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Abstract. Neurons in the mammalian primary visual cortex are known to possess spatially
localized, oriented receptive fields. It has previously been suggested that these distinctive
properties may reflect an efficient image encoding strategy based on maximizing the sparseness
of the distribution of output neuronal activities or alternately, extracting the independent
components of natural image ensembles. Here, we show that a strategy for transformation-
invariant coding of images based on a first-order Taylor series expansion of an image also causes
localized, oriented receptive fields to be learned from natural image inputs. These receptive
fields, which approximate localized first-order differential operators at various orientations,
allow a pair of cooperating neural networks, one estimating object identity (‘what’) and the
other estimating object transformations (‘where’), to simultaneously recognize an object and
estimate its pose by jointly maximizing thea posteriori probability of generating the observed
visual data. We provide experimental results demonstrating the ability of such networks to factor
retinal stimuli into object-centred features and object-invariant transformation estimates.

1. Introduction

A central problem faced by the visual system is that of recognizing objects irrespective
of transformations such as translations, rotations, and scale changes. Neurophysiological
studies in the past few decades have provided some important clues regarding the neural
mechanisms underlying this invariance to transformations. Hubel and Wiesel [38] first
reported the existence of ‘complex’ cells in the primary visual cortex whose responses
remained invariant to the location of stimuli in their receptive field. Neurons invariant to
position and size over receptive fields of several degrees of visual angle have also been
reported in higher visual areas such as IT in the ventral occipitotemporal pathway [32].
On the other hand, neurons in the dorsal occipitoparietal stream appear to be coding for
various types of transformations, irrespective of stimulus-specific properties. For example,
cells in the area MSTd have been shown to respond to transformations such as translations,
rotations, and expansions/contractions [22]. Thus, the neurobiological data seem to suggest
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that the visual system factors retinal stimuli into object-centred features and their relative
transformations.

It is also known that visual cortical neurons, in particular those in primary visual
cortex, possess localized, oriented receptive fields. It was first suggested by Hubel and
Wiesel [38] that these neurons could be coding for edges and bars in input images
at different orientations. Motivated by the property that natural images possess a
1/f 2 power spectrum [26], Atick and Redlich [2, 3] provided an information-theoretic
explanation of the centre-surround structure of retinal ganglion receptive fields in
terms of whitening or decorrelation of outputs at low spatial frequencies and low-pass
filtering for noise suppression at high spatial frequencies. Several Hebbian learning
algorithms for decorrelation have also been proposed [4, 10, 14, 28, 46, 49, 61, 70],
many of which perform principal component analysis (PCA). Although the PCA of
natural images produces lower-order components that resemble oriented filters [5, 33],
the higher-order components are unlike any known neural receptive field profiles.
In addition, the receptive fields obtained are global rather than localized feature
detectors.

Recently, it has been shown that a neural network that maximizes the sparseness of the
distribution of output activities develops, when trained on natural images, synaptic weights
with localized, oriented receptive fields resembling those in primary visual cortex [51].
Similar results have also been obtained using an algorithm based on a linear transform
model that attempts to make the outputs of the transform as statistically independent as
possible, given the assumption that the cumulative density functions of the outputs can be
modelled as sigmoidal functions [13].

These algorithms are all based directly or indirectly on Barlow’s principle ofredundancy
reduction [6–9], where the goal is to learn ‘feature detectors’ whose outputs are as
statistically independent as possible, the underlying motivation being that sensory inputs
such as images are generally comprised of a set of independent objects or features. An
interesting issue not directly addressed by the above learning algorithms is the invariance of
these encoded image features to transformations such as translations, rotations or scaling. In
particular, one may ask if there exist coding strategies that additionally include the constraint
of transformation invariance of object features and provide an alternative explanation of the
localized, oriented nature of receptive fields of visual cortical neurons.

In this paper, we answer this question in the affirmative by showing that a set
of localized oriented receptive fields arise as a result of a translation-invariant coding
strategy based on first-order Taylor series approximations of natural images. The coding
strategy gives rise to a pair of cooperating neural networks that jointly maximize the
a posteriori probability of generating the observed visual data. The first network estimates
the identity of an object or feature (‘what’) and is closely related to the (hierarchical)
Kalman filter networks previously studied in [57]. The second network estimates the relative
transformations due to object motion (‘where’). We show that, when trained on natural
images containing small (first-order) translations, neurons in the transformation estimating
network develop localized oriented receptive fields approximating first-order differential
operators at various orientations, thereby suggesting an alternative functional interpretation
of cortical neurons with such receptive fields. Such an interpretation is consistent with
the ideas of Koenderink, van Doorn, and others [40, 41, 72]. We verify the efficacy of
these learned receptive fields by testing the performance of the network in factoring novel
input images containing translated objects into object-centred features and object-invariant
translation estimates.
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2. Image representation and optimization

Assume that an image, denoted by a vectorI of n pixels, can be represented as a linear
combination of a set ofk basis vectorsU1, U2, . . . , Uk:

I =
k∑

j=1

Ujrj . (1)

The coefficientsrj denote an internal representation of the imageI with respect to the
internal model defined by the basis vectorsUj . It is convenient to rewrite the above
equation in matrix form as

I = Ur (2)

whereU is then × k matrix whose columns consist of the basis vectorsUj andr is the
k × 1 vector consisting of coefficientsrj . In a neurobiological setting, the values in theith
row of U can be regarded as the strength of the synapses in theith model neuron while the
coefficientsrj denote the pre-synaptic activities received by the neuron.

The key idea behind the model is that one can approximate a new transformed image
I(x) using a Taylor series expansion around a previously encountered reference imageI:

I(x) = I + ∂I

∂x
x+ higher-order terms (3)

wherex is anm×1 vector denoting the relative transformation that the image has undergone.
Strictly speaking, if we are concerned only with planar translations,m = 2 suffices since
one can represent arbitrary translations with a two-component vector. Similarly, rotations
within the image plane can be handled using a scalar parameterx (m = 1). However, in
general, we would like to be able to allowm to be a larger value for several reasons. First,
makingm larger than, say, 1 or 2 (for representing rotations or translations) causesx to be
a distributed representation of the given transformation. Besides being biologically more
plausible, distributed representations enjoy several favourable properties [35] such as better
generalization, robustness, and resistance to faults in memory and internal noise. Secondly,
makingm a sufficiently large value endows the network with the ability to handle certain
transformations with larger degrees of freedom that may not have been anticipated at design
time. Finally, our experimental results suggest that larger values ofm may help in the
learning process by allowing greater flexibility and stability during the search for a solution
to the invariant recognition/pose estimation problem (section 3).

Then×m matrix of partial derivativesJ = ∂I/∂x in equation (3) above is known as the
Jacobian matrix. One way of approximating the JacobianJ is to simply use a fixed matrix
learned from a set of training images [56]. Unfortunately, this does not acknowledge the
fact that the Jacobian is afunction of the current reference image. An alternative method that
addresses this concern is to approximate the Jacobian as a linear function of the reference
imageI. Let Ji be theith column of the Jacobian matrixJ . Then, we have the relation:

Ji ∼= DiI (4)

whereDi is ann× n matrix whose rows are basis vectors corresponding to the component
xi of the transformation vectorx. Note that to implement the Jacobian, thej th row ofDi

needs to compute an approximation of the differential operator∂(·)j /∂xi , i.e. the output of
the operator when applied to imageI needs to be∂Ij /∂xi whereIj is thej th pixel of the
image. Once again, it is easy to see that the operation in equation (4) can be performed by
a set ofn linear neurons whose synapses encode the basis vectors forming then rows of
Di and whose pre-synaptic inputs are given byI.



222 R P N Rao and D H Ballard

For deriving the estimation and learning rules, it is convenient to use then × nm
matrix D obtained by concatenating the various transformation basis matricesDi , i.e.
D = [D1 D2 · · · Dm]. Note that in addition ton (the number of pixels in the input
image), the size ofD depends directly on the dimensionm we choose for the transformation
vectorx and hence on the degree of distributed storage we desire in our representation of
transformations. SinceD scales asn2 for each new dimension inx, there is clearly a
trade-off between how large a matrixD we can afford to learn and how distributed we want
our representations to be. For the experiments described in this paper (section 4), we used
m = 12 when the input images were of size 13× 13 (n = 169) andm = 6 when the inputs
were 21× 21 (n = 441).

Using the definitionD = [D1 D2 · · · Dm], the various equations (4) fori = 1, . . . , m
can be combined into one equation as follows:

J = ∂I

∂x
∼= DI (5)

whereI is thenm×m matrix containingm copies of the reference imageI = Ur:

I =


I 0 . . . 0

0 I . . . 0
...

...
...

...

0 . . . 0 I

 . (6)

Thus, in summary, the above arrangement allows one to approximate the Jacobian for
an arbitrary image using the basis vectors inD without having to store image-specific
Jacobians for each object. As shown in equation (5), the matrixD allows theith column of
the Jacobian matrix to be specified by multiplication of the image with the corresponding
submatrixDi of D (by definition,Di is simply the columnsn(i − 1)+ 1 throughni of D).

Our goal is to estimate the coefficientsr and the transformation vectorx for a given
image and, on a longer time scale, learn appropriate basis vectors inU andD directly from
the input image stream. For small transformations, one can ignore the higher-order terms
in equation (3) and model their effects as stochastic noise:

I(x) = I + Jx+ n (7)

= Ur +DIx+ n (8)

wheren is assumed to be a Gaussian white noise process with zero mean and unit variance.
The above equation can be regarded as implementing a form ofbilinear generative model
for input images (see also [30]). We can now define the following squared-error optimization
function:

E1 = (I(x)− Ur −DIx)T(I(x)− Ur −DIx) (9)

= (I(x)− Ur −XUr)T(I(x)− Ur −XUr) (10)

where the superscript T denotes vector (or matrix) transpose andX = ∑m
i=1 xiDi . It can

be shown that minimizingE1 is equivalent tomaximizing the log likelihoodof generating
the observed dataI(x) with respect to the model parametersU , D, r, andx (see, for
example, [57]).

Without additional constraints, a least-squares optimization function such asE1 (without
the first-order componentDIx) generates solutions similar to principal component analysis
(PCA), which has been shown to yield poor descriptors of natural image distributions [27,
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51]. This motivates us to use additional constraints to limit the range of solutions. For
example, one can add toE1 terms relating to prior distributions for the parameters. Here,
we use zero-mean Gaussian distributions for the model priors since these were found to
be sufficient for localized receptive field development in the transformation network (see
section 4). The resulting optimization function is given by:

E = E1+ α||r||2+ β||x||2+ γ ||U ||2+ λ||D||2 (11)

where the operator|| · ||2 denotes the sum of squares of the elements of the vector or
matrix argument. Viewed probabilistically, the first term in the above sum corresponds
to the negative logarithm of the likelihood of generating the observed visual data while
the remaining terms represent the negative logarithms of the prior probabilities of the
model parameters [51, 57]. The coefficientsα, β, γ , andλ are parameters related to the
variances of the prior distributions. Thus, by Bayes theorem, minimizingE is equivalent
to maximizing thea posteriori probability of generating the observed dataI(x) (see, for
example, [17, 57]).

3. Network dynamics and synaptic learning rules

For the purposes of stability, we minimizeE with respect tor andx for fixed values of
U andD. The basis vectorsU andD are learned on a slower time scale for fixed values
of r andx. This form of alternating between optimization of parameters can be viewed as
implementing an approximate on-line form of the expectation-maximization (EM) algorithm
from statistics [12, 20].

For a given set of basis vectorsD andU , one can minimizeE with respect tor and
x using gradient descent to obtain the following differential equations for estimating object
identity and transformation:

ṙ = −k1

2

∂E

∂r
= k1(U +XU)T(I(x)− Ur −DIx)− k1αr (12)

ẋ = −k2

2

∂E

∂x
= k2(DI)T(I(x)− Ur −DIx)− k2βx (13)

where ṙ and ẋ represent the temporal derivatives ofr andx respectively, andk1 and k2

are positive time constants of the dynamics that determine the rate of descent towards the
minima ofE. Thus, given a transformed imageI(x), one needs to compute theresidual
error between the inputI(x) and its predictionUr + DIx which was made using the
internal model given byU andD. In the case of the object identity estimater, the residual
is filtered using the ‘feedforward’ matrix(U +XU)T (= UT(I +X)T, I being the identity
matrix) where as in the case of the transformation estimatex, the residual is filtered via the
matrix (DI)T (= J T). Note that both the object network and the transformation network
use the same residual signal to correct their estimatesr andx, and both contribute to it.
The residual itself can be computed using, for instance, inhibitory feedback of the input.
The integration over time required by the differential equations above can be implemented
by classical leaky integrate-and-fire neurons (see, for example, [19]).

Figure 1 depicts a neural implementation of the above equations in the form of two
parallel but cooperating networks, one estimating object identity (‘what’) and the other
estimating object transformations (‘where’). This functional dichotomy between object
recognition and transformation estimation is reminiscent of the well known division of
labor between the dorsal and ventral streams in the primate visual cortex [24]. An
especially favourable property of such an arrangement is that the estimate of object
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Figure 1. Network architecture of the model. The shaded portion represents the object identity
(‘what’) network [57] that estimates the zeroth-order component of the input. The bottom
unshaded portion of the figure shows the transformation estimating (‘where’) network that
computes the first-order transformations in the input. The ‘−’ signs within the circle denote
inhibitory feedback for computing of the feedforward residual(I(x)−Ur−Jx), whereJ = DI.
The dotted lines indicate connections conveying information between the two otherwise parallel
networks.

identity remains stable in the first network as the second network attempts to account
for any transformations being induced in the image plane, appropriately conveying the type
of transformation being induced in its estimate forx. The stability of object identity
in the presence of transformations has also been the goal of a number of previously
proposed models [31, 34, 43, 44, 50, 53, 69]. Some previous methods for invariance have
utilized modifications to the distance metric used for comparing input images to stored
templates (such as tangent distance methods [62]) while others have relied on temporal
sequences of input patterns undergoing transformations [11, 29, 42, 64, 68, 71]. Unlike the
present approach, many of the above methods convey no explicit information regarding the
transformation itself or worse, sacrifice information about the transformation in order to
achieve invariance.

For specific object and transformation vectorsr andx, one can minimizeE with respect
to the object basis matrixU and the transformation basis matrixD, to obtain the following
‘learning rules’ for adapting the synaptic efficacies represented by these two matrices:

U̇ = −c1

2

∂E

∂U
= c1(I +X)T(I(x)− Ur −DIx)rT − c1γU (14)

Ḋ = −c2

2

∂E

∂D
= c2(I(x)− Ur −DIx)(Ix)T − c2λD (15)

whereU̇ andḊ again represent temporal derivatives,c1 andc2 are positive time constants
that determine the learning rate, andI is then×n identity matrix. Note that once again, the
residual error(I(x)−Ur−DIx) plays a crucial role in correcting the weightsU andD.
In addition, both learning rules are Hebbian forms of synaptic adaptation with decay. For
instance, in the case ofU , the adaptation is proportional to the product of the pre-synaptic
activity rT and the post-synaptic activity(I +X)T(I(x)− Ur −DIx) (see figure 1).
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4. Experimental results

The experiments were designed to address two important questions regarding the proposed
approach: (i) can the appropriate operators for the differentiation in equation (3) be learned
directly from natural images without any additional constraints, and (ii) are these operators
learned from natural images sufficient for translation-invariant recognition of novel objects
not in the original training set, assuming that the translations induced are comparable to
those used during training? A secondary but nevertheless important question was whether
the translation estimates themselves remain relatively constant even when different objects
are translated. Such object-invariant transformation estimates are extremely desirable since
they allow a sensorimotor system to learn sensorimotor mappings that can generalize easily
across objects.

4.1. Development of localized receptive fields

In order to answer question (i) above, we tested the learning algorithm forD (‘where’
network) on a set of natural image patches. One of the natural images used for extracting
the training patches is shown in figure 2(A). The natural images were low-pass filtered with
a 5× 5 Gaussian kernel to attenuate the effects of image noise. For the first experiment,
the receptive field size (equal to the image patch size) was set to 13× 13 pixels. The box
labelled RF1 in the figure depicts the relative size of the receptive field with respect to the
natural image.

Training inputsI(x) were obtained by translating randomly-selected reference image
patches (= I in equation (3)) horizontally or vertically in one of four random directions by 2
pixels. The object estimater for each reference patch was clamped during the translation and
thus the object network output remained fixed atI. An estimatex for the relative translation
betweenI andI(x) was obtained by allowing equation (13) to converge to a stable value.
This translation estimate was then fixed for the current and next 10 reference image patches
translated in the same direction, and for each of these 11 translations, equation (15) was
used to modify the basis matrixD. The network parameters were set as follows:m = 12,
k2 = 0.2, β = 0.008,λ = 0.0005. The learning rate parameterc2 was initialized to 0.4 and
decreased after every 400 input presentations by dividing with 1.008.

Figure 2(B) shows intensity-coded images of 16 of a set of 169 learned basis vectors
(rows of the basis matrixDi , i = 1) after convergence. Bright regions are positive values
(‘excitatory synapses’), dark regions denote negative values (‘inhibitory synapses’). As
exemplified by these 16 basis vectors, each of the 169 vectors in the matrix was found to be
oriented in the same direction (diagonal in this case) and each was localized to the region
centred on its respective pixel location in the image. Selected vectors in the other matrices
Di for i = 2, . . . ,12 are shown in figure 2(C). Each row of three images represents three
of the 169 rows of eachDi , i = 2, . . . ,12. Once again note the iso-orientation of the
filters for any particulari, localized to their respective positions. By learning copies of such
iso-orientation ‘derivative’ filters within the rows ofDi , the network is able to convolve an
image with such filters, thereby satisfying equation (5).

The results of learning were remarkably robust to image patch size and natural image
samples. Figure 3 shows the results for a receptive field size of 21× 21. The network
parameters in this case were identical to the 13× 13 case with the exception ofm = 6.
Once again, the basis vectors are localized and oriented in space. For eachi, the basis
vector forming thej th row ofDi was found to have converged to an approximation of the
differential operator∂(·)j /∂xi as required by the model (equation (5)).
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Figure 2. Localized receptive fields for translation estimation learned from natural images (RF
size 13× 13). (A) A natural image used for training. A randomly selected image patch was
translated in one of four directions and the translation estimatex thus obtained was then fixed
for the current and next 10 image patches, each of which was translated in the same direction.
For each of these 11 translations, equation (15) was used to trainD. The boxes labelled RF1
and RF2 depict the relative size of the receptive fields of size 13×13 and 21×21 as compared
to the natural image. (B) Intensity-coded images of 16 of the 169 learned basis vectors (rows of
Di , i = 1). Bright regions are positive values (excitatory synapses), dark regions are negative
values (inhibitory synapses). These vectors appear to be tuned towards diagonal translations.
Note that these receptive fields are all at the same orientation but localized to their respective
positions in the image array. (C) A selected set of learned basis vectors fori = 2, . . . ,12:
each row of three images represents three of the 169 rows of eachDi . Once again note the
iso-orientation of the filters for any particulari, localized at their respective positions.

For learning the basis vectorsU in the ‘what’ network, Olshausen and Field [51] have
previously demonstrated that an algorithm similar to equation (14) for learningU but with
a non-Gaussian prior distribution onr (equation (12)) produces localized oriented basis
vectors within the columns ofU . We have recently shown [58] that a rectified Gaussian
prior as in equation (11) (but with a full covariance matrix instead ofα) leads to a lateral
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Figure 3. Receptive fields for translation estimation (RF size 21× 21). The results of learning
were found to be remarkably robust to variations in image patch size and natural image samples.
Shown here are the results obtained for a receptive field size of 21× 21. Each of the six rows
shows five of the 441 basis vectors forming the rows of a givenDi , for i = 1, . . . ,6. All basis
vectors for a givenDi are oriented in the same direction, each being localized to its respective
position within the image array. Learning copies of such iso-orientation differential operators
within the rows ofDi allows the network to perform the differentiation in the Taylor series
expansion of equation (5).

inhibition term in the dynamics ofr [28] which in turn allows localized and oriented
receptive fields to be developed (rectification is implemented by imposing the constraint of
non-negativity on the components ofr) . In the next section, we utilize the learning rule
for U as given in equation (14) to test the efficacy of the learned translation basis vectors
Di in mediating translation-invariant recognition of novel objects.

4.2. Translation-invariant pattern recognition

The basis vectors described in the previous section were tested in a simple translation-
invariant pattern recognition task involving a small set of novel man-made objects.
Figure 4(A) shows images (of size 21× 21) that were used to train the object identity
(‘what’) network. For each image, the object estimater was allowed to converge according
to equation (12) and the weightsU were subsequently modified according to equation (14).
The transformation estimate during the object learning process was set tox = 0. The
network parameters were set as follows:k = 15, k1 = 0.3, α = 0.008, γ = 0.0005. The
learning rate parameterc1 was initialized to 0.4 and decreased gradually by dividing with
1.0008 at each iteration (one sweep through the training images) for 5000 iterations.
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Figure 4. Example of translation-invariant pattern recognition. (A) Images (of size 21× 21)
used for training the object identity (‘what’) network. (B) and (C) Response of the trained
networks (figure 1) to two different objects translated leftward (B) and rightward (C) by two
pixels. Note that in each case, the translated image is factored into the original image (Ur) and
a shift (Jx). This allows the ‘what’ network to recognize the object while the ‘where’ network
simultaneously computes the pose or relative transformation (in this case, a translation) that the
original object has undergone. An especially attractive property of such an arrangement is that
the transformation vectorx, shown here as a histogram (upward bar = positive value, downward
bar = negative value), is approximately the same for a given translation even though different
objects were translated.

Figures 4(B) and 4(C) show the response of the two networks (figure 1) after training,
to two different objects translated leftward and rightward respectively by two pixels. The
learned basis vector matrixD from figure 3 was used in the ‘where’ network. Note that
in each case, the network was able to factor the translated image into the original image
(Ur) and a shift (Jx). This allows the ‘what’ network to recognize the object in spite of
the translation. Although the translation involved in this particular example is admittedly
quite small (section 5 discusses the issue of larger transformations), it serves to illustrate
an important difference between the proposed approach and some previous approaches to
invariant recognition (for example, [31]): the invariance to transformations is not achieved
at the cost of sacrificing important information regarding the transformations themselves.
Rather, an estimate of the current transformation is obtained simultaneous with the invariant
estimation of object identity. In addition, as seen in the figure, the transformation vectorx
(upward bar = positive value, downward bar = negative value) is approximately the same
for the given translation even though different objects were translated.

The constancy of translation estimates across objects was verified for the objects in
the test set as shown in figure 5. The upper plot is the correlation (normalized vector
dot product) between the translation estimate vectorx1 for object 1 and the translation
estimate vectors for all other objects in the training set for a rightward translation. The
lower plot shows the correlation betweenx1 and translation estimates for all training
objects for a leftward translation. The high and relatively constant positive correlations
among right-translation vectors for different objects (the upper plot in figure 5) support
the hypothesis that transformation estimates in the model are relatively object-invariant.
This is further supported by the relatively constant and high negative correlations between
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Figure 5. Constancy of estimated translation across objects. Upper plot: the correlation between
the estimated translation vectorx1 for object 1 and the estimated translation vectors for all other
objects in the training set for arightward translation. Lower plot: the correlation betweenx1

and leftward translation vectors for all training objects. Note the high (and relatively constant)
positive correlations among rightward translation vectors and the high (and relatively constant)
negative correlations with the leftward translation vectors, supporting the hypothesis that the
transformation estimates are relatively object-invariant.

rightward translation vectorx1 and the left translation vectors for each object (the lower plot
in figure 5). The high negative values for these correlations demonstrate that the estimates
for rightward translations are sufficiently different from the estimates for leftward translation,
thereby allowing reliable discrimination between rightward and leftward translations.

The independence and decoupling of the transformation estimatesx from object
estimatesr is especially important for learning general sensory-motor routines (for example,
grasping a cup) that can be uniformly applied across objects without regard to object specific
visual features (for example, patterns/writing on the cup or the colour of the cup) that are
usually irrelevant to motor programming. Furthermore, when a transformation estimatex
is used to drive a motor routine such as a saccadic eye movement, the resulting ‘efference
copy’ [16] of the motor signal can be used to update the transformation estimatex [39].
This updating of internal spatial representations by intended movements has been observed
in the parietal cortex [23] and has inspired numerous models based on the notion of ‘gain
fields’ [55, 60, 73]. The work presented here suggests a possible neural mechanism for
converting the raw retinal information to spatial location estimates, which can subsequently
be utilized to program motor actions and which can in turn be modulated by eye movements
and other intended motor activities.

5. Discussion

The experimental results indicate that a set of localized and oriented basis vectors for
estimating first-order image translations can be learned directly from natural images using
a Taylor series based approach to encoding images. Such an approach allows a pair of
cooperating neural networks, one estimating object identity (‘what’) and the other estimating
object transformations (‘where’), to simultaneously recognize an object and estimate its
pose by jointly maximizing the posterior probability of generating the input data. The
property of relative invariance of the object estimate in the presence of translations suggests
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a possible explanation for the invariant response of a complex cell to stimuli placed in
different locations within its receptive field [38]. Although the invariant response of the
cell appears highly nonlinear when viewed in isolation, this invariance can also be explained
by considering the responses of cells in a companion network that account for the first-order
terms. Thus, as the input is displaced to different locations in the receptive field, the zeroth-
order response of the complex cell remains unchanged whenever the displacement can be
modelled by a first-order variation using the transformation estimating cells in the companion
network.

An obvious drawback of using a first-order Taylor series for approximating image
transformations is the limitation to relatively small transformations of image features.
Although larger transformations can be estimated by a first-order model up to a certain
degree of accuracy (figure 6), the error in image reconstruction gradually increases due
to the insufficiencies of a first-order approximation. A possible solution is to use a
hierarchical multiscale estimation scheme. Black and Jepson [15] demonstrate the viability
of such an approach in the context of an image pyramid scheme. A neurally plausible
alternative is to use a hierarchical network, such as the hierarchical Kalman filter model
proposed in [57], wherein higher levels operate over larger spatial scales than lower ones
and maintain more global, more abstract, and coarser estimates. In such an approach,
a given transformation is represented in a hierarchical and distributed fashion within the
various levels. A hierarchical structure is especially desirable since it counters the well
known aperture problem[1] in motion estimation by allowing information from larger
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Figure 6. The effect of large translations on image reconstruction error. The basis vectors from
figure 3, which were learned from two pixel translations of natural image patches, were tested
for larger transformations. A set of 100 randomly selected natural image patches (vectorsI
normalized to length 1) were translated in two different directions (leftwards and rightwards),
and the values of the optimization functionE, representing the image reconstruction error,
were used to plot the average reconstruction error over the 100 translated patches as a function
of the amount of image translation (in percentages of the receptive field (RF) size). Negative
percentages denote leftward translations while positive percentages denote rightward translations.
The graph indicates that despite being trained on only two pixel translations, the basis vectors
can nevertheless represent larger translations reaching up to±30–35% of RF size, after which
the image reconstruction error may reach too high a value for the purpose of transformation-
invariant recognition. This motivates the need for hierarchical, multiscale approaches and Lie
group-based methods for transformation estimation (see section 5).
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spatial extents at higher levels to disambiguate the local lower-level estimates. A natural
consequence of such a scheme is a gradual increase in receptive field size as one ascends the
hierarchical object identity and transformation networks, similar to the increase in receptive
field size found in successively higher areas of the ventral/dorsal visual pathways [24].
Assigning such a correspondence between the model and neuroanatomical structure leads
to the possibility of testable predictions. For example, the dotted lines in figure 1 indicate
connections conveying information between the object identity and transformation networks.
These connections suggest a similar computational role for the neuroanatomical connections
known to exist between the dorsal and ventral visual pathways [24].

Another attractive approach to extending the present method to larger transformations
of image features is to view the learned differential operatorsDi as generators ofLie
transformation groups. In such an approach, the transformed imagesI(x) are assumed to
be generated from a reference imageI using a matrix exponential:

I(x) = exp

( m∑
i=1

xiDi

)
I. (16)

Note that equation (7) is just a first-order approximation to the above equation (see also
equation (10)). Thus, in principle, the operatorsDi learned in this paper using a first-order
approximation could be directly used in equation (16) above to handle larger transformations.
We are currently evaluating this promising strategy for transformation invariance [59]. A
number of other authors have previously explored the general application of Lie group theory
to visual perception [21, 25, 36], computer vision [66, 67] and image processing [48].

The experiments presented herein involved two-dimensional translations of image
stimuli, but other transformations such as scaling and rotation within the image plane
can be accommodated if these are included in the training data [56]. Three-dimensional
transformations such as rotations in depth can be handled by training the ‘what’ network on
a sufficient number of views of an object, as suggested by Bülthoff, Edelman, Poggio and
co-workers [18, 47, 54], and allowing the ‘where’ network to account for the intermediate
poses. This is consistent with Tarr and Pinker’s multiple-views-plus-transformation (MVPT)
theory of recognition [65].

Taylor series expansions have previously been used in computer vision for tasks such
as optic flow computation [37] where it is assumed that image brightness varies smoothly
in space and time. Motivated by the Taylor series approach to optic flow computation,
Black and Jepson have independently arrived at an approach similar to that being proposed
herein but within the context of principal component analysis (PCA), using a hard-wired
rather than a learned set of differential operators [15]. The limitations of PCA in modelling
natural image distributions are well known [27, 51]. PCA is suitable only when the data
are well described by Gaussian clouds. It additionally constrains its basis vectors to be
mutually orthogonal. Recent work by Field [27] and others strongly suggests that natural
images form a highly non-Gaussian distribution that cannot be described satisfactorily
by orthogonal basis vectors. Also, the number of basis vectors in PCA has to be less
than the dimensionality of the input space which means that overcomplete representations
cannot be learned (see [45, 52, 63] for arguments regarding the need for overcomplete
representations). Perhaps more importantly, PCA can only capture linear pairwise statistical
dependences. However, natural scenes are rife with higher-order statistical structure that
cannot be accounted for by linear pairwise statistics [51]. The approach presented herein
allows the flexibility of tailoring a possibly overcomplete set of non-orthogonal basis vectors
to match input distributions by allowing one to choose appropriate prior distributions for
the parameters.
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An interesting extension of the idea of expanding a transformed image into a spatial
Taylor series is to use aspatiotemporalTaylor series to capture object motion attributes in
both space and time. In such an approach, the transformation estimatesx indicate both the
spatial transformations induced as well as the time duration of the transformation. Thus,
motion attributes such as velocity and direction selectivity, and more general transformations
involving looming, receding or rotating stimuli would be conjointly coded by the various
components of thex vector. Preliminary attempts at modelling the spatiotemporal properties
of cortical neurons using a zeroth-order spatiotemporal ‘what’ network have been promising
[58]. Extending such an approach to spatiotemporal ‘what’ and ‘where’ networks remains
a subject of ongoing investigations.

Acknowledgments

We would like to thank Dan Ruderman and an anonymous reviewer for helpful comments
and suggestions. We are especially grateful to Dan Ruderman for pointing out the close
connection between our approach and Lie group theory. This research was supported by
NIH/PHS research grant 1-P41-RR09283.

References

[1] Adelson E H and Movshon J A 1982 Phenomenal coherence of moving visual patternsNature 300 523–25
[2] Atick J J 1992 Could information theory provide an ecological theory of sensory processingNetwork: Comput.

Neural Syst.3 213–51
[3] Atick J J and Redlich A N 1992 What does the retina know about natural scenes?Neural Comput.4 196–210
[4] Atick J J and Redlich A N 1993 Convergent algorithm for sensory receptive field developmentNeural

Comput.5 45–60
[5] Baddeley R J and Hancock P J B 1991 A statistical analysis of natural images matches psychophysically

derived orientation tuning curvesProc. R. Soc.B 246 219–223
[6] Barlow H B 1961 Possible principles underlying the transformation of sensory messagesSensory

Communicationed W A Rosenblith (Cambridge, MA: MIT Press) pp 217–34
[7] Barlow H B 1972 Single units and cognition: A neurone doctrine for perceptual psychologyPerception1

371–94
[8] Barlow H B 1989 Unsupervised learningNeural Comput.1 295–311
[9] Barlow H B 1994 What is the computational goal of the neocortex?Large-Scale Neuronal Theories of the

Brain ed C Koch and J L Davis (Cambridge, MA: MIT Press) pp 1–22
[10] Barrow H G 1987 Learning receptive fieldsProc. IEEE 1st Int. Conf. on Neural Networks (San Diego, CA,

June 1987)ed M Caudill and C Butler (Piscataway, NJ: IEEE) vol 4, pp 115–21
[11] Barrow H G and Bray A J 1992 A model of adaptive development of complex cortical cellsArtificial Neural

Networks 2ed I Aleksander and J Taylor (Amsterdam: Elsevier Science) pp 881–4
[12] Baum L E, Petrie T, Soules G and Weiss N 1970 A maximization technique occurring in the statistical

analysis of probabilistic functions of Markov chainsAnn. Math. Stat.41 164–71
[13] Bell A J and Sejnowski T J 1997 The ‘independent components’ of natural scenes are edge filtersVision

Res.37 3327–38
[14] Bienenstock E L, Cooper L N and Munro P W 1982 Theory for the development of neuron selectivity:

orientation specificity and binocular interaction in visual cortexJ. Neurosci.2 32–48
[15] Black M J and Jepson A D 1996 Eigentracking: Robust matching and tracking of articulated objects using

a view-based representationProc. 4th Eur. Conf. on Computer Vision (ECCV ’96, Cambridge, UK, April
1996)ed B Buxton and R Cipolla (Berlin: Springer) vol 1, pp 329–42

[16] Brooks V B 1986The Neural Basis of Motor Control(Oxford: Oxford University Press)
[17] Bryson A E and Ho Y C 1975Applied Optimal Control(New York: Wiley)
[18] Bülthoff H H, Edelman S Y and Tarr M J 1995 How are three-dimensional objects represented in the brain?

Cereb. Cortex5 247–60
[19] Cowan J D 1995 Neural networks: the early daysAdvances in Neural Information Processing Systems 2

ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 893–900



Development of localized oriented receptive fields 233

[20] Dempster A P, Laird N M and Rubin D B 1977 Maximum likelihood from incomplete data via the EM
algorithmJ. R. Stat. Soc.B 39 1–38

[21] Dodwell P C 1983 The Lie transformation group model of visual perceptionPercept. Psychophys.34 1–16
[22] Duffy C J and Wurtz R H 1991 Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response

selectivity to large field stimuliJ. Neurophysiol.65 1329–45
[23] Duhamel J, Colby C L and Goldberg M E 1992 The updating of the representation of visual space in parietal

cortex by intended eye movementsScience255 90–2
[24] Felleman D J and Van Essen D C 1991 Distributed hierarchical processing in the primate cerebral cortex

Cereb. Cortex1 1–47
[25] Ferraro M and Caelli T M 1994 Lie transformation groups, integral transforms, and invariant pattern

recognitionSpatial Vis.8 33–44
[26] Field D J 1987 Relations between the statistics of natural images and the response properties of cortical cells

J. Opt. Soc. Am.A 4 2379–94
[27] Field D J 1994 What is the goal of sensory coding?Neural Comput.6 559–601
[28] Földiák P 1990 Forming sparse representations by local anti-Hebbian learningBiol. Cybern.64 165–70
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