
Planning and Acting in Uncertain Environments
using Probabilistic Inference

Deepak Verma
Dept. of CSE, Univ. of Washington,

Seattle, WA 98195-2350
deepak@cs.washington.edu

Rajesh P. N. Rao
Dept. of CSE, Univ. of Washington,

Seattle, WA 98195-2350
rao@cs.washington.edu

Abstract— An important problem in robotics is planning and
selecting actions for goal-directed behavior in noisy uncertain
environments. The problem is typically addressed within the
framework of partially observable Markov decision processes
(POMDPs). Although efficient algorithms exist for learning
policies for MDPs, these algorithms do not generalize easily to
POMDPs. In this paper, we propose a framework for planning
and action selection based on probabilistic inference in graphical
models. Unlike previous approaches based on MAP inference,
our approach utilizes the most probable explanation (MPE) of
variables in a graphical model, allowing tractable and efficient
inference of actions. It generalizes easily to complex partially
observable environments. Furthermore, it allows rewards and
costs to be incorporated in a straightforward manner as part
of the inference process. We investigate the application of our
approach to the problem of robot navigation by testing it
on a suite of well-known POMDP benchmarks. Our results
demonstrate that the proposed method can beat or match the
performance of recently proposed specialized POMDP solvers.

I. INTRODUCTION

Consider the problem of a delivery robot navigating in an
office environment (Fig. 1) using a laser range finder. The
robot may seek to navigate to specific locations such as the
mail room from arbitrary locations in the office environment.
The readings from the laser range finder are typically noisy
and ambiguous, and therefore provide only partial information
about the current location of the robot. Different locations in
the environment may produce similar readings, resulting in
what has been termed “perceptual aliasing.” How should the
robot choose actions to maximize its probability of reaching a
goal location, given only its noisy and ambiguous laser range
finder readings?

Problems such as the robot navigation problem described
above can be formalized within the framework of partially ob-
servable Markov decision processes (POMDPs) [1]. POMDPs
are obtained from MDPs by incorporating observation proba-
bilities that relate sensor readings (e.g., laser measurements) to
hidden states (e.g., locations in the office). Although efficient
algorithms exist for learning optimal policies (state to action
mappings) for MDPs [2], [3], [4], [5], most of these algo-
rithms do not generalize easily to POMDPs. Consequently,
considerable effort has focused on using beliefs over states
for approximate planning in POMDPs (e.g., [1], [6]).

In this paper, we investigate a new approach to planning
and acting under uncertainty based on probabilistic inference

in graphical models. The approach treats MDP and POMDP
problems on an equal footing, and generalizes easily to other
more complicated graphical models. We demonstrate the via-
bility of our approach by solving several benchmark POMDP
problems. The main contributions of our paper are: (1) an
investigation of three different approaches to planning using
probabilistic inference, (2) an exploration of three methods for
probabilistic action selection and control, (3) a new algorithm
for solving POMDP problems with applications to robotic nav-
igation. Our approach opens the door to tackling a variety of
problems in robotics ranging from feedback-based control to
imitation using algorithms for exact and approximate inference
in graphical models, in much the same way as viewing the
deterministic planning problem as deduction [7] paved the way
for the use of satisfiability solvers for efficient planning [8].

II. PLANNING USING PROBABILISTIC INFERENCE

A. Notation

We use capital letters for variable names and small case
letters to denote specific instances. Let ΩS be the set of states
in the environment and ΩA the set of all possible actions
available to the agent (both finite). Let there be a special
single state g ∈ ΩS called the “goal” state that the robot is
trying to reach. Different episodes can have different goals. At
time t, the robot is in state St and executes action At, which
changes the robot’s state in a stochastic manner given by the
transition probability P (At+1 | St, At), which is assumed to
be independent of t, i.e., P (St+1 =s′ | St =s, At =a) = τs′sa.
The parameters described above define a Markov Decision
Process (MDP) [3]. We use capital letters (e.g., S, A) to denote
the variables and lowercase letters (e.g., s, a) to denote specific
instances. Also, when obvious from context, we use s for
St =s and a for At =a, etc.

B. Classical Planning using MDPs

The problem of planning is classically stated as follows:
Starting from an initial state S1 = s and a desired goal
state g, compute a series of actions A1:T that maximizes the
probability of reaching the goal state (note that there are no
explicit rewards). Here, T represents the maximum number of
time steps allowed (the “episode length”). We do not require T

to be exactly equal to the shortest path to the goal, just an upper
bound on the path length chosen based on a priori domain

Rao
To appear in: Proc. of IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2006

Fig. 1. Navigating in an Uncertain Environment. The figure shows an
office environment used in the POMDP benchmark problem “Hallway2” [9].
The robot is required to navigate to the goal location marked with a star
from arbitrary locations in the environment in the presence of considerable
uncertainty due to ambiguity in laser range finder readings. Results obtained
using our algorithm in this environment can be found in Section III-B

knowledge. The problem formulated above can be considered
a special case of an MDP if we choose a suitable reward
function. In particular, a reward structure can be imposed on
the problem by assigning a high reward value to the goal state
and zero or negative values for all other states. Solving the
MDP involves learning a policy (state-to-action mapping) that
maximizes total expected reward, a problem for which efficient
algorithms exist [2], [3], [4], [5].

The policy learning problem can also be cast in terms of
the graphical model in Fig. 2(a) where the task is to learn
the optimal St to At conditional probability table. Although
popular, policy learning suffers from the drawback that it needs
to be re-learned each time there is a change in environment.
More importantly, the MDP-based solutions are specific to
the graphical model in Fig. 2(a) and do not generalize easily
to more complex graphical models, especially those relevant
to robotic applications such as navigating in real-world envi-
ronments with noisy sensors. For example, even the simple
alteration that results in the graphical model in Fig. 2(c),
representing a POMDP model, causes problems.

C. Methods for Inferring Actions

Instead of attempting to extend MDP-based methods to
POMDPs, we tackle the problem of planning in partially ob-
servable uncertain environments using probabilistic inference
in graphical models. The problem can be formulated as one
of inferring an action At, given that St = s and ST+1 = g

(the goal state) [10] (Fig. 3). The key difference between
this approach and traditional MDP-based approaches is that it
allows us to encode domain specific knowledge easily into the
graphical model either as arcs encoding dependence between
variables or as conditional probability tables (in particular
priors over various states).

tF

tO

t+1G
tG

t+1F

t+1O

t+1A

t+1S

tA t+1A

t+1StS

tA

t+1A

t+1StS

tA

tS

(c)

(b)(a)

Fig. 2. Graphical Models: The graphical models (dynamic Bayesian
networks or DBNs) used for planning and action inference. The figures show
the network for two time slices. (a) The standard MDP (or FOMDP) model.
(b) The Non Observable MDP (NOMDP) model: Dotted line represents a
possible dependence between consecutive actions. (c) The POMDP model
used in this paper. Ot represents the observations recorded at time t. The
goal node Gt is set to the goal state at the beginning of an episode. The
“finished” node Ft is set to “0” unless the current state becomes equal to
the goal state, when it is set to “1”. When F t = 1, the stayput action is
preferred. This enables our approach to compute the shortest path to the goal,
given a large enough value for T .

1A

1S

T+1A

T+1S2S

2A

TS

TA

Set to goal StateSet to initial state

Query Nodes

.

.

Fig. 3. Planning as Probabilistic Inference of Actions in a Graphical
Model. The shaded nodes represent the evidence: initial state (S1) and the
desired goal state (ST+1).

We consider three methods for action inference: (1) Com-
puting the action maximizing the marginal distribution over
actions at each time step, (2) Computing the maximum a
posteriori (MAP) sequence of actions from the current state
to the goal state, and (3) Computing the most probable
explanation (MPE) of unknown variables, including action
variables, in the graphical model unrolled in time.

1) Marginal Distribution over Actions: Algorithms for in-
ference in graphical models typically compute the marginal
distribution of unknown nodes in a graphical model given
evidence on some nodes. This can be done efficiently for
graphical models such as those in Fig. 2 using algorithms
such as belief propagation. In our case, this approach reduces
to computing the marginal distribution over the action nodes
given the start and goal states:

ãt = argmax
at

P (At = at | St =s, ST+1 =g) (1)

2p

s 1p g1a

2a 1,2a

1,2a

1a

2a

1,2aSink

Fig. 4. Sub-Optimality of the Marginal Method: The figure provides a
counterexample showing that the marginal action ã can be different from the
optimal policy action π̂(s). The diagram is a compact representation of the
transition matrix. All actions are deterministic except executing a1 or a2 in
state p2, both of which result in state g with probability β and back to p2

otherwise.

One might be tempted to think that an optimal policy (state-
to-action mapping) π̂ can be easily learned by setting π̂(s)= ã.
However, such a strategy may yield sub-optimal results. The
marginal action is chosen so as to maximize the probability of
success over all possible futures. It makes no assumption about
potential optimal action(s) being executed after ã1 and hence
sums over all possibilities in the future. An optimal policy,
on the other hand, tries to find an action for s which, when
followed by other optimal actions, maximizes the expected
probability of success.

To illustrate this point, consider the example in Fig. 4. There
are five states: s, g, p1, p2 and Sink. s is the start state S1 and
g is the goal state. (want ST+1 =g). The transition probability
table τ is defined as follows:

• For the start state s: τp1sa1
= 1; and τp2sa2

= 1 (Note:
τs′sa =P (s′|s, a)).

• Both g and Sink are “absorbing” states i.e. τssa =1 for
s ∈ {g, Sink}, for all a.

• For state p1, τgp1a1
=1 and τSinkp1a2

=1.
• For state p2, τgp2a1,2

=β and τp2p2a1,2
=1 − β.

Consider the optimal action for the start state s. The globally
optimal policy action π̂(s)=a1. However, the marginal action
is a2 (as long as β is not too low). To see why, consider the
case where T = 2 i.e., S1 = s, and S3 = g. The marginal
method computes the likelihood of the action A1 = a1 or a2

according to P (A1|S1 = s, S3 = g). Assuming a uniform
prior over actions, we get:

P (A1|S1 = s, S3 = g) ∝ P (A1, S1, S3)

=
∑

A2,S2

P (S1, A1, S2, A2, S3)

= P (S1)P (A1|S1)
∑

A2,S2

P (S2|S1, A1)P (A2|S2)P (S3|S2, A2)

∝
∑

S2

P (S2|S1, A1)
∑

A2

P (A2|S2)P (S3|S2, A2)

Now, P (A2|S2) = 0.5 for all S2, A2 and P (S2|S1, Ai) =
δ(S2, pi) for i = 1, 2. So the above expression simplifies to

P (A1 = ai|S1 = s, S3 = g) ∝
∑

A2

P (S3 = g|pi, A2)

For A1 =a1 the above term reduces to 1 and for A2 =a2, the
above term reduces to 2β since the goal is reached by both
A2 = a1 and A2 = a2 with probability β. So if β > 0.5, the
marginal action at t = 1 is a2 where as the optimal policy
π̂(s1) is always a1 as long as β < 1. The discrepancy arises
because to compute the merit of A1 =a1, the marginal method
sums over the possibility that A2 might be a2, which takes it
to the Sink, where as the optimal policy is computed with the
information that π̂(p1)=a1.

2) MAP Action Sequence: A second approach to computing
actions for reaching the goal state is to select the maximum a
posteriori (MAP) action sequence:

â1:T =argmax
a1:T

P (a1:T | S1 =s, ST+1 =g) (2)

The MAP method was first suggested by Attias [10] who
also proposed a polynomial time algorithm for this problem;
however, the algorithm assumes a factorization (Equation (13)
in [10]) which one may view as an approximation, leading to
an approximate but not exact solution to the MAP problem.
In fact, computing the exact MAP action sequence above can
be shown to be an NP-complete problem (the proof is very
similar to the proof presented in [11] showing that computing
the MAP sequence in polytrees is NP-complete). Thus, it is
unlikely that an efficient algorithm exists for computing the
MAP sequence.

3) MPE Action Sequence: A tractable alternative to com-
puting the MAP action sequence is to compute the most
probable explanation (MPE) of variables in a graphical model,
given a set of known variables:

ā1:T , s̄2:T =argmaxP (a1:T , s2:T |S1 =s, ST+1 =g) (3)

The MPE method, which yields both action and state
estimates, is inspired by the observation that humans often vi-
sualize a specific sequence of events when they plan, instead of
optimally averaging over all outcomes as in the MAP method.
Computing MPE is a straightforward inference problem that
can be solved efficiently using standard techniques (such as the
junction tree algorithm used for the results in this paper). It
generalizes easily to arbitrary dynamic graphical models. The
MPE method was first used in [12] to model human imitation.
It is similar in spirit to the Most Likely State (MLS) heuristic
used with some success in robot navigation, but differs from
MLS in computing the most likely sequence of actions (in
addition to states) to achieve a goal state.

D. Action Selection and Control Strategies

If the state is observable at each time step, the robot has
the option of using the current state information to re-plan at
any time step. This leads to the following strategies for action
selection and control:

 1 2

 3

 4

 5 6 7 8

 9 10 11 12

(c) ExcuteAndVerify

 1

 2 3

 4

 5 6 7 8

 9 10 11 12 13

(d) Greedy/Local

0.421

0.573 0.690

(a) Example Plans

 1

 2

 3

 4 5 6 7

 8 9 10 11

 12

13

14 15 16 17

18 19 20 21 22

(b) PlanAndExecute

Fig. 5. Planning and Action Selection: (a) shows three example
plans (action sequences) computed using the MPE method. The plans
are shown as colored lines capturing the direction of actions. The
numbers denote probability of success of each plan. The longer plans
have lower probability of success as expected due to the noise in
the environmental dynamics at each step. (b) Example of a path
followed by the robot when utilizing the Plan-and-Execute strategy.
Numbers denote states (locations) visited by the robot. (c) and (d)
Representative paths of the robot when executing the Execute-and-
Verify and Greedy/Local strategies respectively.

• Plan-and-Execute (“Open Loop” Control): Execute the
the computed plan a1:T . The plan could be the MAP esti-
mate â1:t or the MPE estimate ā1:T . If the goal state is not
reached, start with the current state as the new initial state
and recalculate a new plan. Repeat until the goal state is
reached. This constitutes an “open loop” control strategy
where feedback from the environment is precluded during
action execution. For the results discussed below, we used
the MPE plan in the implementation of this strategy.

• Greedy (Local Marginal Control): The greedy strategy
is to execute the local marginal action ãt (Eq. 1) for the
current time step and repeat until the goal state is reached.

• Execute-and-Verify (“Closed Loop” Control): Com-
pute the MPE action and state sequence ā1:T , s̄2:T using
Equation 3. At time step t, execute āt and compare
the new state so

t+1 with the predicted state s̄t+1. If the
two states do not match, recompute the MPE sequences
starting from so

t+1 and repeat. This strategy does not wait
until the entire plan is executed before re-planning (as in
Plan-and-Execute). It also does not necessarily require
inference at each time step as in the Greedy method.

Simulation Domain: We illustrate the above strategies using
a simulated office environment for the robot. The domain
is similar to the standard stochastic “maze” domain [4],
[10] (Figure 5). There are five possible actions: forward,
backward, left, right and stayput. Each action
takes the robot into the intended cell with a high probability
and into the neighboring cells with probability η.

10
-3

10
-2

10
-1

0

10

20

30

40

50

Noise η

A
vg

. n
um

be
r

of
 S

te
ps

Action Selection Strategies

PlanAndExecute
GreedyLocal
ExecuteAndVerify

Fig. 6. Comparison of Three Action Selection/Control Strategies: The
plots show average number of steps taken to reach the goal state as a function
of noise η for three different control strategies (see text). Each data point was
computed by averaging over 500 runs.

Figure 5 shows some example MPE plans and the results of
using the above control strategies for reaching a particular goal
location (shaded). To quantify the efficiency of the three strate-
gies, we calculated the average number of time steps taken to
reach a fixed goal location from random initial locations. A
uniform prior was used for P (a1:T). As seen in Figure 6, while
the Greedy and Execute-and-Verify strategies scale gracefully
with increasing noise η, the Plan-and-Execute method takes
exponentially more steps to reach the goal state because it
requires that all actions succeed, the probability of which goes
down exponentially (< (1− η)PathLength) with increasing η.
This is consistent with the intuition that Plan-and-Execute is
a poor strategy for noisy environments where plans are prone
to failure and where closed-loop strategies perform better. The
Greedy and Plan-and-Execute methods give identical results in
this experiment because for this simulated environment, both
strategies reduce to finding the shortest path to the goal state,
resulting in the same action for a given state. However, as
discussed in Section II-C.1, there are cases where the Greedy
method may not necessarily compute a globally optimal action.

III. PARTIAL OBSERVABILITY

The previous section assumes that the robot has access to the
true state of the environment. For most practical domains, this
assumption is not valid. The robot can only partially observe
some aspect of the state (for example, location information
through laser range finder readings) and the problem becomes
a POMDP problem. If the observations give a very good
estimate of the robot’s state with little perceptual aliasing (e.g.,
GPS readings), one can solve underlying the MDP and solve
the POMDP using the MLS (Most Likely State) heuristic [13].
However, in most realistic domains, the observations suffer
heavily from perceptual aliasing, e.g., readings from a laser
range finder in a robot for which similar rooms or hallways
may produce near identical observations. In such cases, the
strategy of learning the optimal policy for the underlying MDP
is known not to work well. In this section, we propose a new
algorithm for planning in POMDPs based on inferring actions
through MPE.

A. The POMDP algorithm

To take into account partial observability, we first add in
the observation node Ot to the graphical model (Fig. 2(c)).
As before, we use the MPE estimate for At as the next action
to execute, given current and past observations and a desired
goal state:

āt:T , ōt+1:T+1, s̄1:T=

argmaxP (at:T , ot+1:T+1, s1:T |o1:t, a1:t−1, ST+1 =g) (4)

Note that because the MPE method also provides estimates
of expected observations1, one only needs to compute the MPE
estimate if the observation at t+1 is different than the one that
was expected (cf. [14]). Thus, the method does not require re-
planning at each time step (except in the worst case). Note also
that since the algorithm is finding the MPE over the graphical
model and is not dependent on any specific node, we can add
a variety of constraints and priors on the graphical model (e.g.,
make it Semi-Markov) without altering the algorithm.

Algorithm 1 MPE-based POMDP Algorithm using Graphical
Models

1: Given: Initial observation o1 , desired goal state g and
episode length T .

2: Compute ā1:T , ō1:T+1 as in Eq.4 for t = 1
3: for t = 1 to T do
4: Execute āt to generate Ot+1 = ot+1.
5: if ot+1 6= ōt+1 then
6: Update ā1:T , ō1:T+1 as in Eq.4 for t + 1.
7: end if
8: end for

The algorithm above computes actions based on all current
and past observations and actions, and can handle non-trivial
perceptual aliasing, unlike a previous inference algorithm
[12] which (effectively) solved the POMDP by solving the
underlying MDP.

B. Results on Benchmarks

To evaluate the MPE-based POMDP algorithm described
above, we ran it on two well-known benchmark navigation
problems, Hallway and Hallway2, introduced in [1]. The ob-
jective is to reach a pre-specified goal state from random loca-
tions in the simulated environment. Information about location
is obtained from simulated laser range finder measurements.
The state spaces (locations) in these problems are reasonably
large (57 and 89 respectively). We ran the experiments as
251 runs with T set to 251 as in [1]. The results are shown
in Figure 7: the numbers reflect the percentage of times the
given method reached the goal location. As seen from the
table, the MPE-based algorithm either beats or achieves the
same degree of accuracy (100%) as state-of-the-art specialized
POMDP solvers such as HSVI [15] and PBVI [16].

1MPE also estimates the most probable values for Gt and Ft; these are
omitted in Equation 4 for brevity.

Domain Q-MDP PBVI HSVI MPE
Hallway 47.4 96 100 100

Hallway2 25.9 98 100 100

Fig. 7. Comparison with other POMDP Algorithms on Benchmarks:
The numbers denote the percentage of times goal was reached starting from
a location chosen randomly.

tO
t+1O

t+1StS

t+1RtR

t+1AtA

Fig. 8. Incorporating Rewards in Inference-Based Planning: The
conditional probability table for boolean node Rt incorporates rewards in
the likelihood for the graphical model. See text for details. Nodes Gt and Ft

have been dropped for the sake of simplicity.

C. Incorporating Rewards and Costs

In many robotics applications, one needs to take into ac-
count the desirability or undesirability of intermediate states
en-route to the goal. Additionally, some actions may be more
costly to execute than others. Thus, the planning problem
becomes one of selecting actions that maximize the probability
of reaching a goal state while at the same time maximizing the
total reward ((or minimizing the total cost) along the way. The
challenge is to incorporate rewards and costs into graphical
models in such a way that probabilistic inference automatically
takes them into account, implementing a trade-off between
reaching the goal state and maximizing total reward received
within an episode. We solve this problem by introducing a
new term encoding rewards in the likelihood for the graphical
model [17].

Fig. 8 shows the new graphical model. The node Rt is a
binary node which is used to incorporate rewards into the
likelihood. Let R(s, a) be the reward obtained on executing
action a in state s. Also, assume that R is normalized so
that the maximum reward possible is 0, i.e Rnew(s, a) =
Rold(s, a) − Rmax where Rmax = maxs,a Rold(s, a).2 The
reward variable Rt’s conditional probability table (CPT) is
defined to depend on St and At as follows:

P (Rt = 1|St = s, At = a) = e+ 1

λ
γt

R(s,a)

where λ is a weighting factor and γ ≤ 1 is an (optional)
positive discount factor.3 Since R(s, a) ≤ 0, the above
value is between 0 and 1. Choosing the above CPT makes
the likelihood of an action (and a state) proportional to the
exponential of the reward received. During planning using
MPE, we set Rt = 1 for all t as “evidence” fed into the

2It is always possible to do this in the case of a finite horizon without
changing the optimal solution.

3Usually, the CPT in a DBN is independent of t; however, most inference
techniques allow different CPTs in different time slices.

graphical model. This causes maximizing the log likelihood
to maximize the sum of rewards en-route to the goal state.
More concretely, with R1:T+1 = 14, the log likelihood (LL)
of the graphical model is given by:

LL(S1:T+1, A1:T+1, R1:T+1 = 1)

=
1

λ

(

λLL(S1:T+1, A1:T+1) +
T+1
∑

t=1

γtR(St, At)

)

To gain an intuition about the above equation, assume
that actions have deterministic affects. When At is deter-
ministic, the term LL(S1:T+1, A1:T+1) is 0 for all invalid
S1:T+1, A1:T+1 sequences and 1 for those which are consis-
tent. This means that LL(S1:T+1, A1:T+1, R1:T+1) reduces to
1+ 1

λ

∑T
t=1 γtR(St, At). Finding the MPE estimate for A1:T+1

then gives the optimal deterministic plan, i.e., the plan with the
maximum reward. Note that the constant C = 1

λ
represents the

relative weight of maximizing the rewards versus maximizing
the probability of reaching the goal. When At has uncertain
effects, the new LL is the weighted sum of the original LL
and rewards obtained on the way to goal (note that this is
different from the expected reward which requires averaging
over states, a much more difficult problem).

We tested the above method for incorporating rewards by
using an algorithm similar to Algorithm 1 on a set of reward-
based POMDP benchmarks. The results (in terms of average
reward obtained) are shown in Fig. 9. Once again, the general
MPE-based algorithm (now with reward nodes) matches the
performance of current state-of-the-art algorithms which were
specifically designed to solve such POMDP problems.

IV. CONCLUSION

This paper introduces a new approach to planning and
action selection in partially observable environments based
on probabilistic inference in graphical models. Because the
approach is based on MPE estimation rather than MAP esti-
mation, inference of actions is tractable. The approach can be
used for both MDPs and POMDPs, as well as more complex
graphical models. Additionally, the framework allows rewards
and costs associated with states and actions to be incorporated
within the inference process. The performance of the proposed
approach was demonstrated using the problem of navigating to
goal locations in noisy POMDP environments. On benchmark
POMDP problems, our method’s performance either beat or
matched the performance of advanced POMDP solvers.

Our current efforts are focused on several outstanding
issues. One important issue, especially for real-time perfor-
mance, is speed of inference. The simulations in this paper
employed Matlab/Java code based on the Bayesian Network
Toolbox (BNT), which is not optimized for large networks.
We anticipate considerable speed-up using C-code, sparse
MPE inference, and other specialized inference algorithms. A

4Even though we set Rt = 1 everywhere, we still model it as a random
variable. This provides us with the option of ignoring rewards when the
application demands maximization of the original goal-only likelihood.

Domain Q-MDP PBVI HSVI MPE
Hallway 0.26 0.53 0.52 0.51

Hallway2 0.11 0.34 0.35 0.34

Fig. 9. Comparison with other POMDP Solvers on Reward-Based
Benchmarks: The numbers denote the average rewards received starting from
a location chosen randomly based on the belief state.

second issue is understanding how well the approach scales to
MDP and POMDP problems with larger numbers of states and
actions. We are investigating one potential approach to han-
dling large state spaces, namely, using a hierarchical extension
of the current model. Such an extension would allow planning
at multiple levels of abstraction in the state and action spaces,
which could be especially beneficial for planning in noisy
partially observable environments. Finally, we are exploring
algorithms for inference in graphical models with continuous
state and action spaces for applications such as controlling a
robotic arm and maintaining balance in a humanoid robot.

REFERENCES

[1] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies
for partially observable environments: Scaling up.” in ICML, 1995, pp.
362–370.

[2] J. Blythe, “An overview of planning under uncertainty,” AI
Magazine, vol. 20(2), pp. 37–54, 1999. [Online]. Available:
citeseer.ist.psu.edu/blythe99overview.html

[3] C. Boutilier, T. Dean, and S. Hanks, “Decision-theoretic planning: Struc-
tural assumptions and computational leverage,” Journal of AI Research,
vol. 11, pp. 1–94, 1999.

[4] R. S. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[5] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Athena Scientific, 1996.

[6] K. Murphy, “A Survey of POMDP Solution Techniques,” Comp. Sci.
Div., UC Berkeley, Tech. Rep., 2000.

[7] C. Green, “Application of theorem proving to problem solving,” 1969,
pp. 219–239.

[8] H. A. Kautz and B. Selman, “Planning as satisfiability,” in Proceedings
of the Tenth European Conference on Artificial Intelligence (ECAI’92),
1992, pp. 359–363.

[9] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling, “Learning policies
for partially observable environments: Scaling up,” in Proceedings of
the Twelfth International Conference on Machine Learning, A. Prieditis
and S. Russell, Eds. San Francisco, CA, USA: Morgan Kaufmann
publishers Inc.: San Mateo, CA, USA, 1995, pp. 362–370.

[10] H. Attias, “Planning by probabilistic inference,” in Proceedings of the
9th Int. Workshop on AI and Statistics, 2003.

[11] J. D. Park and A. Darwiche, “Complexity Results and Approximation
Strategies for MAP Explanations,” vol. 21, pp. 101–133, 2004.

[12] D. Verma and R. P. N. Rao, “Goal-based imitation as probabilistic
inference over graphical models,” in Advances in Neural Information
Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt, Eds.
Cambridge, MA: MIT Press, 2006.

[13] S. Koenig and R. Simmons, “Unsupervised learning of probabilistic
models for robot navigation,” ICRA, 1996.

[14] I. Nourbakhsh and M. Genesereth, “Assumptive planning and execution:
a simple, working robot architecture,” Autonomous Robots Journal,
vol. 3, no. 1, pp. 49–67, 1996.

[15] T. Smith and R. Simmons, “Heuristic Search Value Iteration for
POMDPs,” in Proc. of UAI 2004, Banff, Alberta, 2004.

[16] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for pomdps,” in International Joint Conference on
Artificial Intelligence (IJCAI), August 2003, pp. 1025 – 1032.

[17] D. Verma and R. P. N. Rao, “Solving MDPs and POMDPs using prob-
abilistic inference over graphical models,” University of Washington,
Seattle, WA, Tech. Rep. UW-CSE-05-12-01, Dec. 2005.

