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A fundamental problem in biological and machine vision is visual invari-
ance: How are objects perceived to be the same despite transformations
such as translations, rotations, and scaling? In this letter, we describe a
new, unsupervised approach to learning invariances based on Lie group
theory. Unlike traditional approaches that sacrifice information about
transformations to achieve invariance, the Lie group approach explicitly
models the effects of transformations in images. As a result, estimates of
transformations are available for other purposes, such as pose estimation
and visuomotor control. Previous approaches based on first-order Taylor
series expansions of images can be regarded as special cases of the Lie
group approach, which utilizes a matrix-exponential-based generative
model of images and can handle arbitrarily large transformations. We
present an unsupervised expectation-maximization algorithm for learn-
ing Lie transformation operators directly from image data containing
examples of transformations. Our experimental results show that the Lie
operators learned by the algorithm from an artificial data set containing
six types of affine transformations closely match the analytically pre-
dicted affine operators. We then demonstrate that the algorithm can also
recover novel transformation operators from natural image sequences.
We conclude by showing that the learned operators can be used to both
generate and estimate transformations in images, thereby providing a
basis for achieving visual invariance.

1 Introduction

How does the visual system recognize objects despite transformations such
as translations, rotations, and scaling? J. J. Gibson, an early pioneer in vision
research, hypothesized that “constant perception depends on the ability of
the individual to detect the invariants” (Gibson, 1966). One of the first com-
putational approaches to perceptual invariance was proposed by Pitts and
McCulloch in their article, “How We Know Universals” (Pitts & McCulloch,
1947). Pitts and McCulloch suggested that invariance could be achieved by
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representing an image using characteristic values, such as averages over all
transformations of functionals applied to transformed images. The method,
however, suffered from the drawback that it required very large numbers
of neurons for computing transformed images and their functional values.
A number of other approaches have since been explored (Fukushima, 1980;
Hinton, 1987; LeCun et al., 1989; Olshausen, Anderson, & Essen, 1995; Frey
& Jojic, 1999; Tenenbaum & Freeman, 2000; Vasilescu & Terzopoulos, 2002;
Grimes & Rao, 2005), some relying on pooling of activities in a feature-
detector hierarchy (e.g., Fukushima, 1980), others relying on temporal se-
quences of input patterns undergoing transformations (e.g., Földiák, 1991;
Wiskott & Sejnowski, 2002), and yet others utilizing modifications to the dis-
tance metric for comparing input images to stored templates (e.g., Simard,
LeCun, & Denker, 1993; Vasconcelos & Lippman, 2005). In a majority of
these approaches, information regarding the underlying transformations is
lost in the process of achieving invariance.

In this letter, we investigate a new approach to invariance based on ex-
plicitly modeling transformations in images. Transformations are modeled
using operators that are learned directly from input images. Once learned,
the operators can be used to achieve visual invariance by factoring out any
transformation-induced changes in the image, thereby preserving the orig-
inal image. Information regarding transformations is retained and can be
used for tasks such as pose estimation, visuomotor planning, and control.

Our approach is based on the notion of continuous transformations and
Lie group theory. It generalizes previous approaches based on first-order
Taylor series expansions of images (Black & Jepson, 1996; Rao & Ballard,
1998), which can account for only small transformations due to their as-
sumption of a linear generative model for the transformed images. The
Lie approach, on the other hand, utilizes a matrix-exponential-based gen-
erative model that can handle arbitrarily large transformations once the
correct transformation operators have been learned. Although Lie groups
have previously been used in visual perception (Dodwell, 1983), computer
vision (Van Gool, Moons, Pauwels, & Oosterlinck, 1995), and image pro-
cessing (Nordberg, 1994), the question of whether it is possible to learn
these groups directly from input data has remained open.

The ability to learn transformation operators from data is important
because it opens the door to learning new operators that cannot be eas-
ily characterized analytically (e.g., nonrigid transformations such as those
induced by changes in facial expression). The problem of learning transfor-
mations is made difficult by the fact that not only are the transformations
operators unknown, but so is the amount of transformation between any
given pair of images.

We present an expectation-maximization-based (EM) (Dempster, Laird,
& Rubin, 1977) unsupervised learning algorithm wherein the transforma-
tion values are treated as hidden (latent) variables and the transformation
operators are treated as parameters to be estimated in the M step. This
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method is a natural extension of a previous gradient-descent-based algo-
rithm proposed in Rao and Ruderman (1999). We investigate the perfor-
mance of the proposed learning method on the problem of learning Lie op-
erators for affine image transformations from an artificially constructed data
set consisting of image pairs containing up to six types of transformations
(translation, rotation, scaling, and two types of shear). Our experimental re-
sults demonstrate that the EM-based method has better convergence prop-
erties than the gradient-descent-based method and can accurately learn the
Lie group operators for all six types of affine transformations in a completely
unsupervised fashion.

A major contribution of this letter is the demonstration that for cases
where the transformation operators are known, the proposed EM-based
algorithm does indeed produce exactly these operators, thereby opening
the door to using the algorithm in other domains where the operators are
unknown. As an example, we show that the algorithm can learn a novel Lie
transformation operator from a natural image sequence. We conclude by
demonstrating that the learned operators can be used to estimate multiple
simultaneous transformations in images for invariant recognition.

2 Continuous Transformations and Lie Groups

Suppose we have a point (in general, a vector) I0, which is an element in a
space F . Let T I0 denote a transformation of the point I0 to another point,
say I1. The transformation operator T is completely specified by its actions
on all points in the space F . Suppose T belongs to a family of operators T .
Consider the case where T is a group, that is, there exists a mapping f :
T × T → T from pairs of transformations to another transformation such
that (1) f is associative, (2) there exists a unique identity transformation,
and (3) for every T ∈ T , there exists a unique inverse transformation of T .
We are interested in transformation groups because most common types
of image transformation obey properties 1 to 3. For example, it is easy
to see that translation is associative (T1 · (T2 · T3)I0 = (T1 · T2) · T3 I0), with a
unique identity (zero translation) and a unique inverse (the inverse of T is
−T).

Continuous transformations are those that can be made infinitesimally
small. Due to their favorable properties as described below, we will be es-
pecially concerned with continuous transformation groups or Lie groups.
Continuity is associated with both the transformation operators T and the
group T . Each T ∈ T is assumed to implement a continuous mapping from
F → F . We focus on the case where T is parameterized by a single real
number z (multiple transformations in an image can be handled by com-
bining several single-parameter transformations as discussed below). Then
the group T is continuous if the function T(z) : � → T is continuous; that
is, any T ∈ T is the image of some z ∈ �, and any continuous variation
of z results in a continuous variation of T . Let T(0) be equivalent to the
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identity transformation. Then as z → 0, the transformation T(z) gets arbi-
trarily close to identity. Its effect on I0 can be written as (to first order in z)
T(z)I0 ≈ (1 + zG)I0 for some matrix G, which is known as the generator
(or operator) for the transformation group. A macroscopic transformation
I1 = I (z) = T(z)I0 can be produced by chaining together a number of these
infinitesimal transformations. For example, by dividing the parameter z
into N equal parts and performing each transformation in turn, we obtain

I (z) = (1 + (z/N)G)N I0. (2.1)

In the limit N → ∞, this expression reduces to the matrix exponential equa-
tion,

I (z) = ezG I0, (2.2)

where I0 is the initial or reference input. Thus, each of the elements of our
one-parameter Lie group can be written as T(z) = ezG . The generator G of
the Lie group is related to the derivative of T(z) with respect to z: d

dz T = GT .1

This leads to an alternate way of deriving equation 2.2. Consider the Taylor
series expansion of a transformed input I (z) in terms of a previous input
I (0):

I (z) = I (0) + d I (0)
dz

z + d2 I (0)
dz2

z2

2
+ . . . , (2.3)

where z denotes the relative transformation between I (z) and I (0). Defining
d
dz I = G I for some operator matrix G, we can rewrite equation 2.3 as I (z) =
ezG I0, which is the same as equation 2.2 with I0 = I (0). Thus, some previous
approaches based on first-order Taylor series expansions (Shi & Tomasi,
1994; Black & Jepson, 1996; Rao & Ballard, 1998) can be viewed as special
cases of the Lie group–based generative model.

3 Learning Lie Transformation Groups

In this section, we address the following problem: Can one learn the gener-
ators (or operators) G of particular Lie transformation groups directly from
input data containing examples of transformations? Note that learning the
operator for a transformation effectively allows us to remain invariant to
that transformation because the effects of transformations can be modeled
independent of the content of the image (see below for details). We assume

1 The generator G of a Lie group defines a field of tangent vectors and is in fact an
element of the Lie algebra associated with the Lie group. We refer interested readers to
Helgason (2001) for more details on the relationship between Lie algebras and Lie groups.
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that during natural temporal sequences of images containing transforma-
tions, there are small image changes corresponding to deterministic sets of
pixel changes that are independent of what the actual pixel values are. The
rearrangements themselves are universal as in, for example, image transla-
tions. The question we address is: Can we learn the Lie group operator G
given simply a series of before and after images?

Let the n × 1 vector I(0) be the original reference image, and let I(z) be
the transformed image. Each element zi of the T × 1 transformation vector
z represents the amount of transformation of type i present in the new
image. Although the methods we describe are not limited to a particular
type of transformation, for concreteness, this letter focuses on the well-
known group GA(2) of general affine transformations in 2D obtained under
the condition of weak perspective viewing. Our focus on this group is
motivated by the fact that it includes the most common types of image
transformations: translations in X ( ∂

∂x ) and Y ( ∂
∂y ), rotations (−y ∂

∂x + x ∂
∂y ),

scaling (x ∂
∂x + y ∂

∂y ), and two types of hyperbolic deformations (parallel
hyperbolic deformation along X/Y x ∂

∂x − y ∂
∂y and hyperbolic deformation

along the diagonals y ∂
∂x + x ∂

∂y ) that can model image distortion under weak
perspective viewing.

Based on the derivation in the previous section, we propose the following
statistical generative model for images:

I(z) = e
∑

i zi Gi I(0) + n, (3.1)

where Gi is the Lie operator matrix for transformation type i and n is a
zero-mean gaussian white noise process with variance σ 2. Note that this
generalizes equation 2.2 to the case of multiple transformations. The orig-
inal image I(0) can itself be modeled using, for example, the following
commonly used linear generative model:

I(0) = Ur + n0, (3.2)

where U is a matrix of learned object features (or basis vectors) and r is the
feature vector (basis coefficients). Traditional approaches to appearance-
based vision (such as the eigenfaces method) have focused on the gen-
erative model in equation 3.2. Equation 3.2 also forms the basis for im-
age coding techniques such as sparse coding (Olshausen & Field, 1996)
and independent component analysis (ICA; Bell & Sejnowski, 1995). None
of these techniques addresses the problem of image transformations. The
matrix-exponential generative model in equation 3.1 extends these previous
techniques by explicitly including transformations in the generative model,
independent of the actual basis matrix U used to model I(0). For the rest of
the letter, we assume an arbitrary model for I(0) and focus on the problem
of learning and estimating transformations on I(0) based on equation 3.1.
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In the case where the transformations are infinitesimal, the higher-order
terms become negligible, and we can rewrite equation 3.1 as

�I =
∑

i

zi Gi I(0) + n, (3.3)

where �I = I(z) − I(0) is the difference image. Note that although this
model is linear, the operators Gi learned using infinitesimal transforma-
tions are the same as those used in the exponential model. Thus, once
learned, these matrices can be used to handle larger transformations as
well, as explored in section 4.

Given the generative model in equation 3.3, our goal is to learn various
Lie operators Gi directly from image pairs containing examples of trans-
formations. The problem is complicated by the fact that the transformation
values zi are also unknown for each pair of images.

We first briefly review a previous gradient-descent-based approach
(Rao & Ruderman, 1999) for tackling this problem and then present our
expectation-maximization-based approach in section 3.2.

3.1 Approximate Method based on Gradient Descent. Suppose we are
given M image pairs as data. We wish to find the n × n matrices Gi and the
transformation vectors z that generated the data set. To do so, we take a
Bayesian maximum a posteriori approach using gaussian priors on z and
Gi . Based on equation 3.3, the negative log posterior probability of a single
image pair {I(z), I(0)} can be written as

E(Gi , z) = − log p[Gi , z|I(z), I(0)]

= 1
2σ 2

∥∥∥∥∥�I −
∑

i

zi Gi I(0)

∥∥∥∥∥
2

+ 1
2σ 2

z

∑
i

z2
i + 1

2σ 2
g

∑
i

gi
T gi, (3.4)

where || · || denotes Euclidean norm, σ 2
z is the variance of the zero-mean

gaussian priors associated with the components zi of the vector z, gi is the
n2 × 1 vector form of Gi , and σ 2

g is the variance associated with the gaus-
sian prior on Gi . Minimizing E is equivalent to maximizing the posterior
probability P[Gi , z|I(z), I(0)]. The posterior probability for the entire data
set can be expressed as a sum of E over all M image pairs.
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If the transformation values zi are known for each image pair, the n × n
operator matrices Gi can be estimated by performing gradient descent on
E with respect to each Gi :

Ġi = −α
∂ E
∂Gi

= α

σ 2

(
�I −

∑
i

zi Gi I(0)

)
(zi I(0))T − α

σ 2
g

Gi , (3.5)

where α is a positive constant (the learning rate).
If the zi are not known but estimates of Gi are available, one can estimate

zi by performing gradient descent on E with respect to each zi :

żi = −β
∂ E
∂zi

= β

σ 2 (Gi I(0))T

(
�I −

∑
i

zi Gi I(0)

)
− β

σ 2
z

zi . (3.6)

Note that if the prior distributions on zi are uniform rather than gaussian,
one can estimate the transformation vector z directly using the following
matrix pseudoinverse method:

ẑ = [AT A]−1 AT�I, (3.7)

where

A= [
G1I(0) G2I(0) · · · GT I(0)

]
.

This estimate for z minimizes the squared error term (first term) in equa-
tion 3.4 for fixed Gi , as can be verified by setting the partial derivative of E
with respect to z equal to zero and solving for z.

In the completely unsupervised case where both zi and Gi are unknown,
one can repeat the following two steps: (1) estimate zi for all image pairs
using the values for Gi from the previous iteration, and (2) adapt Gi using
these estimated values for zi . Although there is no a priori reason for such a
strategy to converge (because parameters are being optimized separately),
such an approach has been successfully used in other applications such as
sparse coding of natural images (Olshausen & Field, 1996) and predictive
coding (Rao & Ballard, 1999). We explore the convergence properties of this
approach for unsupervised transformation learning in section 4.1.1.

The estimation rules for zi given above are based on a first-order
model (see equation 3.3) and are therefore useful only for estimating
small (infinitesimal) transformations. A more general rule for estimating
larger transformations is obtaining by performing gradient descent on the
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optimization function given by the matrix-exponential generative model in
equation 3.1:

żi = γ
(

e
∑

i zi Gi Gi I(0)
)T(

I(z) − e
∑

i zi Gi I(0)
)

− γ

σ 2
z

zi . (3.8)

Note that since the optimization function for the above equation is no
longer quadratic in zi , there may exist many local minima, and the gradient
descent procedure is not guaranteed to converge to a global optimum.
We alleviate this problem by performing random-restart gradient descent,
starting from several different initial values for zi and picking the estimated
zi that produces the best fit to equation 3.1.

Note that each of the equations for estimating zi minimizes an opti-
mization function that factors a new image I(z) into a reference image I(0)
and a transformation component given by z and Gi . When z and Gi are
correctly estimated, any new transformations in the reference image I(0)
are absorbed by the transformation component, keeping the original im-
age stable. Thus, an object recognition system trained on reference images
I(0) (e.g., eigen-based systems; see equation 3.2) will continue to recognize
training objects despite the presence of transformations, thereby achieving
perceptual invariance (see Rao & Ballard, 1998).

3.2 EM Algorithm for Learning Lie Operators. In the completely un-
supervised case where both the transformations zi and the operators Gi

are unknown, an approach based on alternating between gradient descent
over zi and Gi was suggested above. However, such an approach is not
guaranteed to converge. A more rigorous approach that is guaranteed to
converge (albeit to a local minimum) is to use the expectation maximization
(EM) algorithm (Dempster et al., 1977). Rather than attempting to estimate a
single best value for the transformations zi , the EM algorithm treats the zi as
hidden variables and marginalizes over these variables in the optimization
function, allowing Gi to be estimated in an unsupervised manner.

3.2.1 Optimization Function. The EM algorithm maximizes the likelihood
of input data X given a set of model parameters � by maximizing the
following optimization function,

Q(�, �̂) =
∫

Y
log p(X, Y|�)p(Y|X, �̂)dY,

where �̂ is an estimate of the parameters and Y denotes the hidden vari-
ables. Recall the generative model used in equation 3.3 (to simplify notation,
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we use I for I(z) and I0 for I(0)):

I = I0 +
∑

i

zi Gi I0 + n, (3.9)

where we assume n is a zero-mean gaussian noise process with a covariance
matrix �. For this generative model, we obtain:

X = {
I, I0|I, I0 ∈ �N×M}

Y = Z ∈ �T×M

�= {G, �|G ∈ �N×N×T , � ∈ �N×N},

where I and I0 are matrices whose columns contain training images I and
I0, respectively; N = n × n is the size of the 2D image (vectorized in raster
format as I or I0); M is the number of training image pairs; Z is the matrix
whose columns store z for each training image pair; T is the number of
types of transformations in the training set (size of z); and G is a 3D matrix
containing Lie operator matrices Gi , i = 1, . . . , T .

For a given pair of training images {Ii , I0i }, we obtain from equation 3.9,

p(Ii |I0i , zi , G, �) = 1

(2π )
N
2 |�| 1

2

e− 1
2 (Ii −I0i −� j zjiG j I0i )T �−1(Ii −I0i −�k zki Gk I0i )

.

(3.10)

Using Bayes’ rule and assuming that each training pair is drawn indepen-
dently, we can compute the conditional distribution of the hidden variable
Z:

p(Z|I, I0, Ĝ, �̂) =
M∏

i=1

αi p(Ii |I0i , zi , Ĝ, �̂)p(zi ),

where αi is a normalization factor for the ith image pair, and Ĝ and �̂ are
estimated values of G and �, respectively. The optimization function thus
becomes

Q(�, �̂) = 〈log(p(I |I0, Z, G, �)p(I0)p(Z))〉
Z|I,I0,Ĝ,�̂

, (3.11)

where 〈·〉(·) denotes averaging with respect to the distribution in the sub-
script. To simplify notation, we define

〈·〉 ≡ 〈·〉
Z|I,I0,Ĝ,�̂.
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The optimization function then becomes:

Q(�, �̂) =
〈

M∑
i=1

(
−1

2
log |�|

)

−1
2

M∑
i=1

(Ii − I0i − � j zjiG j I0i )
T�−1(Ii − I0i − �k zki GkI0i )

+
M∑

i=1

log p(zi ) + const.

〉

= −1
2

M log |�| − 1
2

∑
i

((Ii − I0i )
T�−1(Ii − I0i ))

−1
2

∑
i

∑
j

∑
k

(
IT

0i
GT

j �
−1GkI0i 〈zjizki 〉

)
+

∑
i

∑
j

(
(Ii − I0i )

T�−1G j I0i 〈zji〉
) +

∑
i

〈log p(zi )〉 + const.

3.2.2 The Expectation Step. In the expectation step or E-step, we need to
calculate 〈zi 〉 and 〈zi zT

i 〉. We show in the appendix that

〈zi 〉= µi , (3.12)〈
zi zT

i

〉 = �zi + µiµ
T
i , (3.13)

where

µi =�−1
zi AT

i �−1(Ii − I0i ), (3.14)

�−1
zi = AT

i �−1 Ai , (3.15)

Ai = [
G1I0i G2I0i · · · GT I0i

]
.

3.2.3 Maximization Step. The expectations calculated in the E-step allow
us to maximize Q with respect to G and �. Setting ∂ Q

∂G j
and ∂ Q

∂�−1 equal to
zero, we obtain (see the appendix):

(
G1 G2 · · · ) =

∑
i

kron(〈zT
i 〉, Ci )

(∑
i

kron
(〈

zi zT
i

〉
, Di

))−1

, (3.16)

� = 1
M

( ∑
i

(Ii − I0i )(Ii − I0i )
T +

∑
i, j,k

G j I0i I
T
0i

GT
k 〈zjizki 〉

−2
∑
i, j

(Ii − I0i )I
T
0i

GT
j 〈zji〉

)
, (3.17)
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where kron denotes the Kronecker product (or tensor product) (Eves, 1980)
(see the appendix for definition), Ci = (Ii − I0i )I

T
0i

and Di = I0i I
T
0i

. Reshaping
the N × NT matrix ( G1 G2 · · · ) into an N × N × T matrix, we obtain the
updated G.

3.2.4 PCA Step. In general, the operators Gi learned via the EM algo-
rithm are not constrained to be orthogonal to each other. As a result, EM
may recover matrices that are, for example, linear combinations of the true
operators. To recover orthogonal operators (e.g., affine operators), we apply
principal component analysis (PCA)2 to the space of N2-dimensional vec-
tors si = ∑

j zjiG j = Gzi where G j is the N2-dimensional vectorized form
of the N × N matrix G j , G is the N2 × T matrix whose columns are given
by G j , and zi is the T-dimensional transformation vector. Typically, the
number of transformation types T is not known. PCA produces an N2 × T ′

matrix G ′ whose columns are T ′ orthogonal vectors G′
i or, equivalently, T ′

orthogonal operator matrices G ′
i of size N × N. These operator matrices

obtained from PCA are then used in the E-step for the next iteration of the
EM algorithm.

3.2.5 Summary of EM algorithm for Learning Lie Transformation
Operators. Repeat until convergence:

� E-step:
Compute expectations 〈zi 〉, 〈zi zT

i 〉 according to equations 3.12 and 3.13.
� M-step:

Compute G and � using Equations 3.16 and 3.17.
Compute orthogonal operators G′ from G using PCA.
Use G′ in the next E-step.

4 Results

The learning algorithms described above were tested in three ways. First,
we used a synthetic image data set containing up to six different types
of affine transformations. To generate synthetic data containing transfor-
mations, we used the periodic sinc interpolation function to continuously
transform a reference image I by infinitesimal (subpixel) amounts with no
assumptions about the camera sampling mechanism (Marks, 1991). The set
of affine operators was derived analytically through a convolution of the
numerical differential operators and the interpolation function. Figure 1
shows these analytically derived operators in the form of operator matri-
ces Gi , along with examples of transformations obtained by using them

2 An interesting alternative worth pursuing is to use independent component analysis
(ICA) (Bell & Sejnowski, 1995) instead of PCA, especially when the operators are not
known to be orthogonal.
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Figure 1: Analytically derived Lie operators and example transformations.
(A) The six affine transformation operator matrices for image size 10 × 10. From
left to right and top to bottom, they are shown in the order: horizontal transla-
tion, vertical translation, rotation, scaling, parallel hyperbolic deformation, and
diagonal hyperbolic deformation. (B) Examples of using the exponential genera-
tive model with the horizontal translation analytical operator to translate a gray-
scale image of an automobile. (C) Examples illustrating how multiple transfor-
mation types can be simultaneously applied to an image using equation 3.1.
For the Mona Lisa example, the parameters used were: 3.9 (X-translation), −5.2
(Y-translation), 45 degrees (rotation), 0.1 (scaling), 0.05 (hyperbolic along X/Y),
and 0.25 (hyperbolic along diagonal).
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in equation 3.1. The analytically derived operators allowed us to test the
performance of the gradient-descent- and EM-based learning algorithms as
described in section 4.1. Second, we applied the EM-based method to the
task of learning unknown transformation operators from natural images.
Results from this experiment are reported in section 4.2. A final set of ex-
periments, discussed in section 4.3, focused on using the learned operators
for estimating transformations in images.

4.1 Learning Affine Transformations. Previous work (Rao &
Ruderman, 1999) demonstrated the utility of using gradient descent for
semi-supervised learning of a single Lie group operator: the transformation
value z was assumed to be known for each training image pair. However,
in most practical problems, both the transformation values and the opera-
tors themselves are unknown. We focus here on this unsupervised learning
problem and test the performance of the unsupervised gradient descent
approach as well as the EM-based approach described above. We used an
artificially generated data set containing one or more of the six types of 2D
affine transformations: horizontal translation (H), vertical translation (V),
rotation (R), scaling (S), parallel hyperbolic deformation (P), and diagonal
hyperbolic deformation (D). We interpret the corresponding transformation
parameter vector z as [H, V, R, S, P, D]T . The synthetic image data set con-
tained 20,000 image pairs. The first image in each pair was generated with
uniformly random pixel intensities; the second was obtained by transform-
ing the first image using transformation values zi picked from zero-mean
gaussian distributions with subpixel variance. To simulate the noisy image
generation process in equation 3.1, zero-mean gaussian distributed noise
with variance of 0.01 was added to each artificially transformed image. An
example image pair in this data set is shown in Figure 2. All intensity values
were in the range 0 to 1.

4.1.1 Gradient Descent-Based Method. To test the gradient-descent ap-
proach in the unsupervised scenario where both the transformation values
z and the operators Gi are unknown, we used the algorithm suggested in
section 3.1: alternate between estimating z using equation 3.7 for each image
pair and adapting Gi using equation 3.5 based on the estimated value of z.
The learning rate α was initialized to 0.4 and was decreased by dividing it
with 1.0001 after each iteration (=100 training pairs). The operator matrices
Gi were updated after every 100 pairs of images based on the average value
of the gradient.

Figure 3 shows the results of attempting to learn the six affine operator
matrices from the training data set using unsupervised gradient descent.
As can be seen, the approach fails to learn any of the operator matrices.
In fact, the algorithm fails to converge to a stable solution, as shown in
Figure 3 (right panel), which plots the optimization value (negative of the
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Image pair in artificial dataset

Figure 2: Example of a training image pair from the synthetic data set.
The first image is a randomly generated image of size 6 × 6 pixels. The
second image was generated by transforming the first using the following
value for z with components picked from zero-mean gaussian distributions:
[0.0947, 0.0348, −0.0293, 0.0875, −0.0693, −0.0374]T .
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Figure 3: Results from the unsupervised gradient descent algorithm. (Left) Six
putative operator matrices learned simultaneously by the unsupervised gradi-
ent descent algorithm. It is clear that none of the operators resembles any of the
six analytical operators for affine transformations. (Right) The value of the log
posterior function (negative of first term only in equation 3.4) over successive
iterations. Each iteration involved 100 image pairs. The algorithm failed to
converge to a stable set of parameters even after 20,000 training image pairs.

first term in equation 3.4) over 200 iterations (20,000 image pairs). This lack
of convergence motivates the use of the EM algorithm.

4.1.2 EM-Based Learning. We first tested the EM algorithm without the
PCA step. As shown in Figure 4, the algorithm was unable to recover the
six operators, although it did converge to a solution.
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Figure 4: Results from EM without PCA step. (Left) The converged values
of six operators learned by the EM algorithm without the intermediate PCA
step. The algorithm failed to discover six different operators even though the
training data set contained six different types of affine transformations. (Right)
The algorithm converged quickly.

We then included the intermediate PCA step (see section 3.2.4) within the
EM algorithm to encourage the learning of mutually orthogonal operators.
Figure 5 shows that the modified EM algorithm again converges rapidly,
but this time to the correct solution (see Figure 5; cf. Figure 1A). To quan-
tify the accuracy of the learning algorithm, we computed the percentage
square root error between the learned and analytical operators for both
the gradient-descent- and EM-based unsupervised learning algorithms.
Figure 6 shows that while the gradient descent algorithm produces opera-
tors with significant errors, the percentage error for the EM-based learned
operators is consistently below 1.5%.

In a separate set of experiments, we tested the performance of the EM-
based algorithm in learning each operator separately rather than simultane-
ously. The algorithm successfully recovered each operator and in addition
converged much faster to the correct solution because no PCA step was
necessary in this case.

We also tested the accuracy of the matrices learned by the EM-based algo-
rithm using equation 2.2 to generate images with different transformation
values starting from a given reference image. Figure 7 illustrates an ex-
periment where the performance of the learned rotational operator was
compared to the analytical operator. The percentage error between the trans-
formed images using the learned versus analytical operator are shown in
the bottom panel. The results from all such experiments are summarized
in Table 1. The percentage errors are small (<8%) for transformations such
as multipixel translations, rotations from 1 to 20 degrees, and shrinkage by
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Figure 5: Results from EM algorithm with PCA step. (Left) The six operators
learned using the EM algorithm with PCA step. They closely match the analyti-
cal operators depicted in Figure 1A. (Right) The value of Q function (normalized
to the final attained value) over successive iterations of the E- and M-steps.

Figure 6: Comparison of operators learned using gradient descent and EM
algorithm with PCA step to analytical operators. The first set of bars shows
the percentage square root error between operators learned via unsupervised
gradient descent and analytical operators for affine transformations. The second
set shows the same error for operators learned using EM with PCA. The bars
are plotted in the order of transformations H, V, R, S, P, and D (see the text for
details).
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Figure 7: Rotating 2D images using analytical and learned Lie operators.
(A) A reference image (labeled 0) of size 40 × 40 pixels was rotated in the range
−20◦ to +20◦ using both the analytically derived Lie operator matrix (bottom
panel) and the learned matrix (top panel). (B) shows the percentage squared
error between images generated using the analytical matrix and the learned
matrix, plotted as a function of rotation value.

Table 1: Errors Between the Transformed Images Using the Learned versus
Analytical Operators.

Transformation Type Transformation Value Range Percentage Error Range

Translation (horizontal <2 pixels <0.05%
and vertical) rotation <20 degrees <8%

Scaling (shrinkage only)a 1-0.67 times <3%
Hyperbolic (parallel)a <1 units <20%

a Other cases give poor results due to numerical errors in the matrix exponential routine.

30%. For extremely large transformations, the error does become more no-
ticeable primarily due to numerical errors in the matrix exponential routine.

4.2 Learning Lie Operators from Natural Image Sequences. The re-
sults in the previous section suggest that the EM-based learning algorithm
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Image 1 Image 15

Figure 8: Two images from the Tiny Town natural image sequence. The image
sequence consists of 15 frames. The first and last frame are shown. A rightward
motion of the camera has caused the scene to shift leftward by a few pixels, as
is evident from examining the left and right edges of the two images.

can successfully recover a set of known transformation operators from an
artificially constructed data set. To test whether the algorithm can be used
to learn unknown operators from natural image sequences, we used the
well-known Tiny Town image sequence, consisting of 15 frames of aerial
images of a toy town taken from an overhead moving camera. The camera
was slowly moving rightward relative to the scene. Figure 8 shows two
frames from this sequence. Each image is 480 × 512 pixels. Consecutive
frames in the image sequence exhibit a close-to-infinitesimal leftward trans-
lation, making it suitable for testing the EM-based learning algorithm (see
equations 3.3 and 3.9). We generated two 10,000 image pair data sets from
this image sequence—one for learning a 1D operator and the other for
learning a 2D operator. To create each data set, we first randomly selected
a pair of consecutive images in the sequence and then chose either a 6 × 1
(1D case) or a 6 × 6 patch (2D case) from a random location in each image.
To give the learning algorithm examples of both rightward and leftward
shifts, we reversed the order of the image patches with 0.5 probability.

Figure 9 shows the 1D and 2D Lie operators learned by the EM algorithm
for the natural image sequence. Comparing with translational operators,
it is clear that the learned operators resemble the horizontal translation
operators except for the assumption of periodicity in the input signal.
Indeed, if one derives the operator for horizontal translations using the
nonperiodic interpolation function, the learned operator can be seen to be
similar (but not identical) to the nonperiodic analytical Lie operator for
translation (see Figure 9).
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Periodic

Analytical Operators

Learned Operators

Figure 9: Operators learned from natural images. The top row shows the ana-
lytical operator for translation in 1D images based on a nonperiodic (left) and
periodic (right) interpolation function. The 1D and 2D operators learned from
the natural image sequence are shown below.

4.3 Estimating Transformations Using the Learned Operators. Once
a set of transformation operators has been learned, they can be used to
estimate and factor out the transformations in images, thereby facilitat-
ing visual invariance. Given a pair of input images containing one or
more transformations, the transformation values zi can be estimated us-
ing the equations derived in section 3. We examined the efficacy of the
learned operators under two conditions: (1) when the image pair contains a
single type of transformation and (2) when the image pair contains multiple
types of transformations simultaneously. For each case, we investigated two
regimes: (a) the subpixel regime, wherein the first-order approximation can
be expected to hold true, and (b) the large transformation regime, wherein
the full exponential model is required.

4.3.1 Estimating Single Transformations.
Subpixel transformations. We compared the performance of the gradient de-
scent method (see equation 3.6) and the direct method (see equation 3.7)
for estimating subpixel transformations in pairs of input images. Figure 10
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Figure 10: Examples of subpixel transformations and the corresponding opti-
mization surfaces. (A) An original image was translated vertically by 0.1 pixels
(pair of images on the left). The plot shows the error function defined by the first
term in equation 3.4 for this pair images. (B) The pair images on the left illustrate
a rotation of 0.1 radians. The plot on the right shows the corresponding error
surface. (C) The pair images on the left depict a scaling of 0.1 (i.e., 1.1 times the
original image). The corresponding error surface is shown on the right. Note
that for all three subpixel transformations, the error surface contains a unique
global minimum.



Learning the Lie Groups of Visual Invariance 2685

Table 2: Estimating Subpixel Transformations.

Analytical Estimate Learned Estimate
Transformation Actual
Type Value Gradient Descent Direct Gradient Descent Direct

Translation 0.1 0.098 0.1 0.098 0.098
Rotation 0.1 0.099 0.1 0.098 0.099
Scaling 0.1 0.1001 0.1001 0.089 0.09

Note: The table compares actual transformation values with estimates obtained using the
analytically derived and the learned Lie operator matrices for the image transformations
in Figure 10.

shows three pairs of images and the optimization surfaces determined by
equation 3.4 as a function of the transformation parameter z. For simplicity,
uniform priors were used for all the parameters, allowing the optimization
surface to be viewed as an “error surface” reflecting only the first term in
equation 3.4. All three surfaces have a single global minimum (z = 0.1),
which was found by both the gradient descent method and the direct
(matrix pseudoinverse) method. Table 2 compares actual transformation
values with those estimated using the direct method and the gradient de-
scent method for the transformations depicted in Figure 10. Both the direct
method and the gradient descent method recover values close to the actual
value used to generate the pair of input images.

Large transformations. An advantage of the Lie approach is that the
learned operator matrix can be used to estimate not just subpixel trans-
formations but also larger translations using gradient descent based on the
matrix exponential generative model (see equation 3.8). As expected, the
optimization function in this case often contains multiple local minima.
Figure 11 shows examples of optimization surfaces for three pairs of im-
ages containing relatively large transformations (downward translation of
2 pixels in Figure 11A, clockwise rotation of 1 radian in Figure 11B, and
scaling by 2 in Figure 11C). In all these cases, the optimization function
contains a global minimum and one or more (typically shallower) local
minima representing alternate (often cyclic) solutions. The two images on
the bottom left of each panel in Figures 11A to 11C show the transformed
images corresponding to these minima in the optimization surfaces. Ex-
cept for Figure 11A (where the second minimum is a cyclic solution), the
local minima are shallower and generate transformed images with greater
distortion.

To find the global minimum, we performed gradient descent with several
equally spaced starting values centered near zero. We picked the transfor-
mation estimate that yielded the best (smallest) value for the optimization
function. Table 3 compares actual transformation values with the estimates
provided by the gradient descent method for a data set of 2D image pairs
containing one of three types of transformations (translation, rotation, or
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Figure 11: Examples of large transformations and the corresponding optimiza-
tion surfaces. (A) Example of large translation. The top two images on the left
illustrate a downward translation of two pixels obtained by using a periodic
sinc interpolation function. The plot on the right shows the error function de-
rived from applying the exponential generative model to these two images. The
images representing the two local minima of this function are shown on the left
at the bottom. (B, C) Examples of large rotation and large scaling, respectively.
The images on the left and the plot on the right follow the scheme in A.
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Table 3: Estimating Large Transformations in 2D Images.

Transformation Actual Analytical Estimate Learned Estimate
Type Value (by gradient descent) (by gradient descent)

Translation 2 2.001 2.002
3.14 3.140 3.142

Rotation 1 0.998 0.991
1.41 1.406 1.392

Scaling 2 2.001 2.041
1.83 1.832 1.850

Note: The table compares actual transformation values with estimates ob-
tained using the analytically derived and the learned Lie operator matrices
for an arbitrary set of image transformations.

scaling). Once again, the gradient descent estimates using either the analyt-
ical or the learned matrix can be seen to be close to the actual transformation
values used to generate the image pair.

4.3.2 Estimating Simultaneous Transformations. Natural images typically
contain a mixture of transformations. We tested whether the Lie-based
approach could be used to recover multiple simultaneous transformations
from image pairs containing all six affine transformations but of differ-
ent magnitudes. The transformed images were generated by using the
periodic interpolation function to sequentially apply each of the six types
of transformations. We studied two transformation regimes: (1) simulta-
neous subpixel transformations and (2) simultaneous large (multipixel)
transformations.

Subpixel transformations. We used the matrix pseudoinverse method (see
equation 3.7) to recover the six transformation values from pairs of gray-
scale images that contained simultaneous known subpixel transformations.
The performance was found to be comparable to that obtained in the single
transformation case.

Large transformations. We tested the performance of the multiple-start
gradient descent method based on equation 3.8 for estimating larger (mul-
tipixel) simultaneous transformations in image pairs. Figure 12 shows a
result from an example image pair. The recovered transformations are ap-
proximately correct, though the errors are larger than in the case where
the image pairs contain only a single type of transformation (see Table 3).
The larger error is partly due to the fact that the estimation method
(see equation 3.8) does not take into account the noncommutativity of
some sequentially applied transformations (such as translation followed
by rotation). An interesting direction of future research is to investigate
extensions of the present approach based on, for example, Lie algebras
(Helgason, 2001) for more accurately modeling the effects of large, multiple
transformations.
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Figure 12: Estimation of large simultaneous transformations. The second image
in the top row was obtained by transforming the first using the transformation
vector z = [5.1, 4.2, 0.5, 0.1, 0.1, 0.1]T . The bar plot below shows the estimated
transformation value, actual value, and error for each of the six types of affine
transformations present in the image pair.

5 Discussion and Conclusion

Our results suggest that it is possible to learn operators (or generators)
for Lie transformation groups directly from image data in a completely
unsupervised manner. We demonstrated that operators for all six affine
image transformations—translations, rotations, scaling, and two types of
shear—can be learned directly from image pairs containing examples of
these transformations. The learned operators were shown to be almost
identical to their analytically derived counterparts. Furthermore, the oper-
ators were learned from a training data set containing randomly generated
images, indicating that operators can be learned independent of image
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content. These operators can be used in conjunction with a matrix
exponential-based generative model to transform (or “warp”) images by
relatively large amounts. Conversely, we showed that the learned opera-
tors can be used to estimate one or more transformations directly from input
images.

We also provided evidence for the applicability of the approach to
natural image sequences by showing that the learning algorithm can
recover a novel operator from a well-known image sequence (the Tiny Town
sequence) traditionally used to test optic flow algorithms. An interesting re-
search direction therefore is to apply the EM-based algorithm to the task of
learning more complex types of transformations directly from video images.
For example, nonrigid transformations such as those induced by changes in
facial expression or lip movements during speech are hard to model using
analytical or physics-based techniques. The unsupervised EM-based algo-
rithm offers an alternate approach based on learning operators for nonrigid
transformations directly from examples. Once learned, the operators could
potentially be used for estimating the type and amount of nonrigid image
transformation in an input video stream.

The Lie generative model (see equation 3.1), together with a genera-
tive model for image content (such as in equation 3.2), could be used to
address certain challenging problems in computer vision such as simulta-
neous motion estimation and recognition of objects in natural scenes and
image stabilization. The optimization function E in these cases would need
to be modified to account for occlusion, multiple motions, and background
clutter using, for instance, a layered model (e.g., Adelson & Wang, 1994)
or a robust optimization function (as in Black & Jepson, 1996). One could
also use sampling-based methods such as particle filtering (Isard & Blake,
1996) to represent multimodal distributions of transformations zi rather
than gaussian distributions. Efforts are currently underway to investigate
these extensions.

An important issue concerning the estimation of large transformations
based on the exponential generative model is how the globally optimal
value can be found efficiently. Several possibilities exist. First, we may
impose a prior on the transformation estimate z that favors small values
over bigger values; this helps in avoiding solutions that are larger cyclic
counterparts of the desired solution, which is closest to zero. This is in fact
already implemented in the model with the zero-mean gaussian prior on z
and the restriction of search to a region around zero. A second possibility is
to use coarse-to-fine techniques, where transformation estimates obtained
from images at a coarse scale are used as starting points for estimating
transformations at finer scales (see, e.g., Black & Jepson, 1996; Vasconcelos
& Lippman, 2005). The coarse-to-fine approach may also help in alleviating
the problem of noise in the learned matrices. We hope to investigate such
strategies in future work.
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Appendix: Formal Derivation of EM Algorithm for Learning Lie
Operators

A.1 Derivation of Expectations in the E-Step. In the expectation step
(E-step), we need to calculate 〈zi 〉 and 〈zi zT

i 〉. First, define

Ai = [ G1I0i G2I0i · · · GT I0i ].

Then:

p(zi |Ii , I0i , G, �) = p(Ii |I0i , zi , G, �)p(zi )∫
p(Ii |I0i , zi , G, �)p(zi )dzi

(A.1)

=
1

(2π )
N
2 |�| 1

2
e− 1

2 (Ii −I0i −Ai zi )T �−1(Ii −I0i −Ai zi ) 1
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2 |
| 1

2
e− 1

2 zT
i 
−1zi∫
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= 1
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e− 1
2 ((zi −µi )T �−1

zi (zi −µi ))

�−1
zi = AT

i �−1 Ai + 
−1 (A.2)

µi =�zi AT
i �−1(Ii − I0i ). (A.3)

Here, we assume that the prior distribution of zi is a T ′-dimensional gaus-
sian distribution, where T ′ denotes the number of transformations (to distin-
guish it from matrix transpose T). When |
| → ∞, the gaussian distribution
becomes a uniform distribution.

As zi is gaussian, we have:

〈zi 〉= µi (A.4)〈
zi zT

i

〉 = �zi + µiµ
T
i . (A.5)

A.2 Derivation of the Maximization Step. The expectations calculated
in the E-step allow us to maximize Q with respect to G and �. Taking the
partial derivatives,

∂ Q
∂G j

=
∑

i

(
−

∑
k

�−1GkI0i I
T
0i
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T
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2

M�T − 1
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∑
i

(Ii − I0i )(Ii − I0i )
T
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and setting these equal to zero, we obtain:
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For Gi , we have

G1

∑
i

Di 〈z1i z1i 〉 + G2

∑
i

Di 〈z1i z2i 〉 + . . . =
∑

i

Ci 〈z1i 〉

G1

∑
i

Di 〈z2i z1i 〉 + G2

∑
i

Di 〈z2i z2i 〉 + . . . =
∑

i

Ci 〈z2i 〉
. . .

where Di = I0i I
T
0i

and Ci = (Ii − I0i )I
T
0i

.

Solving this equation using the Kronecker product notation3 kron, we
have

(
G1 G2 · · · ) =

∑
i

kron
(〈

zT
i

〉
, Ci

) (∑
i

kron
(〈

zi zT
i

〉
, Di

))−1

. (A.7)

Finally, reshaping the N × NT matrix ( G1 G2 · · · ) into an N × N × T
matrix, we obtain the updated G.
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Földiák, P. (1991). Learning invariance from transformation sequences. Neural Com-

putation, 3(2), 194–200.
Frey, B. J., & Jojic, N. (1999). Estimating mixture models of images and inferring spa-

tial transformations using the EM algorithm. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (pp. 416–422). Piscataway, NJ:
IEEE.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics, 36, 193–202.

Gibson, J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.
Grimes, D., & Rao, R. P. N. (2005). Bilinear sparse coding for invariant vision. Neural

Computation, 17(1), 47–73.
Helgason, S. (2001). Differential geometry, Lie groups, and symmetric spaces. Providence,

RI: American Mathematical Society.
Hinton, G. E. (1987). Learning translation invariant recognition in a massively par-

allel network. In G. Goos & J. Hartmanis (Eds.), PARLE: Parallel Architectures and
Languages Europe (pp. 1–13). Berlin: Springer-Verlag.

Isard, M., & Blake, A. (1996). Contour tracking by stochastic propogation of condi-
tional density. In Proc. of the Fourth European Conference on Computer Vision (ECCV)
(pp. 343–356). New York: Springer.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., &
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4), 541–551.

Marks II, R. J. (1991). Introduction to Shannon sampling and interpolation theory. New
York: Springer-Verlag.

Nordberg, K. (1994). Signal representation and processing using operator groups (Tech.
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