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When a �ash is aligned with a moving object, subjects perceive the �ash to
lag behind the moving object. Two different models have been proposed
to explain this “�ash-lag” effect. In the motion extrapolation model, the
visual system extrapolates the location of the moving object to counteract
neural propagation delays, whereas in the latency difference model, it
is hypothesized that moving objects are processed and perceived more
quickly than �ashed objects. However, recent psychophysical experi-
ments suggest that neither of these interpretations is feasible (Eagleman
& Sejnowski, 2000a, 2000b, 2000c), hypothesizing instead that the visual
system uses data from the future of an event before committing to an in-
terpretation. We formalize this idea in terms of the statistical framework
of optimal smoothing and show that a model based on smoothing ac-
counts for the shape of psychometric curves from a �ash-lag experiment
involving random reversals of motion direction. The smoothing model
demonstrates how the visual system may enhance perceptual accuracy by
relying not only on data from the past but also on data collected from the
immediate future of an event.

1 Introduction

When subjects are presented with a �ash that is aligned with a moving
object, they perceive the �ash to lag behind the moving object (MacKay,
1958; Nijhawan, 1994) (see Figure 1a). In order for subjects to perceive the
�ash as aligned with the moving object, the �ash must be presented at
a spatial location ahead of the moving object. A recent �urry of experi-
ments has sparked interest in models that can explain this phenomenon (Ni-
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Figure 1: Flash-lag effect and predictions of two previous models. (a) Flash-
lag effect. The moving bar (black) is perceived to be ahead of the �ashed bar
(shaded) even though the retinal images are physically aligned. (b) Actual (solid
line) and perceived (dashed line) positions of the moving bar, as predicted by
the motion extrapolation model for the motion reversal experiment. (c) Actual
(solid line) and perceived (dashed line) positions, as predicted by the latency
difference model.

jhawan, 1994; Baldo & Klein, 1995; Khurana & Nijhawan, 1995; Nijhawan,
1997; Lappe & Krekelberg, 1998; Purushothaman, Patel, Bedell, & Ogmen,
1998; Whitney & Murakami, 1998; Whitney, Murakami, & Cavanagh, 2000;
Krekelberg & Lappe, 2000; Brenner & Smeets, 2000; Eagleman & Sejnowski,
2000a, 2000b, 2000c).

The motion extrapolation model (see Figure 1b) (Nijhawan, 1994) as-
sumes that the visual system extrapolates the location of moving objects to
compensate for propagation delays as signals are transmitted from the retina
to higher cortical areas. If left uncompensated, such delays would cause the
perceived location of the moving object to lag signi�cantly behind the ac-
tual location. Nijhawan suggested that extrapolation allows objects to be
perceived at their actual location. In the latency difference model (Baldo &
Klein, 1995; Purushothaman et al., 1998; Whitney & Murakami, 1998; Whit-
ney et al., 2000), it is hypothesized that the moving object is perceived to
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be ahead of the �ash due to shorter neural propagation delays for moving
objects as compared to �ashed objects (see Figure 1c).

Recent experiments have revealed the shortcomings of both these models
(Eagleman & Sejnowski, 2000a, 2000b, 2000c). In particular, both the extrap-
olation model and the latency difference model fail to provide a complete
explanation for the psychometric curves obtained when the direction of mo-
tion of the moving object is abruptly reversed. We show that a model based
on the engineering technique of optimal smoothing (Bryson & Ho, 1975)
overcomes the limitations of both these models. In the smoothing model,
perception of an event is not online but rather is delayed, so that the visual
system can take into account information from the immediate future before
committing to an interpretation of the event.

2 Motion Reversal Experiments

In an experiment designed to test the motion extrapolation model, Whitney
and Murakami (1998) reversed the motion of a horizontally translating bar
at a random time and location along its trajectory. A �ash could appear at
various times before or after motion reversal. The study tested where the
�ash needed to be placed in order to be perceived as aligned with themoving
bar. According to the extrapolation model, at the point of motion reversal,
the moving bar should be perceived at its extrapolated location as depicted
in Figure 1b (recall that the time of reversal is random and unknown to
the subject). Contrary to this prediction, Whitney and Murakami reported
that the perceived position of the moving bar never overshot the reversal
point. Rather, the perceived location of the moving bar began deviating
signi�cantly from that predicted by the motion extrapolation model at ap-
proximately 60 to 75 milliseconds before the time of reversal. If extrapolation
were indeed occurring, the bar’s reversal must have been known before the
actual reversal took place, an impossibility. Whitney and Murakami there-
fore concluded that their results supported the latency difference model.

However, the latency difference model cannot by itself explain the round-
ing of the curve observed near the time of reversal, predicting instead a
sharp reversal in the perceived location, as shown in Figure 1c. Whitney
and Murakami (1998) suggested that the rounding may be due to neural
delay variability or a spatiotemporal averaging �lter, but other experiments
have revealed more serious �aws in the latency difference model (Eagleman
& Sejnowski, 2000a, 2000b, 2000c). For example, the �ash-lag effect is pre-
served in the case where the bar starts moving at the same time t0 as the
�ash that is aligned with it. In this “�ash-initiated” paradigm (Khurana &
Nijhawan, 1995; Eagleman & Sejnowski, 2000a), there is no past history of
bar motion at time t0 for a spatiotemporal �lter to operate over. The moving
bar should suffer the same initial processing delay as the �ashed stimulus:
how could it still be perceived ahead of the �ash? This suggests that the
visual system is using motion information occurring after time t0 to make a
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judgment about the perceived location at time t0, in effect using information
from the immediate future to estimate a quantity in the recent past, a form of
“postdiction.” This interpretation has recently been proposed by Eagleman
and Sejnowski (2000a), who show that their psychophysical results are best
explained by the postdiction hypothesis. We show here that this hypoth-
esis can be framed succinctly within the statistical framework of optimal
smoothing (Bryson & Ho, 1975).

3 The Optimal Smoothing Model

The strategy of estimating a value in a time series based on future values (in
addition to past values) is known as smoothing in the engineering literature
(Bryson & Ho, 1975). On the other hand, estimating a current value based
only on past values is called �ltering, e.g., Kalman �ltering (see Kalman,
1960). We have simulated the experiments of Whitney and Murakami using
a simple dynamical model describing the linear motion and reversal of the
bar in the presence of gaussian noise:

x(t C 1) D x(t) C c(t)y(t) C n(t) (3.1)

where x(t) denotes the position of the bar at time t, c(t)y(t) is the increment
or decrement in position for the next time step (c(t) D C1 initially, switching
to ¡1 at a random time of reversal), and n(t) is zero-mean gaussian noise
with variance s2. The increment amount y(t) is assumed to be constant
except for additive zero-mean gaussian noise: y(t C 1) D y(t) C w(t). Finally,
the position x is assumed to be corrupted by measurement noise m(t) before
being observed by the subject: z(t) D x(t) C m(t), where m is again a gaussian
noise process with zero-mean and variance s2

m.
An optimal linear �lter (the Kalman �lter; Kalman, 1960) was derived

from the motion model above to estimate the most likely position bx of the
bar at time t given information about the current and past positions of the
moving bar (see Bryson & Ho, 1975, for a derivation):

bx(t) D x(t) C g(t)(z(t) ¡ x(t)) (3.2)

x(t) D bx(t ¡ 1) C c(t ¡ 1)by(t ¡ 1) (3.3)

where g(t) is a gain term (see Bryson & Ho, 1975) and by(t ¡ 1) D y(0) D a (a
determines the velocity of the bar, assumed to be constant in this case).

Equations 3.2 and 3.3 can be explained as follows. At any given time t,
the �lter maintains an estimate x(t) of bar position x before a new measure-
ment z(t) is obtained. This estimate is our best estimate of position using
all previous measurements z(t ¡ 1), . . . , z(0) and the motion model in equa-
tion 3.1. Note that x(t) is computed frombx(t ¡1), which in turn is computed
from x(t ¡ 1). Once the measurement z(t) is obtained, the �lter computes
a new estimate bx(t) by correcting the old estimate x(t) using the mismatch
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error (z(t) ¡x(t)). Thus, bx(t) represents our best estimate of bar position after
measuring z(t).

The �lter estimate for time t was smoothed recursively using the esti-
mates from the next time steps. This increases accuracy by allowing data
from time steps in the future of t to in�uence and possibly correct the �lter
estimate at time t (Bryson & Ho, 1975):

xsm(t) D bx(t) C h(t)(xsm(t C 1) ¡ x(t C 1)) (3.4)

where xsm(t) is the smoothed estimate for time t given position information
from time steps 1, . . . , N (N > t), and h(t) is a gain term (see Bryson & Ho,
1975). Note that since xsm(t) depends not only onbx(t) but also on xsm(t C 1),
which in turn depends on xsm(tC 2) and so on, the smoothed estimate at time
t relies not only on measurements from the past but also on measurements
from future time steps relative to t. Smoothing corrects each position esti-
matebx(t) by adding the error term h(t)(xsm(tC 1)¡x(tC 1)), which represents
the mismatch between the smoothed and the �ltered estimates at time t C 1.

The smoothing model described above can be used to account quantita-
tively for the �ash-lag results involving motion reversal. Before doing so, it
is useful to make a distinction between the following three times associated
with an event: (1) event time, which is the time at which an event occurs in
the real world; (2) neural activity time, which is the time at which a represen-
tation of the event is formed at a particular neural level; and (3) represented
time (or subjective time) of the occurrence of the event. To see how these
three times may differ, consider the case of recalling visual memories, say,
of an event that occurred during college and an event that occurred in child-
hood. Clearly the event times are different for these two events, as are the
represented times, both of which have a temporal order (childhood events
before college events). However, the neural activity time which is the time
of recall of these memories, does not need to follow this temporal order. For
the �ash-lag effect, the latency difference model assumes that the neural
activity time is the same as the represented time and that the neural activity
time for the �ash is later than that for the moving bar. The extrapolation
model, on the other hand, assumes that for the moving bar, neural delays
can be counteracted such that the represented time of the moving bar is
equal to its event time.

The smoothing model, in contrast, is illustrated in Figure 2. Suppose that
the event time of the �ash is t0. We assume that the neural activity time of
the �ash is t0 C D , where D is the neural propagation delay. Then, according
to the smoothing model, the subject’s perceived location of the bar at the
time of the �ash is given by the smoothed estimate xsm(t0 C D ). Note that this
estimate includes information from time steps up to t0 CD C f , where f is the
amount of time in the future used for smoothing. Thus, the estimate of an
event that happened at time t0 is retrospectively assigned after a minimum
duration of D C f . The �ash-lag effect occurs because the subject reports the
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Figure 2: Event time, neural activity time, and represented time. F represents
the �ash; the strip of numbers represents successive positions of the moving
object. In this example, the �ash occurs at time t0 (event time) when the moving
object occupies position 4. After a neural propagation delay of D , neural activity
pertaining to the �ash begins at a particular level of the visual system (“neural
activity” on the ordinate). After processing of further information, the results
of the smoothing �lter become available to consciousness at time t0 C D C f .
The represented time cannot be displayed on the same axis (real-world time);
instead, it must be displayed on its own axis (subjective-world time). All studies
of the �ash-lag effect measure only the relative timing between �ashed and
moving objects, informing us in no way about real-world time. In the �gure, Qt0

is the perceived moment of the �ash which occurred at time t0 (the graphs are
offset because the represented time Qt0 cannot exist until smoothing is complete).
In subjective time, the �ash is aligned with position 6 (the smoothed position
estimate for time t0 C D ). This misalignment is the �ash-lag illusion. The absence
of positions 1 and 2 in the perception represents the Frohlich effect, in which the
initial positions of a moving object are not perceived.

location of the moving bar to be the smoothed estimate at time t0 C D (see
Figure 2).

For the simulations, the following parameter values were used: g(t) D
0.7, h(t) D 0.5, s D 0.01, sm D 0.01, a D 1, x D 0, N D 50, xsm(N) D bx(N),
and D D 45 milliseconds (two time steps in the simulations). Similar results
were obtained when parameter values, such as the noise variances, were
varied in the neighborhood of the values given above. The gain terms g(t)
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and h(t) can be made a time-varying function of the variances s and sm
(Bryson & Ho, 1975), but in the simulations, constant values, such as the
ones speci�ed above, were found to be suf�cient for modeling the psycho-
physical results. (Matlab code for running these simulations is available
online at http://www.cnl.salk.edu/~rao/smoothing.m.)

4 Results

Figures 3a and 3b show the perceived location of the moving bar for a
human subject (data points) and for the optimal smoothing model (data
points labeled xsm), respectively. The perceived location estimated by the
optimal �ltering model (x) is given by the dotted line. The data shown were
averaged over 100 trials with a single random reversal of motion in each
trial.

As seen in the �gure, the smoothing model reproduces the rounding of
the curve observed in human subjects (see Figure 3a), while the �ltering
model, which uses only past positions of the bar, overshoots at the point of
reversal before correcting its estimate at subsequent time steps. This over-
shoot is avoided by the smoothing model because data from the immediate
future are taken into account, producing a more accurate estimate of bar
position.

How many data points from the future are taken into account in the
model? To answer this question, we computed the impulse response func-
tions of the �lter and the smoother that were used in the simulations. As seen
in Figures 3c and 3d, both the �lter and smoother use input data from the
currentand approximately four previous time steps. However, the smoother
also takes into account data from about four to �ve time steps into the future.
In the model, this corresponds to a time interval of approximately 90 to 112
milliseconds (one time step ¼ 22.5 milliseconds), which is in the range of
the time window of approximately 80 milliseconds reported by Eagleman
and Sejnowski (2000a).

5 Discussion

Why should the visual system delay its perception of an event to integrate
information from the future? The smoothing model suggests that this is
done in order to enhance perceptual accuracy in the presence of uncer-
tainty and noise. It has long been known in the engineering community
(see, e.g., Bryson & Ho, 1975) that the limitations of �ltering (signal esti-
mation based on the past) can be overcome by smoothing techniques that
take some or all future data in a time series into account for optimal esti-
mation of signal properties. Our results suggest that the visual system may
be employing this strategy for accurate estimation of visual motion. An ad-
ditional advantage of smoothing is that smoothed estimates make learning
more reliable. For example, in the case of hidden Markov models (HMMs),

http://www.cnl.salk.edu/%7Erao/smoothing.m
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Figure 3: Flash-lag effect interpreted as optimal smoothing of visual motion
estimates. (a) Data from a human subject showing the perceived location of a
moving bar, as revealed by aligning the �ash (reproduced from Whitney & Mu-
rakami, 1998). Lines through data points are 95% con�dence intervals. Dotted
line D prediction of the extrapolation model. (b) Data from the optimal smooth-
ing model, where the perceived location is taken to be the smoothed position
estimate xsm. Lines through data points are one standard deviation above and
below average values computed over 100 trials. The �ltered estimate x is shown
as a dotted line for comparison. Note the overshoot at the time of reversal for
the �ltered but not the smoothed estimate. (c) Impulse response of the opti-
mal linear �lter used in the simulations. (d) Impulse response of the optimal
smoother used in the simulations. Note that the impulse response function for
the smoother includes weights for past, current, and future data, whereas the
impulse response for the �lter considers only current and past data.
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both the forward (�ltering) and the backward (smoothing) procedures are
used for computing the likelihood in the Baum-Welch algorithm for learn-
ing model parameters (Rabiner & Juang, 1993; see also Dayan & Hinton,
1996). Filtering and smoothing are similarly used in algorithms for learning
the parameters of continuous-state linear dynamical systems (Shumway &
Stoffer, 1982; Ghahramani & Hinton, 1996).

Given the natural trade-off between the amount of perceptual delay re-
quired for smoothing and the need for real-time computation, an interesting
open question is whether the delay of 80 to 100 milliseconds inferred from
psychophysical experiments (Eagleman & Sejnowski, 2000a) represents an
optimal balance between perceptual accuracy and real-time inference. A
related question is whether this delay can be adapted according to the task
at hand. These questions remain the subject of ongoing investigations. The
model presented here also assumes that the subject possesses a model of
the moving stimulus as given by equation 3.1. Such a model could have
been acquired as a result of prior experience with moving stimuli and �ne-
tuned during training before collection of data or, alternately, could have
been learned directly during training. The latter possibility is supported by
several algorithms that have recently been suggested for learning the pa-
rameters of linear dynamical systems directly from input data (Shumway
& Stoffer, 1982; Ghahramani & Hinton, 1996; Rao & Ballard, 1997).

An interesting question is whether the smoothing model can predict
the effect of varying the luminance of the �ash and the moving bar. We
expect such an experimental manipulation to change the signal-to-noise
ratio in the input channels and, hence, the gain terms g(t) and h(t) in the
�lter and smoother, respectively, thereby changing the shape of their im-
pulse response functions (see Figures 3c and 3d). This could result in a
�ash-leadeffect under somecircumstances, as observed experimentally (Pu-
rushothaman et al., 1998).

It is known that the �ash-lag effect is reduced when the �ash becomes
more predictable (Eagleman & Sejnowski, 2000b). For the simulations re-
ported here, we used a minimal internal model for the �ash: the �ash is
detected by the subject after some amount of processing delay. A more gen-
eral approach is to use a dynamical model for the �ash in addition to the
dynamical model for the moving object. Such an extended model would
allow smoothed estimates of both the moving and �ashed bars to be com-
puted; the smoothed position of the �ashed bar would then be compared to
the smoothed position of the moving bar. In the case of multiple predictable
�ashes (e.g., stroboscopically moving �ashes), such a model would be ex-
pected to produce a reduction in �ash lag (due to smoothing of the �ashed
bars), in accordance with previous experimental �ndings (Lappe & Krekel-
berg, 1998; Eagleman & Sejnowski, 2000b). Testing this hypothesis remains
an interesting direction for future research.

The idea that the visual system performs statistical or Bayesian inference
based on its inputs has recently been proposed by several research groups
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(e.g., Freeman, 1994; Hinton, Ghahramani, & Teh, 2000; Knill & Richards,
1996; Rao, 1999). Our results support this emerging model of visual percep-
tion and show how the visual system may base its inference about a partic-
ular event not only on past observations but also on observations from the
immediate future. Such a model extends previous models of the visual cor-
tex based on optimal �ltering theory (Mumford, 1994; Rao & Ballard, 1997;
Rao, 1999). It may additionally allow novel interpretations of other well-
known visual phenomena, such as backward masking (Bachmann, 1994)
and the color phi effect (Kolers & von Grunau, 1976), involving the effect of
future stimuli on the perception of a preceding stimulus.
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