vertical shifts in the range [−8, 8], with m = 144 and n = 15. Figure 9
shows the result of vertically shifting a particular content (image patch at a
particular location) and recording the subsequent representational changes.
Figure 10 shows the result of selecting random patches (different content
vectors x) and translating each in an identical way (same translational
offset).

Both figures show a strong degree of invariance of representation: the
content vector x remains approximately unchanged when subjected to dif-
ferent translations, while the translation vector y remains approximately
the same when different content vectors are subject to the same translation.

While Figures 9 and 10 show two sample test sequences, Figures 11 and
12 show the transformation-invariance properties for the average of 100
runs on shifts in the range [−8, 8] in steps of 0.5. The amount of variance in
x to translations of up to three pixels is less than a 2 percent change. These
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Figure 8: Sparseness prior yields highly kurtotic coefficient distributions. (a)
The effect of weighting the sparseness prior for x (via α) on the kurtosis (denoted
by k) of xi coefficient distribution. (b) A subset of the corresponding bilinear basis
vectors learned by the algorithm.
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Figure 9: Transformation-invariance property of the sparse bilinear model. (a)
Randomly selected natural image patch transformed by an arbitrary sequence
of vertical translations. (b) Sequence of vertical pixel translations applied to the
original patch location. (c) Effects of the transformations on the transformation
(y) and patch content (x) representation vectors. Note that the magnitude of the
change in y is well correlated to the magnitude of the vertical translation, while
the change in x is relatively insignificant (mean �x = 2.6), thus illustrating the
transformation-invariance property of the sparse bilinear model.

results suggest that the sparse bilinear model is able to learn an effective
representation of translation invariance with respect to local features.

Figure 13 compares the effects of translation in the sparse linear versus
sparse bilinear model. We first trained a linear model using the correspond-
ing subset of parameter values used in the bilinear model. The same metric
for measuring changes in representation was used by first estimating x0

for a random patch and then reestimating xi on a translated patch. As ex-
pected, the bilinear model exhibits a much greater degree of invariance to
transformation than the linear model.

4.5 Interpolation for Continuous Translations. Although transforma-
tions are learned as discrete style classes, we found that the sparse bilinear
model can handle continuous transformations. Linear interpolation in the
style space was found to be sufficient for characterizing translations in the
continuum between two discrete learned translations. Figure 14a shows
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Figure 10: Invariance of style representation to content. (a) Sequence of ran-
domly selected patches (denoted “Can.”) and their horizontally shifted versions
(denoted “Trans.”). (b) Plot of the the L2 distance in image space between the
two canonical images. (c) The change in the inferred y for the translated version
of each patch. Note that the patch content representation fluctuates wildly (as
does the distance in image space), while the translation vector changes very
little.

the values of the six-dimensional y vector for each learned translation. The
filled circles on each line represent the value of the learned translation vec-
tor for that dimension. Plus symbols indicate the resulting linearly inter-
polated translation vectors. Note that generally the values vary smoothly
with respect to the translation amount, allowing simple linear interpolation
between translation vectors, similar to the method of locally linear embed-
ding (Roweis & Saul, 2000). Figure 14b shows the style vectors for a model
trained with only the transformations −4, −2, 0, +2, +4. Figure 14c shows
examples of three reconstructed patches for two interpolated style vectors
(for translations, −3 and +0.5 pixels). Also shown is the mean squared error
(MSE) over all image pixels between each reconstructed patch and the actual
translated patch. The MSE values for the interpolated cases are somewhat
higher than those for translations in the training set (labeled “learned” in
the figure) but within the range of MSE values across all image patches.
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Figure 11: Effects of translation on patch content representation. The average
relative change in the content vector x versus translation over 100 experiments
in which 12 × 12 image patches were shifted by varying degrees. Note that for
translations in the range (−3, +3), the relative change in x is small, yet as more
and more features are shifted into the patch, the content representation must
change. Error bars represent the standard deviation over the 100 experiments.

5 Discussion

5.1 Related Work. Our work is based on a synthesis of two extensively
studied tracks of vision research. The first is transformation-invariant object
representations, and the second is the extraction of sparse, independent
features from images. The key observation is that the combination of the
two tracks of research can be synergistic, effectively making each problem
easier to solve.

A large body of work exists on transformation invariance in image pro-
cessing and vision. As discussed by Wiskott (2004), the approaches can be
divided into two rough classes: (1) those that explicitly deal with differ-
ent scales and locations by means of normalizing a perceived image to a
canonical view and (2) those that find simple localized features that become
transformation invariant by pooling across various scales and regions. The
first approach is essentially generative, that is, given a representation of
“what” (content) and “where” (style), the model can output an image. The
bilinear model is one example of such an approach; others are discussed
below. The second approach is discriminative in the sense that the model
operates by extracting object information from an image and discards posi-
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Figure 12: Effects of changing patch content on translation representation. The
average relative change in y for random patch content over 100 experiments in
which various transformations were performed on a randomly selected patch.
No discernible pattern seems to exist to suggest that some transformations are
more sensitive to content than others. The bar shows the mean relative change
for each transformation.

tional and scale information. Generation of an image in the second approach
is difficult because the pooling operation is noninvertible and discards the
“where” information. Examples of this approach include weight sharing
and weight decay models Hinton, 1987; Földiák, 1991), the neocognitron
(Fukushima, Miyake, & Takayukiito, 1983), LeNet (LeCun et al., 1989), and
slow feature analysis (Wiskott & Sejnowski, 2002).

A key property of the sparse bilinear model is that it preserves informa-
tion about style and explicitly uses this information to achieve invariance.
It is thus similar to the shifting and routing circuit models of Anderson and
Van Essen (1987) and Olshausen, Anderson, and Van Essen (1995). Both the
bilinear model and the routing circuit model retain separate pathways con-
taining “what” and “where” information. There is also a striking similarity
in the way routing nodes in the routing circuit model select for scale and
shift to mediate routing, and the multiplicative interaction of style and con-
tent in the bilinear model. The y vector in the bilinear model functions in the
same role as the routing nodes in the routing circuit model. One important
difference is that while the parameters and structure of the routing circuit
are selected a priori for a specific transformation, our focus is on learning
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Figure 13: Effects of transformations on the content vector in the bilinear model
versus the linear model. The solid line shows, for a linear model, the relative
content representation change due to the input patch undergoing various trans-
lations. The points on the line represent the average of 100 image presentations
per translation, and the error bars indicate the standard deviation. For reference,
the results from the bilinear model (shown in detail in Figure 11) are plotted with
a dashed line. This shows the high degree of transformation invariance in the
bilinear model in comparison to the linear model, whose representation changes
steeply with small translations of the input.

arbitrary transformations directly from natural images. The bilinear model
is similarly related to the Lie group–based model for invariance suggested
in Rao and Ruderman (1999), which also uses multiplicative interactions
but in a more constrained way by invoking a Taylor-series expansion of a
transformed image.

Our emphasis on modeling both “what” and “where” rather than just
focusing on invariant recognition (“what”) is motivated by the belief that
preserving the “where” information is important. This information is critical
not simply for recognition but for acting on visual information, in both
biological and robotic settings. The bilinear model addresses this issue in a
very explicit way by directly modeling the interaction between “what” and
“where” processes, similar in spirit to the “what” and “where” dichotomy
seen in biological vision (Ungerleider & Mishkin, 1982).

The second major component of prior work on which our model is based
is that of representing natural images through the use of sparse or statisti-
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Figure 14: Modeling continuous transformations by interpolating in translation
space. (a) Each line represents a dimension of the tranformation space. The val-
ues for each dimension at each learned translation are denoted by circles, and
interpolated subpixel coefficient values are denoted by plus marks. Note the
smooth transitions between learned translation values, which allow interpola-
tion. (b) Tranformation space values as in a when learned on coarser translations
(steps of 2 pixels). (c) Two examples of interpolated patches based on the training
in b. See section 4.5 for details.
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cally independent features. As discussed in section 1, our work is strongly
based on the work of Olshausen and Field (1997), Bell and Sejnowski (1997),
and Hinton and Ghahramani (1997) in forming local, sparse distributed rep-
resentations directly from images.

The sparse and independent nature of the learned features and their
locality enables a simple, essentially linear model (given fixed content) to
efficiently represent transformations of that content. Given global eigenvec-
tors such as those resulting from principal component analysis, this would
be more difficult to achieve. A second benefit of combining transformation-
invariant representation with sparseness is that the multiplicity of the same
learned features at different locations and transformations can be reduced
by explicitly learning transformations of a given feature.

Finally, our use of a lower-dimensional representation based on the bilin-
ear basis to represent inputs and to interpolate style and content coefficients
between known points in the space has some similarities to the method of
locally linear embedding (Roweis & Saul, 2000).

5.2 Extension to a Parts-Based Model of Object Representation. The
bilinear generative model in equation 2.2 uses the same set of transformation
values yj for all the features i = 1, . . . , m. Such a model is appropriate for
global transformations that apply to an entire image region such as a shift
of p pixels for an image patch or a global illumination change. Consider the
problem of representing an object in terms of its constituent parts (Lee &
Seung, 1999). In this case, we would like to be able to transform each part
independent of other parts in order to account for the location, orientation,
and size of each part in the object image. The standard bilinear model can
be extended to address this need as follows:

z =
m∑

i=1


 n∑

j=1

wijyi
j


 xi. (5.1)

Note that each object feature i now has its own set of transformation values
yi

j . The double summation is thus no longer symmetric. Also, note that the
standard model (see equation 2.2) is a special case of equation 5.1 where
yi

j = yj for all i.
We have tested the feasibility of equation 5.1 using a set of object features

learned for the standard bilinear model. Preliminary results (Grimes & Rao,
2003) suggest that allowing independent transformations for the different
features provides a rich substrate for modeling images and objects in terms
of a set of local features (or parts) and their individual transformations
relative to an object-centered reference frame. Additionally, we believe that
the number of basis features needed to represent natural images could be
greatly reduced in the case of independently transformed features. A single
“template” feature could be learned for a particular orientation and then
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translated to represent a localized, oriented image feature.

6 Summary and Conclusion

A fundamental problem in vision is to simultaneously recognize objects and
their transformations (Anderson & Van Essen, 1987; Olshausen et al., 1995;
Rao & Ballard, 1998; Rao & Ruderman, 1999; Tenenbaum & Freeman, 2000).
Bilinear generative models provide a tractable way of addressing this prob-
lem by factoring an image into object features and transformations using a
bilinear function. Previous approaches used unconstrained bilinear models
and produced global basis vectors for image representation (Tenenbaum &
Freeman, 2000). In contrast, recent research on image coding has stressed the
importance of localized, independent features derived from metrics that em-
phasize the higher-order statistics of inputs (Olshausen & Field, 1996, 1997;
Bell & Sejnowski, 1997; Lewicki & Sejnowski, 2000). This paper introduces a
new probabilistic framework for learning bilinear generative models based
on the idea of sparse coding.

Our results demonstrate that bilinear sparse coding of natural images
produces localized oriented basis vectors that can simultaneously repre-
sent features in an image and their transformation. We showed how the
learned generative model can be used to translate a basis vector to differ-
ent locations, thereby reducing the need to learn the same basis vector at
multiple locations, as in traditional sparse coding methods. We also demon-
strated that the learned representations for transformations vary smoothly
and allow simple linear interpolation to be used for modeling transforma-
tions that lie in the continuum between training values. Finally, we showed
that the object representation (the “content”) in the sparse bilinear model
remains invariant to image translations, thus providing a basis for invariant
vision. Our current efforts are focused on exploring the application of the
model to learning other types of transformations such as rotations, scal-
ing, and view changes. We are also investigating a framework for learning
parts-based object representations that builds on the bilinear sparse coding
model presented in this article.
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